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We investigate the dynamics of the random one-dimensional spin-1/2 quantum isotropic XY model in
high-temperature limit by the recurrence relations method. Both the time-dependent transverse autocorrelation
function and the corresponding spectral density are calculated for the cases that the exchange couplings
between spins or transverse fields satisfy the double-Gaussian distribution. It is found that when the value of
�J �standard deviation of random exchange coupling� or �B �standard deviation of random external magnetic
field� is small, the dynamics of the system undergoes a crossover between a central-peak behavior and a
collective-mode one. However, when �J or �B is large enough, the crossover vanishes, and the system shows
the most disordered behavior or a central-peak behavior. We also investigate the cases that the couplings or
fields satisfy the bimodal distribution and Gaussian distribution, which are the two special cases of double-
Gaussian distribution, and find that the dynamics of the system is similar to that of the one-dimensional
transverse Ising system.
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I. INTRODUCTION

The dynamical properties of the quantum spin systems
have been paid considerable attention in the past few
decades.1,2 One of the typical examples of such systems is
the spin-1/2 XY model, which has been successfully related
to some quasi-one-dimensional compounds, such as
Cs2CoCl4 and PrCl3.3,4 Regarding the dynamics of this sys-
tem, Niemeijer5 found that the time-dependant longitudinal
spin autocorrelation function for any temperature can be ex-
pressed as the square of the Bessel function.

On the other hand, for the transverse spin correlation
function of the XY chain, some results indicate that it shows
a Gaussian form at infinite temperature6,7 and a power-law
behavior at zero temperature.1,8 For finite open XY chain, at
0�T�� �where T is the temperature of the system�, the
bulk regime of the long-time asymptotic decay of the auto-
correlation function is exponential. However, it was proved
by Lee9 that for a Hermitian system, its autocorrelation may
not exponentially decay.

Recently, more attention has been given to random quan-
tum spin systems,10–13 and there are some valuable results for
the time-dependent correlation functions of the Ising and XY
models in one-dimensional �1D� lattice. The dynamical prop-
erties of the 1D random transverse Ising model with the bi-
modal distribution have been found to undergo a crossover
from a central-peak behavior to a collective mode behavior
as a function of disorder.10 Besides these, the 1D random-
bond transverse Ising model with four-spin interactions has
also been studied.11 For the random isotropic XY chain, there
exist some studies in literature, which deal with the longitu-
dinal correlation function. The dynamics of this system in
which the exchange couplings satisfy a bimodal distribution
has been found to be governed by the stronger couplings at
long time even if their concentration �the fraction that the
exchange couplings take the larger value� is very small.14

Both the properties of the quantum XY chain and two-leg XY

ladder in a random field have been found sensitive to the
percentage of disorder but not to the intensity of the field.15

Although some results have been reported for the longi-
tudinal correlation function of random XY system, as we
know, only a few results for the transverse correlation func-
tion of this system with arbitrary probability of disorder have
been reported. In this paper, we investigate the effects of
double-Gaussian disorder on the dynamics of the transverse
autocorrelation function in the XY chain. We find that the
system exhibits some interesting behavior, e.g., the system
shows a crossover between a collective-mode behavior and a
central-peak one when the standard deviation of the ex-
change couplings or magnetic fields is small, but the cross-
over vanishes when the standard deviation is large enough.

This paper is arranged as follows. In Sec. II, we introduce
the model and method used in the present work. The results
and discussion are given in Sec. III, and Sec. IV is the con-
clusions.

II. MODEL AND METHOD

As a nontrivial solvable many-body spin system, the 1D
quantum spin-1/2 XY model has attracted considerable atten-
tion. The Hamiltonian of this model is described by

H = −
1

2�
i

�Ji�i
x�i+1

x + Ki�i
y�i+1

y � −
1

2�
i

Bi�i
z, �1�

where �i
���=x ,y ,z� are the Pauli operators on a site i, Bi is

the external magnetic field at site i, Ji and Ki are the
x-component and y-component nearest-neighbor couplings
of the spins, respectively. In this work, we consider the ex-
change couplings and the magnetic fields as random vari-
ables, which independently satisfy the double-Gaussian dis-
tribution,
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P��i� = p P1��i� + �1 − p�P2��i� , �2�

where

P1��i� =
1

�2���

exp�−
��i − �1�2

2��
2 �

and

P2��i� =
1

�2���

exp�−
��i − �2�2

2��
2 � �3�

are the Gaussian distributions,16 �1 and �2 are the corre-
sponding mean values of the random variables, �� is the
standard deviation that denotes the deviation of the random
variables �i from the mean values �1 or �2, and p represents
the probability of the variable that satisfies the Gaussian dis-
tribution P1��i�, where 0� p�1. P��i� means that �i satisfy
the Gaussian distribution P1��i� or P2��i� in the fraction of p
and �1− p�, respectively.

The double-Gaussian distribution can be used to describe
not only the case that the random variables satisfy a discrete
distribution but also that the variables satisfy a continuous
distribution. Typically, when the standard deviation ��→0,
the Gaussian parts in Eq. �2� becomes � functions so the
double-Gaussian distribution becomes a bimodal distribu-
tion,

P��i� = p ���i − �1� + �1 − p����i − �2� . �4�

When p=0 or p=1, Eq. �2� becomes the standard Gaussian
distribution.

What we are mainly interested in this work is the trans-
verse autocorrelation function of the XY system. It is defined
by

C�t� = �� j
x�t�� j

x�0�� , �5�

where �¯� presents an average over the random variables
following the statistical average. The corresponding spectral
density 	�
� is defined as the Fourier transformation of the
spin autocorrelation function,

	�
� = 	
−�

+�

C�t�ei
tdt . �6�

The method of recurrence relations is a powerful tool for
the calculation of dynamic correlation function and has been
successfully applied to a lot of spin systems.10,14,15,17–21 Next,
we will use the recurrence relations method to obtain the
short-time expansion of C�t� and the spectral density 	�
�.

We consider the operator � j
x�t� as a dynamical variable

and expanded it as17

� j
x�t� = �

�=0

�

a��t�f�, �7�

where a��t� are the time-dependent coefficients and f� are the
orthogonal basis vectors spanning a Hilbert space S. By
choosing f0=� j

x�0�, the remaining f� can be obtained by the
following recurrence relation:17,22

f�+1 = iLf� + ��f�−1, �  0, �8�

where L is the quantum Liouville operator, and the recurrants
�� are defined as

�� =
�f�, f��

�f�−1, f�−1�
, �  1, �9�

with �0=1 and f−1=0. �f� , f�� is the inner product of the
basis vectors in S, which include both the statistical and ran-
dom averages.7

We have exactly obtained the first seven basis vectors.17

Because most vectors are too lengthy, we just give the first
two of them,

f1 = Bj� j
y − Kj−1� j−1

y � j
z − Kj� j+1

y � j
z,

and

f2 = ��1 − Bj
2 − Kj−1

2 − Kj
2�� j

x + JjKj−1� j+1
x � j−1

y � j
y

− 2Kj−1Kj� j
x� j−1

y � j+1
y + Jj−1Kj� j−1

x � j
y� j+1

y + �BjJj−1

+ Bj−1Kj−1�� j−1
x � j

z + �BjJj + Bj+1Kj�� j+1
x � j

z

− Jj−2Kj−1� j−2
x � j−1

z � j
z − Jj+1Kj� j+2

x � j
z� j+1

z .

The squared norms of the vectors7 are obtained as follows:

�f0, f0� = 1,

�f1, f1� = Bj
2 + Kj−1

2 + Kj
2,

and

�f2, f2� = �1
2 − 2�1Bj

2 + Bj
4 + Bj

2Jj−1
2 + Bj

2Jj
2 + 2Bj−1BjJj−1Kj−1

− 2�1Kj−1
2 + Bj−1

2 Kj−1
2 + 2Bj

2Kj−1
2 + Jj−2

2 Kj−1
2 + Jj

2Kj−1
2

+ Kj−1
4 + 2BjBj+1JjKj − 2�1Kj

2 + 2Bj
2Kj

2 + Bj+1
2 Kj

2

+ Jj−1
2 Kj

2 + Jj+1
2 Kj

2 + 6Kj−1
2 Kj

2 + Kj
4.

Then, the first seven continued fraction coefficients are ex-
actly calculated by Eq. �9�. Because the �� sequence has a
linear growth rate, �8 and �9 are also accepted by the as-
sumption ��= ��N /N�� for ��N.10

The coefficients a��t� in Eq. �7� satisfy the second recur-
rence relation,

��+1a�+1�t� = −
da��t�

dt
+ a�−1�t�, �  0, �10�

where a−1�t�
0, and a0�t� is the autocorrelation function of
the system. By Laplace transformation a��z�=�0

�e−zta��t�dt,
where z=�+ i
, ��0, the continued-fraction form of a0�z�
can be obtained as

a0�z� =
1

z +
�1

z +
�2

z + ¯

, �11�

which denotes that the recurrants are the only factor that
determines the dynamic correlation functions. If only a finite
number of recurrants can be determined, it is necessary to
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use a scheme to terminate the continued fraction. Of the
several truncation schemes that have been used in literature,
the Gaussian terminator17,23 is the one that best serves our
problem. After calculating a0�z� by using the Gaussian ter-
minator, we approximately obtain the spectral density by

	�
� = lim
�→0

Re a0�z�, z = � + i
 . �12�

Meanwhile, by using the first nine recurrants, we obtain the
corresponding 18 moments and then calculate the C�t� by
means of the Padé approximate.

III. RESULTS AND DISCUSSIONS

In the following, we give some results of C�t� and 	�
�
to study the effects of the double-Gaussian disorder on the
isotropic �i.e., Ji=Ki for every i� XY system. Besides, we also
investigate the two limiting cases of the double-Gaussian
distribution, i.e., bimodal distribution and Gaussian distribu-
tion.

A. Double-Gaussian distribution

Assume that the transverse fields Bi or exchange cou-
plings Ji satisfy the double-Gaussian distribution, which is
defined by Eq. �2�, we consider two cases.

1. Case of random field and uniform bond

In this case, the transverse fields Bi satisfy the double-
Gaussian distribution, while exchange couplings Ji=J=1,
which fixes the energy scale. When the mean values of the
fields in the distribution take B1=1.8 and B2=0.2, the trans-
verse autocorrelation function C�t� and corresponding spec-
tral density 	�
� are as shown in Fig. 1 for the two typical
cases that �B=0.3 and 3.0. The insets of Figs. 1�b� and 1�d�
present the recurrants.

Figure 1�a� shows that when �B is small ��B=0.3�, the
dynamics of the system is increasingly dominated by the
transverse magnetic fields as p increases: When p=0, the
system shows a central-peak behavior for the value of the
exchange couplings are much larger than that of the trans-
verse fields. When p=0.25, due to the transverse fields, it
shows a weak oscillatory behavior, which is aggravated as p
increases further. When p=1, the central-peak behavior is
replaced by the collective-mode behavior. The peak of 	�
�
shown in Fig. 1�b� moved from 
=0 to 2 as p increases. This
also indicates that when �B is small, the effects of disordered
magnetic fields are to change the central-mode behavior to
the collective-mode behavior.

Figures 1�c� and 1�d� show that when �B is enough large
��B=3.0�, the system exhibits a behavior between a central-
peak behavior and a collective-mode one. By comparing Fig.
1�a� to Fig. 1�c�, we can also see that as the standard devia-
tion �B increases, the crossover from central-peak behavior
to collective-mode behavior vanishes. The interpretation for
this is that as �B increases, the transverse fields are dominant
in the competition with the spin interactions and drive the
system into a most disordered state.

2. Case of random bond and uniform field

In this case, the exchange couplings independently satisfy
the double-Gaussian distribution, while the transverse fields
are uniform. When the mean exchange couplings in the dis-
tribution take the value J1=1.0 and J2=0.4, the autocorrela-
tion functions and the corresponding spectral densities for
both cases of �J=0.1 and 2.0 are as shown in Fig. 2. We can
see that when �J=0.1 �see Figs. 2�a� and 2�b�, there is a
crossover from a collective-mode behavior to a central-peak
one as the concentration p increases. However, when �J
=2.0 �see Figs. 2�c� and 2�d�, the dynamics of the system is
dominated by the spin interaction and shows a central-peak
behavior.

FIG. 1. Time-dependent corre-
lation functions and the corre-
sponding spectral densities for the
two typical cases. The system un-
dergoes a crossover from a
central-peak behavior to a
collective-mode behavior when
�J=0.3; however, when �J=3.0,
the crossover vanishes and the
system only shows a behavior be-
tween a central-peak behavior and
a collective-mode one. The insets
of �b� and �d� present the recurrant
����=1, . . . ,9�.
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B. Bimodal distribution and Gaussian distribution

1. Bimodal distribution

For this case, we assume the following: �a� The exchange
couplings are constants �Ji=J=1.0�, whereas the transverse
fields satisfy the bimodal distribution �Eq. �4� and vary from
the value B2=0.2 �q=0� to B1=1.8 �q=1�, where 0�q�1.
This allows the system to move from a situation, in which
the value of the transverse field B smaller than the exchange
coupling J to the situation that B is larger than J. �b� The
exchange couplings Ji satisfy the bimodal distribution and
change from J2=0.4 �p=0� to J1=1.0 �p=1�, while the trans-
verse fields are uniform �Bi=B=1.0�. In this assumption, the

exchange coupling J changes from J�B to J=B as p in-
creases.

Figure 3 shows that the system has a crossover from a
collective-mode behavior to a central-peak behavior as J /B
increases in both of the above cases. Generally, when J�B,
the system is dominated by a collective-mode behavior;
however, for J�B, the main mode is the central-peak behav-
ior. So, the dynamics of the system changes according to the
concentration of B or J.

By comparing the results of the present transverse corre-
lation function when the magnetic fields satisfy the bimodal
distribution to the results of the longitudinal correlation func-
tion of the XY system obtained by Nunes et al., we find some

FIG. 2. Autocorrelation func-
tions and spectral densities for the
case that the bonds satisfy the
double-Gaussian distribution,
while B=1. The standard devia-
tions take two typical values �J

=0.1 and 2.0. By comparing the
insets of �b� and �d�, we can con-
clude that the recurrants fall on a
straight line as �J increases.

FIG. 3. Time-dependent corre-
lation functions and spectral den-
sities for two cases that exchange
couplings and magnetic fields, re-
spectively, satisfy bimodal distri-
bution. �a� and �b� are the results
that the system in a random trans-
verse fields Bi, which can take the
values of 0.2 and 1.0 with prob-
abilities q and 1−q, respectively.
The case of the random exchange
couplings Ji with uniform trans-
verse fields B is shown in �c� and
�d�. The values of Ji are varied
from J1=0.4 �p=0� to J2=1.0 �p
=0�. The inset in �d� shows that
the larger the value of spin inter-
actions the better the linear rela-
tion between the recurrants.
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differences: For the transverse correlation function, it is
found that the dynamics of the system is decided by the
competition between the magnetic fields and the exchange
couplings. When B�J, the dynamics of the system is domi-
nated by the exchange couplings and shows a central-peak
behavior. When B�J, the magnetic fields are dominant in
the competition with the exchange couplings, so the system
exhibits a collective-mode behavior. For the longitudinal cor-
relation function that was calculated by Nunes et al.,15 the
results show that the presence or absence of a uniform field
does not alter the autocorrelation function, and for several
distributions of fields, disorder lifts C�t� and makes it decay
slower at large t.

2. Gaussian distribution

Now, we consider the case wherein the random variables
satisfy the Gaussian distribution. We give two suppositions
to investigate the effect of Gaussian disorder on the dynam-
ics of the system. The results that the magnetic fields and
exchange couplings, respectively, satisfy the Gaussian distri-
bution are shown in Figs. 4 and 5. We let the standard de-
viation ��B or �J� take the two values: a small one �0.3� and
a larger one �3.0�. It is shown that when the standard devia-
tion is small ��B=0.3 or �J=0.3�, the system undergoes a
crossover between a central-peak behavior and a collective-
mode one. However, the crossover vanishes when the stan-
dard deviation is large enough, i.e., the system shows only a

FIG. 4. Autocorrelation func-
tions and the corresponding spec-
tral densities for two groups dif-
ferent parameters when the
random fields satisfy Gaussian
distribution. When the standard
deviation is small ��B=0.3�, �a�
and �b� show that the dynamics of
the system changes from a
central-peak behavior to a
collective-mode one as the mean
value of Bi increases from 0 to 2;
however, when �B=3.0, the sys-
tem is only in a most disordered
state.

FIG. 5. Autocorrelation func-
tions and the corresponding spec-
tral densities for both cases of �J

=0.3 and 3.0. When the standard
deviation �J is small ��J=0.3, �a�
and �b�, the system undergoes a
crossover from a collective-mode
behavior to a central-peak behav-
ior as the mean value J varies
from 0 to 2.0, but the crossover
vanishes when �J is large ��c� and
�d�.
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most disordered behavior or a central-peak behavior for large
�B or �J, respectively.

It is not difficult to find that for the bimodal and Gaussian
disorders, the dynamics of the XY chain is similar to that of
the 1D transverse Ising model.10,21 This behavior can be un-
derstood from the work of Florencio and Lee7 that the Hil-
bert spaces of � j

x for the XY and transverse Ising models
have the same geometric structure.

All of the above results are for the cases of isotropic XY
model. When Ji�Ki, it corresponds to the anisotropic XY
model. Especially when Ki=0, the anisotropic XY system
becomes the Ising system, and we find that the results of the
transverse correlation function are the same as those in Ref.
21, in which the random fields or exchange couplings satisfy
the Gaussian distribution.

IV. CONCLUSIONS

We have investigated the dynamics of the random isotro-
pic XY system in the high-temperature limit by the recur-
rence relation method. By considering the case that the dis-
ordered fields or exchange couplings satisfy the double-
Gaussian distribution, we find that not only the standard

deviations ��B and �J� but also the mean values J and B can
affect the dynamics of such system. To conclude, when �B or
�J is small, the system undergoes a crossover from a
collective-mode behavior to a central-peak one as J /B in-
creases, but for large �B or �J, it exhibits a most disordered
behavior or a central-peak behavior, respectively. We also
investigate the two limiting cases of the double-Gaussian
distribution, i.e., bimodal distribution and Gaussian distribu-
tions. It is found that the dynamics of the XY chain are simi-
lar to that of 1D Ising system. By comparing to the previous
result of the longitudinal correlation function when the mag-
netic fields satisfy the bimodal distribution, we find that the
effects of the disordered fields on the longitudinal and trans-
verse correlation functions are different.
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