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The established methods for the numerical evaluation of magnetic material properties exist only in certain
limits, including first-principles methods, spin models, and micromagnetics. In the present paper, we introduce
a multiscale modeling approach, bridging the gaps between the three approaches above. The goal is to describe
thermodynamic equilibrium and nonequilibrium properties of magnetic materials on length scales up to mi-
crometers, starting from first principles. In the first step, we model, as an example, bulk FePt in the ordered L10

phase by using an effective, classical spin Hamiltonian that was constructed earlier on the basis of first-
principles methods. The next step is to simulate this spin model by using the stochastic Landau–Lifshitz–
Gilbert equation. The temperature dependent micromagnetic parameters, which are evaluated with these ato-
mistic simulations, are consequently used to develop a many macrospin micromagnetic approach, based on the
Landau–Lifshitz–Bloch equation. As an example, we calculate the magnetization dynamics following a pico-
second heat pulse resembling pump-probe experiments.
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I. INTRODUCTION

An increasing amount of research is currently focusing on
the thermodynamic equilibrium and nonequilibrium behavior
of ferromagnetic materials. The motivations are manifold,
reaching from the problem of thermal stability of informa-
tion magnetically stored on length scales of only nanometers
to the understanding of laser-induced spin dynamics in the
picosecond regime,1–11 opening new perspectives for appli-
cations in magnetic storage devices and spintronics.

At the moment, well-established methods for the investi-
gation of magnetic material properties exist only in certain
limits, including mainly so-called first-principles methods,
spin models, and micromagnetics. The basis of most of the
numerical calculation of magnetization dynamics is a micro-
magnetic approach �for a review, see Ref. 12� that considers
the magnetization of either a small particle or a discrete mag-
netic nanoelement as a vector of a fixed length �a macrospin�
following the Landau–Lifshitz–Gilbert �LLG� equation of
motion. Even though the LLG equation is �partly� phenom-
enological, this approach turns out to be very successful as
far as descriptions of its ground state domain structures and
its zero temperature dynamics are concerned. The method is
capable of describing the properties of magnetic systems of
sizes up to the micrometer regime. For an extension to finite
temperatures, the LLG equation is usually augmented by a
stochastic term.13 However, contrary to the situation with
atomic spins, there is no reason to assume a fixed magneti-
zation length for nanoelements at nonzero temperature, so
that this approach lacks the essential physics to describe rel-
evant thermodynamic phenomena.

When compared to this micromagnetic approach, the use
of atomistic spin models for the description of magnetic ma-
terials has advantages as well as disadvantages.14 The main
disadvantage is that due to the atomic resolution, the system
size is clearly restricted to a nanometer scale. The advantages
are �i� realistic lattice structures can be taken into account
without assuming a continuous magnetization, �ii� the mod-

eling of para-, ferri-, ferro-, or antiferromagnets, and even
heterostructures composed of several of these different ma-
terials including interface properties is straightforward, and
most importantly, �iii� finite temperatures can be taken into
account without cutting the spin wave spectra due to the
discretization.

However, both of the methods described above usually
rest on models wherein material parameters, such as ex-
change integrals and anisotropy constants, are more or less
treated as fitting parameters. Methods that avoid this and
directly calculate material properties are called “first-
principles methods.” These methods usually base on spin
density functional theory �SDFT� and directly calculate mag-
netic ground state properties for a given material from its
electronic structure. However, these methods are restricted to
either translationally invariant �infinite� systems or small
groups of atoms. The purpose of this paper is to introduce a
hierarchical multiscale modeling method for magnetic mate-
rials, bridging the gaps between the three approaches above,
with the goal to describe thermodynamic equilibrium and
nonequilibrium properties of magnetic materials, starting
from first principles on length scales from the single atom
reaching to micrometers.

In bridging the gap between micromagnetics and spin
models, we note the occurrence of several important effects
of the macrospin dynamics at elevated temperatures:15 first,
that during switching, the magnetization magnitude is not
constant in time; second, that the longitudinal relaxation time
sharply increases approaching the Curie temperature; and
third, that at the same time the transverse relaxation time
sharply decreases. Within a �micromagnetic� macrospin ap-
proach, these phenomena cannot be described in terms of the
conventional LLG equation of motion. However, they are in
agreement with the Landau–Lifshitz–Bloch �LLB�
equation,15 which was recently derived by Garanin within
the mean-field approximation from the classical Fokker–
Planck equation for individual spins interacting with a heat
bath.16 Therefore, we use the LLB equation as a new basis
for micromagnetics at elevated temperatures and demon-
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strate the capabilities of a micromagnetic LLB equation, by
investigating the temperature dependent magnetization dy-
namics and comparing to results from spin model simula-
tions.

Regarding the gap between spin models and first-
principles methods, we note that a systematic construction
and parameterization of a spin model Hamiltonian for a
given material on the basis of first-principles calculations is a
challenge. Major problems include a non-Heisenberg form of
the exchange and a delocalized character of the magnetic
moment. Nevertheless, some pioneering calculations of ex-
change integrals and even anisotropy constants �besides the
more common calculations of the atomic magnetic moment�
with the aim to derive an effective classical spin Hamiltonian
exist in the literature. In the following, we will use a spin
model for FePt that was derived earlier17 and the capabilities
of which have been demonstrated elsewhere.17–19

The structure of our paper is as follows: in Sec. II, we
introduce the LLB equation and point out where the infor-
mation from spin model simulation comes in. In Sec. III, we
introduce the spin model itself that contains the information
from SDFT calculation and calculate the quantities needed
for the simulation of the LLB equation. After that, our results
are presented in Sec. IV, including a simulation of pump-
probe experiments with a macrospin model capable of pre-
dictions both on the picosecond time scale of fast demagne-
tization and the nanosecond time scale of precession and
magnetization recovery. Finally, we summarize and give an
outlook.

II. LANDAU–LIFSHITZ–BLOCH EQUATION

An equation of motion for macrospins allowing for longi-
tudinal relaxation was derived by Garanin16 within a mean-
field approximation from the classical Fokker–Planck equa-
tion for atomistic spins interacting with a heat bath. The
resulting “Landau–Lifshitz–Bloch equation” has been shown
to be able of describing linear domain walls, a domain wall
type with a nonconstant magnetization length. These results
are consistent with measurements of the domain wall mobil-
ity in YIG crystals close to TC �Ref. 20� and with recent
atomistic simulations.21 Furthermore, the predictions for the
longitudinal and transverse relaxation times were success-
fully compared to atomistic simulations.15 Consequently, we
use this equation in the following for the thermodynamics
simulation of macrospins.

The LLB equation can be written in the form

ṁi = − �̃�mi � Heff
i � +

�̃��

mi
2 �mi · �Heff

i + ��
i��mi

−
�̃��

mi
2 �mi � �mi � �Heff

i + ��
i ��� . �1�

Besides the usual precession and relaxation terms, the
LLB equation contains another term that controls longitudi-
nal relaxation. Hence, mi is a spin polarization that is not
assumed to be of constant length and even its equilibrium
value me�T� is temperature dependent. �� and �� are dimen-
sionless longitudinal and transverse damping parameters.

Note that when compared to Eq. �12�, it is �̃=� / �1+�2�,
where � is the gyromagnetic ratio.

Thermal fluctuations22 are included as an additional noise
term �l

i�t� with l= � , � , ��l
i�t�	=0, and

��l
i,��0��l

j,��t�	 =
2kBT

�̃�lMs
0	3
��
ij
�t� , �2�

where i , j denotes lattice sites and � ,� denotes the Cartesian
components. Here, 	3 is the volume of the micromagnetic
cell and Ms

0 is the value of the spontaneous magnetization at
zero temperature.

The LLB equation is valid for finite temperatures and
even above TC, although the damping parameters and effec-
tive fields are different below and above TC. For T�TC, the
damping parameters are

�� = �
2T

3TC
�� = �
1 −

T

3TC
� , �3�

and for T�TC the damping parameters are equal,

�� = �� =
2�T

3TC
. �4�

The effective fields Heff
i =− 1

Ms
0


f

mi

with free energy density
f are given by16

Heff
i = H + HA

i + Hex
i + �

1

2
̃�


1 −
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2

me
2�mi T � TC

−
1


̃�


1 +
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2

5�T − TC�
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�5�

where the anisotropy field is

HA
i = −

�mx
i ex + my

i ey�

̃�

, �6�

which makes the z axis the easy axis of the model and the
exchange field

Hex
i = −

A

me
2

2

Ms
0	2 �

j�neigh�i�
�m j − mi� . �7�

Note that within the context of the LLB equation, field com-
ponents parallel to the local magnetic moment are relevant
since they can change the length of the magnetization vector.
However, in order to conserve the mean length of the mag-
netization, the effective fields must vanish at equilibrium.
The susceptibilities 
̃l are defined by 
̃l=�ml /�Hl. Note that
at lower temperatures, the perpendicular susceptibility 
̃� is
related to the anisotropy anisotropy K via 
̃�=Ms

0me
2 / �2K�.16

In these equations, � is a microscopic parameter that char-
acterizes the coupling of the individual, atomistic spins with
the heat bath. Note that, even when assuming � to be tem-
perature independent, the macroscopic damping parameters
of the LLB equation turn out to be temperature dependent.15

In the limit T→0, the longitudinal damping parameter ��
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vanishes and with �m�=me�0� �the zero temperature equilib-
rium magnetization� the LLB equation goes over to the usual
LLG equation.

A problem for the application of this equation is that one
has to know the spontaneous equilibrium magnetization
me�T�, the perpendicular �
̃��T�� and parallel �
̃��T�� suscep-
tibilities as well as the exchange stiffness A�T�. In former
publications,22,23 these were taken from a mean-field ap-
proximation. However, here we want to go beyond this ap-
proach and separately calculate these functions from a
Langevin dynamics simulation of an atomistic spin model.
As an example, we choose a model for FePt that was intro-
duced earlier and that is meanwhile well established in
literature.17–19,24 Since this model was derived from first
principles, a direct link is made from SDFT calculations via
a spin model to our macrospin simulations.

III. ATOMISTIC SPIN MODEL FOR FePt

FePt is intensively investigated due to its potential appli-
cation as ultrahigh density recording media.25 In former pub-
lications, we modeled bulk FePt in the layered L10 phase.
The model was constructed on the basis of first-principles
calculations of noncollinear configurations calculated by us-
ing constrained the local spin density functional theory26 and
site-resolved magnetocrystalline anisotropy.27 The funda-
mental interactions at the electronic level are strongly modi-
fied by the L10 structure. In particular, it has been shown17

that the Fe moments can be considered as localized, while
the Pt induced moments have to be treated as essentially
delocalized. Nevertheless, it is possible to construct a classi-
cal spin Hamiltonian involving only the Fe degrees of free-
dom, with the introduction of a two-ion anisotropy term and
a modified exchange term.17 In order to verify the form of
the Hamiltonian, especially the two-ion anisotropy, equilib-
rium data for the temperature dependence of the anisotropy
constant were compared to the experimental data and it was
shown17 that this model successfully describes the critical
temperature and the anomalous temperature dependence of
the uniaxial anisotropy energy constant K1 experimentally
found in this ordered alloy.28,29 Further investigations of the
model include its dynamic behavior,18 the orientation depen-
dence of domain wall properties,19 a direct consequence of
the fact that interaction within the Fe planes are larger than
those perpendicular to the planes, and the temperature depen-
dence of the domain wall profiles.19,24

In the following, we consider the full Hamiltonian, which
is described in detail in Ref. 17, including Zeeman energy
and dipole-dipole coupling,

H = − �
i�j

�J̃ijSi · S j + dij
�2�Si

zSj
z� − �

i

d�0��Si
z�2

− �
i�j

�0�s
2

4�

3�Si·eij��eij·S j�−Si·S j

rij
3 − �

i

�sB · Si, �8�

where �s is the atomistic magnetic moment. This spin
Hamiltonian is expressed only in terms of Fe degrees of free-
dom. The first sum represents the exchange energy of the Fe

moments with effective exchange interactions constant J̃ij
given by

J̃ij = Jij + Ĩ
 
�

M�
0�2

�
�

Ji�Jj�. �9�

Here, Jij represent the exchange parameters between the Fe
moments and the Ji� the ones between Fe and Pt sites �the
Pt-Pt interaction is neglected�. The intra-atomic interactions

are described by the parameter Ĩ .
� that represents the local
Pt susceptibility, while the Pt magnetic moment in the ferro-
magnetic state are given by M�

0. The sum over � is over sites

of the Pt sublattice only. Interestingly, the interactions J̃ij
depend on the orientation within the crystal: Fe-Fe interac-
tions within the Fe planes are stronger than those perpen-
dicular to the planes via the Pt moments.

The exchange interactions J̃ij �and consequently also the
dij

�2�� are taken into account up to a distance of 5 unit cells
until they are finally small enough to be neglected. The two-
ion anisotropy parameters

dij
�2� = kPt

�0�
 
�

M�
0�2

�
�

Ji�Jj�, �10�

are the dominant contributions to the uniaxial anisotropy en-
ergy in relation to the single-ion term

di
�0� = kFe

�0� + kPt
�0�
 
�

M�
0�2

�
�

Ji�
2 , �11�

which is represented in the second sum. The Fe kFe
�0� and

Pt kPt
�0� single-ion contributions are found to be kFe

�0� =
−0.097 meV and kPt

�0� =1.427 meV.17

The dipole-dipole coupling is represented in the third
sum, while the final term describes the coupling of the mag-
netic moments to an external magnetic field B. Note that all
parameters follow from SDFT calculation are described in
detail in Ref. 17 so that the model contains no adjustable
parameters.

In our simulation, we use Langevin dynamics, i.e., simu-
lations of the stochastic Landau–Lifshitz–Gilbert equation of
motion,

Ṡi = −
�

�1 + �2��s
�Si � Hi + �Si � �Si � Hi�� , �12�

with the internal field Hi=− �H
�Si

+�i�t�. Thermal fluctuations
are included as an additional noise term in the internal fields
with ��i�t�=0	 and ��i

k�t��i
l�t��	=2
ij
kl
�t− t���kBT�s /�,

where i , j denotes lattice sites and k , l the Cartesian compo-
nents. All algorithms that we use are described in detail in
Ref. 14.

First of all, our aim is a calculation of parameterized equi-
librium functions for me�T�, 
̃��T�, and 
̃��T�. These func-
tions are needed as input for the macrospin model following
the LLB equation. Therefore, with the atomistic model, we
simulate a cubical system of size 6.15�6.15�9.25 nm3 and
calculate the equilibrium properties of the magnetization and
the susceptibilities. The magnetization �Fig. 1� clearly shows
finite-size effects, which are visible as rounding of the mag-
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netization close to the phase transition. However, since the
LLB equation implies true critical behavior, we fit our data
with a function that extrapolates down to a critical tempera-
ture of about 660 K �solid line�, thereby parameterizing a
model of infinite system size. This is important since the
LLB equation demands a clear definition of the critical tem-
perature. The so parameterized function can then be used as
a me�T� function for the simulations of the LLB equation.

The susceptibilities shown in Fig. 2 are calculated from
the fluctuations of the magnetization30 given by


̃l =
�sN

kBT
��Sl

2	 − �Sl	2� , �13�

where N is the number of spins. They clearly exhibit stronger
fluctuations than the magnetization and in addition, 
̃� shows
once again finite-size effects. As before, we fit our data with
functions that extrapolate to the critical behavior of an infi-
nite system, i.e., a divergence of 
̃�. Well above TC, the two
susceptibilities collapse.

The calculation of the thermodynamic exchange stiffness
A�T� for the LLB equation is less straightforward. In the
following, we use a result derived from the temperature de-
pendent free energy of a domain wall and its corresponding
width. The free energy 	F of a domain wall is gained from
numerical calculations of the internal domain wall energy
	E, which is the energy difference between a system with
and without a domain wall, by using the relation

	F��� =
1

�
�

0

�

	E����d��, �14�

with �=1 /kBT. It was found that domain wall profiles are
well described by the usual hyperbolic functions,21 so that
we were able to fit the domain wall width 
. Assuming that
the well-known equations for the domain wall width


�T� = ��A�T�
K�T�

, �15�

and the free energy

	F�T� = 4�A�T�K�T� , �16�

temperature dependence holds even at finite temperature, we
estimate the micromagnetic exchange stiffness A�T� as well
as the anisotropy energy constant K�T�. For a detailed de-
scription of the calculation, see Refs. 19 and 24. The corre-
sponding results for A�T� are shown in Fig. 3. Once again,
finite size effects can be observed and the fitted line extrapo-
lates down to zero at the Curie temperature.

With me�T�, A�T�, 
̃��T�, and 
̃��T�, we have all the func-
tions that are necessary as input for the LLB equation. By
using these functions, we circumvent further mean-field ap-
proximations in the LLB equation and are able to use the
microscopic information from the spin Hamiltonian, includ-
ing the special form of the anisotropy and the long-range
exchange interaction of our FePt model. Since the form of
the Hamiltonian and all its parameters are derived from
SDFT calculations, this approach builds a bridge between
electronic degrees of freedom, atomistic spin models, and a
macrospin model. In the next section, we will test the mac-
rospin approach versus the original atomistic spin model.

IV. COMPARING ATOMISTIC AND MACROSPIN
MODELS

In the following, the goal is to compare a full atomistic
simulation of an FePt nanoparticle by using the Hamiltonian
�Eq. �8�� and the numerical methods �Eq. �12�� described
above with a much less computation time demanding simu-
lation of a single macrospin by using the LLB equation �Eq.
�1��.

We begin the comparison to a longitudinal relaxation
shown in Fig. 4. Here, our simulations start with a fully
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0.4
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FIG. 1. �Color online� Spontaneous equilibrium magnetization
vs temperature for the atomistic FePt model. The solid line is a fit to
the data extrapolating to TC as for an infinite system.
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FIG. 2. �Color online� Equilibrium parallel and transverse sus-
ceptibility vs temperature for our atomistic FePt model. The solid
lines are fits extrapolating the critical behavior.
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FIG. 3. �Color online� Exchange stiffness vs temperature for the
atomistic FePt model. The solid line is a fit extrapolating the critical
behavior.
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polarized system �Sz=1�. Then, the relaxation to its thermal
equilibrium value is monitored.

Note that in our simulations, we use a value of �=0.1,
which is reasonable for a high coercivity medium. It was
recently shown31 that high values of damping in magnetic
media arise from defect-induced magnon-magnon scattering;
an effect not included in the current model. Here, we repre-
sent the strong dissipation by a large effective �.

The agreement between the atomistic model �data points�
and the single macrospin �solid lines� model is remarkable,
even for 800 K that is above TC. The deviations for 650 K
are due to the fact that here we are close to the Curie tem-
perature. Here, the atomistic simulations show finite size ef-
fects leading to shorter �less divergent� relaxation time while
for the macrospin following the LLB equation, we used pa-
rameterized functions describing the infinite system. Never-
theless, when assuming the same finite volume for the mac-
rospin, even the fluctuations that are due to the finite system
size are comparable. Note that this kind of longitudinal re-
laxation could not at all be described by a macrospin model
following the LLG equation of motion, which would keep
the length of the magnetization vector constant. Hence, this
first test is already far beyond the abilities of conventional
micromagnetics.

As a next test, we focus on transverse relaxation. Here,
we first equilibrate the system and then we tilt it by an angle
of 30° away from the easy axis. Then we monitor the trans-
verse relaxation shown in Fig. 5. Once again, the agreement
between atomistic �data points� and single macrospin �solid
lines� model is remarkable. The deviations at the highest

temperature shown are due to the fact that thermal fluctua-
tions contribute to a stochastic motion so that the two curves
cannot be directly compared on longer time scales.

As mentioned before, the tests we showed before are far
beyond the abilities of conventional micromagnetism. In Sec.
V, we focus on LLB simulation of fast heating dynamics to
show the capability of our approach and to reveal its limits.

V. FAST HEATING DYNAMICS

In the following, we compare a full atomistic simulation
of fast heating dynamics of an FePt nanoparticle to a simu-
lation of a single macrospin by using the LLB equation. We
start our simulation at 300 K and after a waiting time of
some picoseconds, a temperature pulse is applied. Later on,
the system is cooled down to 423 K. This rectangular shaped
temperature pulse is a simplification of electron temperature
profiles as they occur in pump-probe experiments.32

Figure 6 shows the response of the magnetization to this
step heat pulse for two different peak temperatures and du-
rations, calculated with the atomistic as well as a single mac-
rospin LLB model. The results for the single macrospin
model are in good agreement with the atomistic one as long
as the heat pulse temperature stays below TC �see the ma-
genta line �LLB� and circles �LLG� in Fig. 6�. In the case
wherein the temperature rises above TC, the models still
show agreement during the demagnetization but deviations
occur during recovery �see the blue line �LLB� and squares
�LLG� in Fig. 6�. In this temperature range, the atomistic
dynamics shows a slower recovery due to multiple nucle-
ation events temporarily leading to a nonuniform magnetiza-
tion with a much slower reordering dynamics �for details see
Ref. 32�. This kind of dynamics cannot be described with a
single macrospin model.

However, these effects can be taken into account by using
a multimacrospin approach. Therefore, we simulate a system
of 16�16�24 macrospins with a cell size 	 of 3 nm. The
exchange between the single grains is taken into account via
the exchange stiffness A�T�. In the following, we show only
results for multimacrospin simulations and not the corre-
sponding atomistic ones, since the considered system size of
48�48�72 nm3 is far beyond the abilities of the full ato-
mistic simulations of an FePt nanoparticle.
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0.2
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FIG. 4. �Color online� Relaxation of the z component of the
magnetization for different temperatures. The data are from an ato-
mistic simulation; the solid lines from a macrospin LLB model ��
=0.1�.

T = 0 K
T = 300 K
T = 600 K

t [ps]

m
y

151050
-0.5

-0.25

0

0.25

0.5

FIG. 5. �Color online� Relaxation of one of the transverse com-
ponents of the magnetization for different temperatures. The data
are from an atomistic simulation; the solid lines from a macrospin
LLB model ��=0.1�.
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FIG. 6. �Color online� z component of the magnetization vs time
for two different pulse heights �750 and 550 K� with different pulse
durations �1 and 3 ps� for atomistic �symbols� and single macrospin
simulations �lines�. In one case, the pulse height is below TC

�circles� and in the other one �squares�, well above TC ��=0.1�.
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Figure 7 shows the time dependence of the magnetization
for various values of the peak temperature. As discussed in
Ref. 32, the magnetization shows a much slower recovery
after full demagnetization, which is essentially due to frus-
tration between multiple volumes of nucleated magnetization
caused by the laser pulse. Our multimacrospin simulations
clearly show the expected behavior.

VI. SUMMARY AND OUTLOOK

We introduced a multiscale modeling approach capable of
describing thermodynamic equilibrium and nonequilibrium
properties of magnetic materials on length scales up to mi-

crometers, starting from first principles. In the first step, we
modeled bulk FePt in the ordered L10 phase by using an
effective, classical spin Hamiltonian that was constructed on
the basis of first-principles methods. The temperature-
dependent micromagnetic parameters, evaluated with these
atomistic simulations, were then used as input for many mac-
rospin micromagnetic approach, based on the Landau–
Lifshitz–Bloch equation.

As our tests show, a single macrospin is already capable
of reflecting many aspects of an atomistic simulation. In or-
der to see more complicated phenomena resting on nonuni-
form magnetization states as, e.g., the slow recovery after
full demagnetization, it is necessary to consider a multimac-
rospin approach where the exchange between the grains is
taken into account. By using this approach, the numerical
simulation of the thermodynamic behavior of magnetic sys-
tems on length scales, which so far were only accessible with
conventional micromagnetic approaches, should be possible.
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