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We study single-ion and exchange anisotropy effects in equal-spin s1 tetramer single-molecule magnets
exhibiting Td, D4h, D2d, C4h, C4v, or S4 ionic site point group symmetry. We first write the group-invariant
quadratic single-ion and symmetric anisotropic exchange Hamiltonians in the appropriate local coordinates. We
then rewrite these local Hamiltonians in the molecular or laboratory representation, along with the group-
invariant Dzyaloshinskii-Moriya �DM� and isotropic Heisenberg, biquadratic, and three-center quartic Hamil-
tonians. Using our exact, compact forms for the single-ion spin matrix elements, we analytically evaluate the
eigenstate energies to first order in the microscopic anisotropy interactions, corresponding to the strong ex-
change limit, and provide tables of simple formulas for the anisotropy energies of the lowest four eigenstate
manifolds of ferromagnetic �FM� and antiferromagnetic �AFM� tetramers with arbitrary s1. For AFM tetramers,
we illustrate the first-order level-crossing inductions for s1=1 /2, 1, and 3 /2, and obtain preliminary estimates
of the microscopic parameters in a Ni4 from fits to magnetization data, indicating the presence of strong
symmetric anisotropic exchange interactions. Accurate analytic expressions for the thermodynamics, electron
paramagnetic resonance absorption, and inelastic neutron scattering cross section are given, allowing for a
determination of three of the microscopic anisotropy interactions from the second excited state manifold of FM
tetramers. We also predict that tetramers with symmetries S4 and D2d should exhibit both DM interactions and
multiferroic states, and we illustrate our predictions for s1=1 /2 and 1.
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I. INTRODUCTION

Single molecule magnets �SMM’s� have been a topic of
great interest for more than a decade1 because of their poten-
tial uses in quantum computing and/or magnetic storage,2

which are possible due to magnetic quantum tunneling
�MQT� and entangled states. In fits to a wealth of data, the
Hamiltonian within a SMM cluster was assumed to be the
Heisenberg exchange interaction plus weaker total �global or
giant� spin anisotropy interactions, with a fixed overall total
spin quantum number s.1 MQT and entanglement were only
studied in this simple model.

The simplest SMM clusters are dimers.3–5 Two antiferro-
magnetic �AFM� dimers, an Fe2, �Fe�salen�Cl�2, where
salen is N ,N�-ethylenebis�salicylideneiminato�, and a Ni2,
Na2Ni2�C2O4�3�H2O�2, appear to have substantial single-ion
anisotropy without any appreciable total spin anisotropy.4–7

Although the most common SMM clusters have ferromag-
netic �FM� intramolecular interactions and contain n�8
magnetic ions,8,9 a number of intermediate-sized FM SMM
clusters with n=4 and rather simple molecular structures
were recently studied. Fits to electron paramagnetic reso-
nance �EPR� Ni4 data assuming a fixed s were also
problematic, suggesting single-ion or exchange aniso-
tropy in that tetramer, as well.10,11 The Cu4 tetramer
Cu4OCl6�TPPO�4, where TPPO is triphenylphosphine oxide,
has four spin 1 /2 ions on the corners of a regular tetrahe-
dron, with a s=2 ground state and approximate Td
symmetry.12–14 In this case, there are no single-ion aniso-
tropy effects, but anisotropic symmetric exchange interac-
tions were thought to be responsible for the zero-field
energy splittings.12,15 The Co4, Co4�hmp�4�MeOH�4Cl4,

where hmp is hydroxymethylpyridyl, and Cr4,
�Cr4S�O2CCH3�8�H2O�4��NO3�2 ·H2O, compounds have s
=6 ground states with spin 3 /2 ions on the corners of
tetrahedrons.16,17 Those compounds have S4 and approximate
D2d symmetry, respectively.16,17 A number of high symmetry
s=4 ground state Ni4 structures with spin 1 ions were
reported.18–22 Two of these, �Ni�hmp��ROH�Cl�4, where R is
an alkyl group, such as methyl, ethyl, or 3,3-dimethyl-1-
butyl, and hmp is 2-hydroxymethylpyridyl, form tetramers
with precise S4 group symmetry.21,22 Two others,
Ni4�ROH�L4, where R is methyl or ethyl and H2L is
salicylidene-2-ethanolamine, had approximate S4 symmetry,
although the precise symmetry was only C1.18 Several planar
Mn4 compounds with the Mn+3 spin 2 ions on the corners of
squares were made, with overall s=8 tetramer ground
states.23 Although two of these complexes had only approxi-
mate S4 symmetry, one of these complexes, Mn4Cl4�L��4,
where H2L� is 4-t-butyl-salicylidene-2-ethanolamine, had
perfect S4 symmetry.23 Inelastic neutron scattering �INS� ex-
periments provided strong evidence for single-ion anisotropy
in Co4 and Ni4 with approximate S4 symmetry.17,18

We note that ab initio calculations of the intracluster spin-
spin interactions in SMM clusters have not been always suc-
cessful in accurately calculating even the strongest intraclus-
ter isotropic Heisenberg interactions and have been incapable
of calculating any of the local anisotropic spin-spin interac-
tions within a SMM cluster.24–26 To accurately obtain the
Heisenberg interactions, it seems one needs to extend the
local spin-density approximation to include on-site repul-
sions with strength U, which would have to be phenomeno-
logically introduced to fit the lowest two energy level mani-
folds in zero applied magnetic field.26–30
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Further descriptions of magnetic clusters are based upon
two concepts. The simplest and most common one is to treat
the SMM cluster as having a fixed total spin value, and to
describe its properties solely in terms of anisotropies of the
total spin. The various anisotropy parameters in the model
are chosen phenomenologically for each individual experi-
ment on the same material, so we denote this approach phe-
nomenological. The second approach is to project the mag-
netism within the cluster onto its constituent localized
individual spins, with local anisotropies of the individual
spins arising from their individual local environments, and
anisotropic Heisenberg interactions between the individual
spins. We characterize this individual spin approach as mi-
croscopic in order to distinguish it from the phenomenologi-
cal one. Our description of a microscopic model is analogous
to the standard model of quantum chromodynamics for the
interactions of quarks and gluons within a hadron.

Recently, there have been microscopic treatments of
dimers,4,5 trimers, and tetramers, including Zeeman g-tensor
anisotropy, single-ion anisotropy, and anisotropic exchange
interactions.31 Most of those treatments and their recent ex-
tensions to more general systems expressed the single-spin
matrix elements only in terms of Wigner 3j, 6j, and 9j
symbols.31,32 While such treatments are very helpful in fitting
experimental data, more compact analytic forms are desir-
able to study microscopic models of FM SMM clusters, in
which the MQT and entanglement issues crucial for quantum
computing can be understood. We constructed the quadratic
single-ion and anisotropic near-neighbor �NN� and next-
nearest-neighbor �NNN� exchange SMM cluster Hamilto-
nians from the respective local axial and azimuthal vector
groups for equal-spin tetramer SMM clusters with ionic site
point group �ISPG� symmetries g=Td, D4h, D2d, C4h, C4v,
and S4, and we found compact analytic expressions for the
single-spin matrix elements of four general spins. We then
impose the ISPG symmetry operations for each g. The result-
ing Hamiltonian in the molecular representation contains
both site-independent and site-dependent single-ion and ex-
change anisotropy interactions for each g. We then show that
for ISPG D2d and S4 symmetries, the antisymmetric ex-
change interactions lead to nonvanishing spin currents that
may be accompanied by electric polarizations, leading to
multiferroic effects. We evaluate the magnetization, specific
heat, EPR transitions, and INS cross section in the self-
consistent Hartree approximation �or strong-exchange limit�
and provide a procedure for extracting three of the effective
site-independent microscopic parameters using EPR. We also
show analytically how to include the effects of weak biqua-
dratic and three-center quartic isotropic exchange.

An outline of the paper is as follows. In Sec. II, we dis-
cuss the six structures and the general quadratic spin Hamil-
tonian. In Sec. III, we write the single-ion and symmetric
anisotropic exchange Hamiltonians in terms of local coordi-
nates, and the antisymmetric exchange Hamiltonian in mo-
lecular coordinates. In Sec. IV, we impose the operations of
the six ISPG symmetries and discuss the effects of antisym-
metric anisotropic exchange interactions and the related elec-
tric polarizations in lower symmetry systems. In Sec. V, the
resulting ISPG-invariant Hamiltonians are written in the mo-
lecular representation, and the isotropic biquadratic and

three-center quartic exchange interactions are introduced.
Section VI contains the eigenstates of the full Hamiltonian to
first order in the anisotropy and NN biquadratic and three-
center quartic exchange interactions. These eigenstates are
used to obtain the level-crossing inductions for AFM tetram-
ers, and particular examples with s1=1 /2, 1, and 3 /2 are
presented. In Sec. VI, we also evaluate quantitatively some
effects of antisymmetric anisotropic exchange and provide
our related predictions for multiferroic behavior. In Sec. VII,
the self-consistent Hartree approximation is used to provide
simple but accurate results for the thermodynamics, EPR
resonant inductions, and INS cross sections and describe
how EPR experiments in the excited states of FM tetramers
can provide a measure of some of the microscopic anisotropy
interaction strengths. Finally, in Sec. VIII, we discuss the
significance of our results and provide preliminary fits to the
magnetization data on an AFM Ni4 tetramer, and in Sec. IX,
we present our conclusions.

II. STRUCTURES AND BARE HAMILTONIAN

For SMM clusters with ISPG g=Td or D4h, we assume
that the four equal-spin s1 ions sit on opposite corners of a
cube or square of side a, as pictured in Fig. 1. For clusters
with g=D2d and S4, we take the ions to sit on opposite cor-
ners of a tetragonal prism with sides �a ,a ,c�, as in Fig. 2.
The ions for g=C4h and C4v also sit on the corners of a
square of side a, as pictured in Fig. 3, but the attached

(a) (b)

FIG. 1. Td �left� and D4h �right� ion sites �filled�. Circle, origin;
arrows, local axial ẑn

Td �left� and azimuthal x̂n
D4h �right� single-ion

vectors. The axial vectors ẑn
D4h = ẑ, normal to the ionic plane.

(a) (b)

FIG. 2. D2d �left� and S4 �right� ion sites �filled�. Circle, origin;
arrows, local axial single-ion vectors. The g=D2d and S4 axial vec-
tors ẑ1

g make the angles �1
g with the z axis, and the S4 axial vector ẑ1

S4

also makes an angle �1 with the x axis, where cos �1

=sin �1
S4 cos �1

S4.
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ligands have symmetries different from that of the simpler
D4h case pictured in Fig. 1.33 In each case, we take the origin
to be at the geometric center, so that �n=1

4 rn=0, where the
relative ion site vectors are

rn =
a
�2
�sin� �2n − 1��

4
	x̂ + cos� �2n − 1��

4
	ŷ
 −

c

2
�− 1�nẑ .

�1�

Tetrahedrons with g=Td and c /a=1, approximately as in
Cu4,12 are a four-spin example of the equivalent-neighbor
model.34 In squares with g=D4h, C4h, or C4v, c=0. The high
D4h symmetry is approximately exhibited by the square Nd4
compound, Nd4�OR�12, where R is 2,2-dimethyl-1-propyl, in
which the Nd+3 ions have equal total angular momentum j
=9 /2.35,36 We note that the Mn4 clusters with approximate or
exact S4 symmetry also have c=0.23 In tetragonal prisms
with g=D2d or S4, c /a�1, approximately as in Co4,17 or
c /a�1, as in some Mn4 and Ni4.19,23 For a comparison with
the planar symmetries g=C4h, D4h, and D4v, we assume for
g=D2d and S4 that c /a�1, so that there are four NN bonds
and two NNN bonds. For each g, x̂, ŷ, and ẑ are the molecu-
lar �or laboratory� unit coordinate axis vectors.

The most general Hamiltonian quadratic in the four indi-
vidual spin operators Sn may be written for ISPG g as

Hg = − 	B�
n=1

4

B · gIn
g · Sn + �

n,n�=1

4

Sn · DIn,n�
g · Sn�, �2�

where 	B is the Bohr magneton and B
=B�sin � cos � , sin � sin � , cos �� is the magnetic induction
at an arbitrary direction �� ,�� relative to the molecular co-
ordinates �x̂ , ŷ , ẑ�.31,37

For simplicity, we take gIn
g to be diagonal, isotropic, and

site independent, so that the Zeeman interaction may be writ-
ten in terms of a single gyromagnetic ratio 
�2	B. Thus, in

the following, g only refers to the ISPG. We separate DIn,n�
g

into its symmetric and antisymmetric parts, DIn,n�
g =DIn,n�

g,s

+DIn,n�
g,a , respectively. For n�=n, the single-ion DIn,n

g is neces-

sarily symmetric, so DIn,n
g,a=0. For each g, the four DIn,n

g,s con-
tain the local single-ion structural information, and the six

distinct symmetric DIn,n�
g,s contain the local symmetric ex-

change structural information, which lead to the isotropic, or
Heisenberg, exchange interactions, and the remaining sym-
metric anisotropic exchange interactions. The six distinct an-

tisymmetric DIn,n�
g,a contain additional local structural informa-

tion, which lead to the Dzyaloshinskii-Moriya �DM�
interactions.38,39 Physically, the symmetric anisotropic ex-
change interactions also contain the intracluster dipole-
dipole interactions, which can even be larger in magnitude
than the terms originating from actual anisotropic
exchange.37,40

As is well known, each of the symmetric rank-3 tensors

�or matrices� DIn,n�
g can be diagonalized by three rotations: a

rotation by the angle �n,n�
g about the molecular z axis, then a

rotation by the angle �n,n�
g about the rotated x̃ axis, followed

by a rotation by the angle �n,n�
g about the rotated z̃ axis.41

This necessarily leads to the three principal axes x̂̃n,n�
g , ŷ̃n,n�

g ,

and ẑ̃n,n�
g . For the single-ion axes with n�=n, we denote these

principal axes to be x̂̃n
g, ŷ̃n

g, and ẑ̃n
g, respectively, which are

explicitly written in Sec. III. The nonvanishing matrix ele-

ments in these locally diagonalized symmetric matrices D̃
I

n,n�
g,s

are D̃n,n�,xx
g,s , D̃n,n�,yy

g,s , and D̃n,n�,zz
g,s . The local environmental in-

formation is contained in these diagonalized matrix elements
and in the local principal axis basis, so that in the absence of
ISPG symmetry, each of them would, in principle, be differ-
ent from one another.

Although an antisymmetric exchange matrix DIn,n�
g,a can

generally be diagonalized by a unitary transformation, it con-
tains at most three independent real parameters that can be
incorporated into the components of a three-vector, dn,n�

g ,
with an effective spin-spin interaction of the form dn,n�

g · �Sn

�Sn��.
38,39 This is easiest to write in the molecular represen-

tation.
For the six high-symmetry clusters under study, we ana-

lyze the effects of ISPG symmetry on the single-ion and
anisotropic exchange parts of Hg. The ISPG symmetries fur-
ther restrict the number of independent parameters.

III. SINGLE-ION AND EXCHANGE HAMILTONIANS

To take account of the ISPG g symmetries, it is useful to
write the single-ion and symmetric anisotropic exchange in-
teractions in terms of the local coordinates of the individual
spins. In this section, we write the local Hamiltonian for
these interactions and the cluster Hamiltonian for the anti-
symmetric exchange interactions. In Sec. IV, we then impose
the ISPG symmetries on these interactions for g=C4h, D4h,
C4v, S4, D2d, and Td, respectively.

A. Single-ion Hamiltonian

For the single-ion anisotropy, the single-ion principal axis

basis for the nth site is �x̂̃n
g , ŷ̃n

g , ẑ̃n
g
 for each g. These basis

elements are the vectors that diagonalize the single-ion ma-

(a) (b)

FIG. 3. C4h �left� and C4v �right� ion sites �filled�. Circle, origin;
arrows, local azimuthal x̂n

C4h �left� and axial ẑn
C4v �right� single-ion

vectors. The axial vectors ẑn
C4h = ẑ. The C4v axial vectors each make

the angle �1=� /2−�1� with the z axis. The dotted arrows �equiva-
lent to the D4h azimuthal single-ion vectors x̂n

D4h� are their projec-
tions in the xy plane.
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trix from DIn,n
g to D̃

I

n,n
g .41 Since we repeatedly employ these

vectors, we write them here for simplicity of presentation.
The diagonalized vector set elements may be written in the
molecular �x̂ , ŷ , ẑ� representation as

x̂̃n
g = �cos �n

g cos �n
g − cos �n

g sin �n
g sin �n

g

sin �n
g cos �n

g + cos �n
g cos �n

g sin �n
g

sin �n
g sin �n

g � , �3�

ŷ̃n
g = �− cos �n

g sin �n
g − cos �n

g sin �n
g cos �n

g

− sin �n
g sin �n

g + cos �n
g cos �n

g cos �n
g

sin �n
g cos �n

g � , �4�

ẑ̃n
g = � sin �n

g sin �n
g

− sin �n
g cos �n

g

cos �n
g � , �5�

which satisfy x̂̃n
g� ŷ̃n

g= ẑ̃n
g. We then write the most general

quadratic single-ion anisotropy interaction as

Hsi
g,� = − �

n=1

4

�Ja,n
g �Sn · ẑ̃n

g�2 + Je,n
g ��Sn · x̂̃n

g�2 − �Sn · ŷ̃n
g�2�


�6�

in terms of the single-ion principal axis basis and the site-
dependent axial and azimuthal interactions,

Ja,n
g = �D̃n,n,xx

g,s + D̃n,n,yy
g,s �/2 − D̃n,n,zz

g,s , �7�

Je,n
g = �D̃n,n,yy

g,s − D̃n,n,xx
g,s �/2, �8�

respectively, which are analogous in notation to that for ho-
moionic dimers.4,5 In Eq. �6�, we dropped the irrelevant con-

stant s1�s1+1��n=1
4 Tr D̃

I

n,n
g,s .

B. Symmetric exchange Hamiltonian

In addition to the single-ion interactions, the other micro-
scopic quadratic interactions are the exchange interactions,
which include the intracluster dipole-dipole interactions.40

The intercluster dipole-dipole interactions can lead to low-T
hysteresis in the phenomenological total spin model,42 but
are generally much weaker than the intracluster ones in the
microscopic individual spin model, due to the larger dis-
tances involved. Hence, we neglect those and all other inter-
cluster interactions, such as those mediated by phonons.

As for the single-ion interactions, diagonalization of DIn,n�
g,s

leads to D̃
I

n,n�
g,s and the principal axis bases �x̂̃n,n�

g , ŷ̃n,n�
g , ẑ̃n,n�

g 
,
given by Eqs. �3�–�5� with the subscript n replaced by n ,n�,
where n��n. The bare quadratic Hamiltonian H0

g is given by
the Zeeman and the isotropic part of the exchange interac-
tions,

H0
g = − 
B · S − �

n,n�=1

4

Jg,n,n�Sn · Sn�, �9�

where n��n and

Jg,n,n� = − Tr D̃
I

n,n�
g,s . �10�

For these isotropic terms, we may impose the ISPG symme-
tries by inspection. For g=D2d, S4, C4v, C4h, and D4h sym-
metries,

Jg = 2Jg,n,n+1, �11�

Jg� = 2Jg,n,n+2 �12�

are independent of n. For our c /a�1 convention, −Jg and
−Jg� are the NN and NNN Heisenberg �isotropic� exchange
interactions. Equation �9� can then be rewritten as

H0
g = −

Jg

2
S2 − 
B · S −

�Jg� − Jg�
2

�S13
2 + S24

2 � , �13�

where S13=S1+S3, S24=S2+S4, and S=S13+S24 is the total
spin operator,36 and we dropped the irrelevant overall con-
stant 2Jg�s1�s1+1�. In Eq. �13�, JTd

� =JTd
, but for g=D2d, S4,

D4h, C4h, and C4v, Jg��Jg.
In terms of the individual spin operators, the symmetric

anisotropic exchange Hamiltonian Hae
g,� is then given by

Hae
g,� = − �

q=1

2

�
n=1

6−2q

�Jn,n+q
f ,g �Sn · ẑ̃n,n+q

g ��Sn+q · ẑ̃n,n+q
g �

+ Jn,n+q
c,g ��Sn · x̂̃n,n+q

g ��Sn+q · x̂̃n,n+q
g �

− �Sn · ŷ̃n,n+q
g ��Sn+q · ŷ̃n,n+q

g ��
 , �14�

where we define S5�S1, as if the four spins were on a ring.
In Eq. �14�, the axial and azimuthal interaction strengths are

Jn,n�
f ,g = D̃n,n�,xx

g,s + D̃n,n�,yy
g,s − 2D̃n,n�,zz

g,s , �15�

Jn,n�
c,g = D̃n,n�,yy

g,s − D̃n,n�,xx
g,s , �16�

as for the single-ion interaction strengths. The subscripts a ,e
and superscripts f ,c correspond to our dimer notation.5

C. Antisymmetric anisotropic exchange Hamiltonian

As noted above, we write the antisymmetric anisotropic
exchange, or DM,38,39 Hamiltonian HDM

g in the following
molecular representation:37

HDM
g = �

q=1

2

�
n=1

6−2q

dn,n+q
g · �Sn � Sn+q� . �17�

We note that in these molecular coordinates, the DM inter-
action three-vectors dn,n+q

g explicitly depend on the exchange
bond indices n ,n+q for each ISPG g. We then employ the
ISPG symmetries to relate them to one another.

The rules for the directions of the dn,n+q
g were given by

Moriya38 and were employed for a dimer example by Ben-
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cini and Gatteschi.37 The Moriya rules are as follows: �1�
dn,n�

g vanishes if a center of inversion connects rn and rn�. �2�
When a mirror plane contains rn and rn�, dn,n�

g is normal to
the mirror plane. �3� When a mirror plane is the perpendicu-
lar bisector of rn−rn�, dn,n�

g lies in the mirror plane. �4� When
a twofold rotation axis is the perpendicular bisector of rn

−rn�, then dn,n�
g is orthogonal to the rotation axis. �5� When

rn−rn� is an r-fold rotation axis with r�2, then dn,n�
g is par-

allel to rn−rn�. As noted above, we shall incorporate these
rules in the molecular representation. For example, in
NaV2O5, the lack of inversion symmetry between interacting
spins has been shown to lead to a DM interaction.43

IV. GROUP SYMMETRY INVARIANCE

A. General considerations

In this section, we impose the set of allowed ISPG g
symmetry operations on the full Hamiltonian Hg. For the six
g cases under study, the set Og of ISPG operations greatly
reduces the number of single-ion and symmetric anisotropic
exchange parameters. As we shall see, for each g, these re-
duce the single-ion and symmetric anisotropic exchange in-
teraction strength set to

�Jj
g
 � �Ja

g,Je
g,Jf ,q

g ,Jc,q
g 
 , �18�

for q=1 and 2, which are independent of the site index n.
That is, for each g, there are at most two single-ion, two NN,
and two NNN symmetric anisotropic exchange interaction
strengths. In addition, for these six g cases, the ISPG opera-
tions further limit the number of vector set parameters to

	1
g = ��1

g,�1
g,�1

g
 , �19�

	1p
g = ��1p

g ,�1p
g ,�1p

g 
 , �20�

where p=q+1=2 and 3, and we used the notation �1
g=�1,1

g ,
�1p

g =�1,p
g , etc. Some of these parameters may further be re-

stricted. In addition, however, the molecular single-ion and
anisotropic exchange Hamiltonians contain both site-
independent and site-dependent terms.

For HDM
g , we first impose the Moriya rules on each aniso-

tropic exchange pair,37,38 and then impose the required group
symmetries on the six pairs. For the six g cases under study,
the ISPG symmetries place restrictions on dn,n+q

g , leading to
the anisotropic exchange parameter set

dg = �dz
g,dx1

g ,dy1
g ,dx2

g ,dy2
g 
 . �21�

For each of the six g cases, the NNN DM parameter set has
at least one more restriction than does the NN DM parameter
set. Some g symmetries lead to site-dependent signs of the
elements of dg.

B. Imposing the group symmetries

In Appendix A, we describe the complete set of unitary
matrices O= �O

 for 
=1, . . . ,26 representing the combined
ISPG symmetry operations for g=C4h, D4h, C4v, S4, D2d, and
Td. For each g, the 
th element O


g of the allowed subset of

symmetry operations Og commutes with the Hamiltonian,
which implies H=O


gH�O

g�T, where �O


g�−1= �O

g�T. For a

particular g and 
, O

grn=rn��g,
�. We therefore take Sn

=S�rn�, so that O

gSn=S�O


grn�=S�rn��g,
��=Sn��g,
�.
We use the simple case of C4h symmetry to illustrate how

the symmetry operations are imposed. For g=C4h, besides
the trivial identity operation, the allowed ISPG operations
are clockwise and counterclockwise rotations of � /2 about
the z axis and reflections in the xy plane.33 These operations
are represented respectively by the subset of matrices OC4h

= �O1 ,O2 ,O6
. We first consider the axial part of Hsi
C4h,�, and

set

�
n=1

4

Ja,n
C4h�Sn · ẑ̃n

C4h�2 = �
n=1

4

Ja,n
C4hO1�Sn · ẑ̃n

C4h�2O1
T

= �
n=1

4

Ja,n
C4hO1Sn · �ẑ̃n

C4h�TO1
TO1ẑ̃n

C4h · Sn
TO1

T,

�22�

and employ the properties of O1 that

O1Sn = Sn+1, �23�

�ẑ̃n
C4h�TO1

T = �− sin �n
C4h cos �n

C4h,− sin �n
C4h sin �n

C4h,cos �n
C4h� .

�24�

Substituting these into the right-hand side of Eq. �22�, setting
n→n+1 in the left-hand side, and equating coefficients of
Sn+1,�Sn+1,� for � ,�=x ,y ,z leads to

Ja,n
C4h = Ja,n+1

C4h = Ja
C4h, �25�

�n
C4h = �n+1

C4h = �1
C4h, �26�

�n
C4h = �n+1

C4h +
�

2
. �27�

There are no further restrictions from O2. Then, by imposing
O6 symmetry, we have O6Sn=Sn and either �1

C4h =� /2 or
�1

C4h =0, both of which lead to an invariance of this part of
the Hamiltonian under O6. We therefore take the easy-axis
case, �1

C4h =0. Carrying out similar transformations on the
azimuthal single-ion Hamiltonian leads to

Je,n
C4h = Je

C4h, �28�

�n
C4h = �n

C4h + �n
C4h = �n+1

C4h +
�

2
. �29�

We could then choose �1
C4h =0, leaving one free angle param-

eter �1
C4h, as listed in Table I, plus the two interaction

strengths Ja
C4h and Je

C4h.
The symmetric anisotropic exchange Hamiltonian Hae

C4h,�

can be made invariant under the elements of OC4h in a very
similar fashion. The ISPG operations for the other five g
symmetries are listed in Appendix A, along with the associ-
ated matrices. Our results for the single-ion, symmetric an-
isotropic exchange, and DM interaction parameters are com-
piled in Tables I–III.
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C. Induced electric polarizations

As shown by Katsura et al.,44 the spin-orbit interactions
between spins at sites n and n� can induce an electric polar-
ization

Pn,n� � r̂n,n� � �Sn � Sn�� , �30�

where r̂n,n� is a unit vector directed from site n to site n�. In
our model, the thermodynamic quantum mechanical en-
semble expectations of such polarizations vanish in the ab-
sence of DM interactions, but nonvanishing in-plane vector
components dq

g of the dg DM interaction parameter sets allow
them to become finite. Tetramers with the rather low molecu-
lar group symmetries S4 and D2d have no overall center of
inversion symmetry and contain a complex set of DM inter-
actions. Depending on the polarizability of the attached
ligand groups, this may lead to a combined spin-induced
electric polarization

Ps �
1

2 �
n,n�=1

4

r̂n,n� � �Sn � Sn�� , �31�

where �…� represents the expectation of the quantum me-
chanical ensemble in the presence of the full Hamiltonian,
including the relevant DM interactions.

Besides the direct DM interactions, we predict the possi-
bility of dual, or induced, DM interactions. Although dq

g DM
interactions between individual spin pairs are allowed in tet-
ramers with the lowest C4h and D4h symmetries studied, the
group symmetry causes the dipole moments on opposite
sides of their square geometries to cancel each other. Al-
though we have not studied this point in detail, tetramers
with these symmetries can, in principle, be made to exhibit
additional effective DM interactions by the application of an
electric field E�0.44,45 Thus, in tetramers with S4, D2d, or
lower symmetry, a multiferroic effect can occur,45 in which
both DM interactions and Ps�0. More generally, multifer-

roic effects arise in systems such as some dimers, trimers,
and tetramers that generally do not have a center of inversion
at the midpoints of rn,n�.

5

V. HAMILTONIAN IN THE MOLECULAR
REPRESENTATION

A. Molecular single-ion Hamiltonian

To make contact with experiment, we use the ISPG sym-
metries to rewrite Hsi

g,� in the molecular �x̂ , ŷ , ẑ� representa-
tion,

Hsi
g = − �

n
�Jz

gSn,z
2 + �− 1�nJxy

g �Sn,x
2 − Sn,y

2 �

+ �
���

K��
g �n�Sn,�Sn,�
 , �32�

where � ,�=x ,y ,z, and we subtracted an irrelevant constant.
Hsi

g contains the site-independent interaction strength Jz
g and

the site-dependent interaction strengths �−1�nJxy
g and K��

g �n�,
which are written in terms of the parameter sets 	1

g in Ap-
pendix B. Most important is the result that for Td symmetry,

Jz
Td = 0. �33�

The first-order contributions to the eigenstate energies
from the site-dependent interaction strengths �−1�nJxy

g and
K��

g �n� vanish. Hence, these interactions only contribute to
the eigenstate energies to second and higher orders in the
interaction strengths Ja

g and Je
g. For C4v, D2d, and S4, the

effective axial site-independent interaction strength Jz
g arises

from a combination of the local axial and azimuthal interac-
tion strengths Ja

g and Je
g. For g�Td, Jz

g can be large, even if
the ISPG is nearly Td.

TABLE II. Lists of the relevant NN �p=2� and NNN �p=3�
parameters sets 	1p

g .

g �1p
g �1p

g �1p
g

C4h 0 �1p
C4h 0

D4h 0 �

4
0

C4v 0 �p−2��
4

0

S4 �1p
S4 �1p

S4 �1p
S4

D2d �12
D2d�p,2+ �

2 �p,3
�−1�p�
2�p−1�

�p−2��
2

TABLE I. Lists of the single-ion parameters sets 	1
g.

g �1
g �1

g �1
g

C4h 0 �1
g 0

D4h 0 �

4
0

C4v ,D2d �1
g 3�

4 − �

2

S4 �1
S4 �1

S4 �1
S4

Td tan−1 �2 3�
2

0

TABLE III. List of the DM parameter sets dg.

g dz
g dx1

g dy1
g dx2

g dy2
g

C4h ,D4h dz
g 0 0 0 0

S4 dz
S4 dx1

S4 dy1
S4 dx2

S4 dy2
S4

D2d dz
D2d 0 dy1

D2d dx2
D2d 0

Td ,C4v 0 0 0 0 0
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B. Symmetric anisotropic exchange in the molecular
representation

We then construct the group-invariant symmetric aniso-
tropic exchange Hamiltonian in the molecular coordinates
for the six ISPG g symmetries. For g=D2d and S4, there are
renormalizations of the isotropic exchange interactions,
modifying H0

g to

H0
g,r = −

J̃g

2
S2 − 
B · S −

�J̃g� − J̃g�
2

�S13
2 + S24

2 � , �34�

where

J̃g = Jg + �Jg, �35�

J̃g� = Jg� + �Jg�, �36�

where Jg and Jg� are given by Eqs. �11� and �12�, and �Jg and
�Jg� are given in terms of the parameters sets 	1p

g in Appendix
C. For the three planar ISPG symmetries, g=C4h, D4h, and
C4v, �Jg=�Jg�=0. For Td symmetry, there are no group-
satisfying azimuthal symmetric exchange vectors, so Jc,q

Td =0
for q=1 and 2. However, the axial vectors parallel to rn,n�
satisfy all of the Td ISPG symmetries, so that the Jf ,q

Td could

exist, provided that Jf ,1
Td =Jf ,2

Td . However, the requirement J̃Td

= J̃Td
� to preserve the Td symmetry of the renormalized

Heisenberg interactions forces Jf ,2
Td =Jf ,1

Td /2. Hence, we must
conclude that Jf ,q

Td =0 for q=1 and 2 and �JTd
=�JTd

� =0.
Hae

g,� also leads to additional interactions �Hae
g in the mo-

lecular frame,

�Hae
g = �

q=1

2

�
n=1

6−2q

�Jq,z
g Sn,zSn+q,z + �− 1�n+1

��Jq,xy
g �Sn,xSn+q,x − Sn,ySn+q,y�

+ �
���

Kq,��
g �n�Sn,�Sn+q,�	
 , �37�

where � ,�=x ,y ,z. As for the single-ion interactions in the
molecular representation, the site-independent symmetric ex-
change interaction strengths Jq,z

g contribute to the eigenstate
energies to first order, but the first-order contributions to the
eigenstate energies from the site-dependent interactions van-
ish. Both the site-independent and site-dependent symmetric
exchange interaction strengths are given in terms of the pa-
rameter sets 	1p

g in Appendix C.

C. Antisymmetric exchange Hamiltonian

In Secs. IV and V, we already evaluated the antisymmetric
exchange Hamiltonians in the molecular representation, and
the parameter sets are listed in Table III. These six HDM

g may
be combined as

HDM
g = �

q=1

2

�
n=1

6−2q

�Sn � Sn+q� · �dz
g�n��q,1ẑ + dq

g sin�n�/2�

+ �ẑ � dq
g�cos�n�/2�� , �38�

where the scalar dz
g�n� and the two two-vectors dq

g all vanish
for g=C4v and Td, but for the other four ISPG symmetries
are given in Appendix C.

We note that both site-dependent and site-independent
DM interactions give rise to second-order eigenstate energy
corrections and can only be neglected in fits to experiment
for tetramers with symmetries very close to Td ,C4v, or
higher. In Appendix D, we give HDM

g for the lower symmetry
C2v

13 tetramers.

D. Biquadratic and three-center quartic isotropic exchange
interactions

In the previous sections, we listed the quadratic single-ion
and anisotropic exchange interactions for the six high-
symmetry tetramer ISPG’s under study. However, in the
lower-symmetry AFM tetramers �Ni4Mo12
, with C1v
symmetry,46 and Ni4 and Co4 �2�2� grids �or rhombuses�,
with approximate C2v

13 symmetry,47–49 fits to magnetization
data were facilitated by the inclusion of biquadratic
interactions.46–48 In the former case, the powder fits assumed
field-dependent interaction parameters, but the single-ion in-
teractions were assumed to have Td symmetry, which vanish
to first order in their strength, and the anisotropic exchange
interactions were neglected. In the latter C2v

13 case, the au-
thors neglected the NN DM interactions given in the Appen-
dixes. Subsequently, Kostyuchenko argued for Td symmetry
that AFM three-center isotropic quartic interactions should
be comparable in magnitude to the AFM biquadratic interac-
tions, and provided a fit to the midpoints of the level-
crossing magnetization behavior on �Ni4Mo12
, without mak-
ing the assumption of a strong field dependence of the
Heisenberg interaction strength.50 Here, we calculate the ef-
fects of three-center quartic isotropic interactions for the six
ISPG g symmetries under study and provide preliminary fits
to the AFM �Ni4Mo12
 magnetization data, including the
first-order anisotropy interactions, which can fit the widths of
the transitions as well as the midpoints. More complete fits to
those experiments and to experiments on the grid SMM’s
will be presented elsewhere.51 Such fits are greatly aided by
an analytic treatment of biquadratic and three-center isotro-
pic quartic exchange.

For tetramers with the six g symmetries under study, the
isotropic biquadratic and three-center quartic Hamiltonians
Hb

g and Ht
g, respectively, may be written as

Hb
g = �

q=1

2

Hb,q
g , �39�

Hb,q
g = − Jb,q

g �
n=1

6−2q

�Sn · Sn+q�2, �40�
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Ht
g = �

q=1

2

Ht,q
g , �41�

Ht,1
g = − Jt,1

g �
n=1

odd

4

�
n�=1

even

4

�Sn · Sn+1��Sn� · Sn�+1� , �42�

Ht,2
g = − Jt,2

g �
n=1

4

�
n�=1

2

�Sn · Sn+1��Sn� · Sn�+2� . �43�

For g=Td, we take Jb,1
Td =Jb,2

Td and Jt,1
Td =Jt,2

Td; otherwise,
Jb,2

g �Jb,1
g and Jt,2

g �Jt,1
g . For the six g symmetries, Hb

g+Ht
g is

invariant under all rotations and each of the elements of Og.

VI. EIGENSTATES OF THE FULL HAMILTONIAN

A. Induction representation

We assume a molecular Hamiltonian

Hg = H0
g,r + Hsi

g + �Hae
g + HDM

g + Hb
g + Ht

g. �44�

To take proper account of B in H0
g,r, we construct our SMM

eigenstates in the induction representation by the rotation

�x̂

ŷ

ẑ
� = �cos � cos � − sin � sin � cos �

cos � sin � cos � sin � sin �

− sin � 0 cos �
��x̂�

ŷ�

ẑ�
� ,

�45�

so that B=Bẑ�.5 A subsequent arbitrary rotation about ẑ� does
not affect the eigenstates. We then set �=1 and write

S2��s,m
s13,s24� = s�s + 1���s,m

s13,s24� , �46�

S13
2 ��s,m

s13,s24� = s13�s13 + 1���s,m
s13,s24� , �47�

S24
2 ��s,m

s13,s24� = s24�s24 + 1���s,m
s13,s24� , �48�

Sz���s,m
s13,s24� = m��s,m

s13,s24� , �49�

S����s,m
s13,s24� = As

��m��s,m+��
s13,s24 � , �50�

As
m = ��s − m��s + m + 1� , �51�

where S��=Sx�+ i��Sy� with ��= �1. For brevity, we define

� � �s,m,s13,s24
 , �52�

�̄ � �s,s13,s24
 , �53�

where �̄ excludes m, and write ������s,m
s13,s24�, where the ad-

ditional dependence of �, �̄, and ��� on the fixed single-spin
value s1 is taken to be understood. Hb,2

g , Ht,2
g , and H0

g,r are
diagonal in this representation, ����H0

g,r+Hb,2
g +Ht,2

g ���
=E�,0

g ��,��, where, based on Eqs. �46�–�49�,

��,�� = �s,s��m,m��s13,s13�
�s24,s24�

, �54�

E�,0
g = −

J̃g

2
s�s + 1� − 
Bm + �E�̄,0

g , �55�

�E�̄,0
g = −

1

2�
n=1

2 ��J̃g� − J̃g�sn,n+2�sn,n+2 + 1�

+
Jb,2

g

2
�− 2s1�s1 + 1� + sn,n+2�sn,n+2 + 1��2

+
Jt,2

g

2
�− 2s1�s1 + 1� + sn,n+2�sn,n+2 + 1��

��s�s + 1� − �
n�=1

2

sn�,n�+2�sn�,n�+2 + 1�	
 , �56�

where J̃g and J̃g� are given by Eqs. �35� and �36�. Since H0
g,r,

Hb,2
g , and Ht,2

g are invariant under all rotations, E�,0
g is inde-

pendent of � and �.

B. First-order eigenstates

In the induction representation, we write Hsi
g +�Hae

g

+HDM
g as Hsi�

,g+Hae�
,g+HDM�,g . Hb,1

g and Ht,1
g are scalars, inde-

pendent of the direction of B. Since these Hamiltonian terms
are not diagonal in the induction representation, we then
make a standard first-order perturbation expansion, assuming
the magnitude of each of their strengths to be small relative

to �J̃g� and �J̃g��.5 To do so, it is necessary to analytically
evaluate the single-ion matrix elements, as they contain
much of the interesting physics. Compact expressions for
these matrix elements for general �s1 ,s2 ,s3 ,s4� are given in
Appendix E.

At arbitrary B angles �� ,��, the first-order corrections
E�,1

g = ���Hsi�
,g+Hae�

,g+HDM�,g +Hb,1
g +Ht,1

g ��� to the eigenstate
energies for g=C4h, D4h, C4v, S4, D2d, and Td symmetries are

E�,1
g =

J̃z
g,�̄

2
�m2 − s�s + 1�� − �J̃z

g,�̄

−
�3m2 − s�s + 1��

2
J̃z

g,�̄ cos2 � , �57�

J̃z
g,�̄ = Jz

ga�̄
+ − J1,z

g c�̄
− −

1

2
J2,z

g a�̄
−, �58�

�J̃z
g,�̄ = Jz

gb�̄
+ −

1

4
J1,z

g �b�̄
+ + b�̄

−� −
1

4
J2,z

g b�̄
− + Jb,1

g B�̄ + Jt,1
g T�̄,

�59�

where analytic expressions for a�̄
�, b�̄

�, c�̄
−, B�̄, and T�̄ for

general �̄ are given in Appendix F, along with Tables IV and
V of their values for s1=1 /2 and 1 and Tables VI and VII
and Tables VIII and IX of the simple analytic forms of a�̄

�,
b�̄

�, and c�̄
− for the lowest four eigenstate manifolds of FM

and AFM tetramers, respectively. We note that all of these
interaction coefficients are invariant under s13↔s24, as ex-
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pected. The DM and all site-dependent interactions vanish in
this first-order perturbation. Second-order corrections to the
eigenstate energies will be presented elsewhere.51

For all six g ISPG’s, E�,1
g has a form analogous to that of

the equal-spin dimer in the absence of azimuthal single-ion
and symmetric anisotropic exchange interactions.5 For these
high-symmetry tetramers, to first order in the anisotropy in-
teractions, the azimuthal single-ion and anisotropic exchange
interactions merely renormalize the respective effective site-
independent axial interactions. Thus, to first order, we only
have two effective isotropic exchange interactions, two bi-
quadratic and two three-center quartic isotropic exchange in-
teractions, and three effective anisotropy interactions, with

respective strengths J̃g, J̃g�, Jb,q
g , Jt,q

g , Jz
g, and Jq,z

g , for q=1 and
2, which are fixed for a particular equal-spin s1 SMM tet-
ramer. Nevertheless, the first-order eigenstate energies E�

g

=E�,0
g +E�,1

g , given by Eqs. �55� and �57�, contain these nine
effective interaction strengths in ways that strongly depend
on the quantum number set � and on �. These different � and
� dependencies can be employed to provide definitive mea-
sures of at least some of them.

C. Type-I and type-II tetramers

There are at least two types of FM and AFM tetramers. To
the extent that the single-ion, symmetric anisotropic ex-

change, and biquadratic and three-center quartic exchange
interaction strengths are small relative to the difference in the
Heisenberg interaction strengths, there are just two types of
tetramers. The criterion is simply based on J̃g�− J̃g in �E�̄,0

g ,
which for this classification purpose we assume to be larger
in magnitude than the magnitudes of all anisotropy and quar-
tic interaction strengths. Type-I tetramers have J̃g�− J̃g�0,
which can occur for either sign of J̃g, provided g�Td. For
type I, the lowest energy state in each s manifold occurs for
the maximum values s13,s24=2s1. Thus, at low T, type-I tet-
ramers behave as pairs of spin 2s1 dimers. Type-II tetramers
with J̃g�− J̃g�0 are frustrated, with the lowest energy state in
each s manifold occurring for the minimal s13 and s24 values.
For even s, these minima occur for s13, s24=s /2, but for odd
s, the energy minimum is doubly degenerate, occurring at
s13, s24= �s�1� /2, �s�1� /2. Hence, explicit formulas for the
first-order eigenstate energy parameters a�̄

�, b�̄
�, c�̄

−, B�̄, and
T�̄ with arbitrary s in these three optimal s13, s24 cases are
given in Appendixes G and H, respectively. For sufficiently

strong J̃g�− J̃g, these formulas apply to the lowest energy

eigenstate in each s manifold. When J̃g�− J̃g is small relative
to the other interactions, multiple tetramer types can occur.
Tables VI–IX are sufficient for easy full analyses of such
cases for s1�3 /2, and the lowest four s manifolds for FM
and AFM tetramers with arbitrary s1.

TABLE IV. Values of the first-order energy coefficients a�̄
�, b�̄

�, c�̄
−, B�̄, and T�̄ for s1=1 /2.

s s13 s24 a�̄
+ a�̄

− b�̄
+ b�̄

− c�̄
− B�̄ T�̄

2 1 1 0 1
3 2 − 2

3
1
6

1
4

1
4

1 1 1 0 −1 2 2 − 1
2

5
4

1
4

1 1 0 0 1 2 −2 0 3
2 −1

0 1 1 0 11
3 2 2

3
11
6

7
4

1
4

0 0 0 2 −1 2 −2 1
2

3
4 − 3

4

TABLE V. Values of the first-order energy coefficients a�̄
�, b�̄

�, c�̄
−, B�̄, and T�̄ for s1=1.

s s13 s24 a�̄
+ a�̄

− b�̄
+ b�̄

− c�̄
− B�̄ T�̄

4 2 2 1
7

2
7

24
7 − 8

7
3

14 4 4

3 2 2 1
15

2
15

24
5

8
5

1
10 4 0

3 2 1 1
15

2
5

24
5 − 16

5
8

45
43
9 − 7

9

2 2 2 − 1
7 − 2

7
124
21

80
21 − 3

14
23
4

9
4

2 2 1 1
3 0 4 0 − 1

18
307
36 − 55

36

2 2 0 1
3

2
3 4 −4 0 7 −3

2 1 1 − 1
3

2
3

20
3 − 16

3
1
6

31
4 − 23

4

1 2 2 − 7
5 − 14

5
36
5

32
5 − 21

10
31
4

25
4

1 2 1 3
5

8
5

68
15 − 32

15 − 9
10

23
4 − 1

12

1 1 1 1 −2 4 0 − 1
2

15
4

1
4

1 1 0 −1 2 20
3 − 20

3 0 9 − 23
3

0 2 2 3 6 16
3

8
3

9
2

32
3

22
3

0 1 1 − 11
3

22
3

16
3 − 8

3
11
6 8 −6

0 0 0 11
3 − 8

3
16
3 − 16

3
1
2

16
3 − 16

3
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D. Dzyaloshinskii-Moriya interactions and spin-induced
polarizations

Although the first-order correction to the energy arising
from the DM interactions vanishes, for s1=1 /2 and 1, it is
not too difficult to diagonalize the Hamiltonian matrix ex-
actly and, hence, to take precise account of the effects of the
DM interactions. To focus on the effects of DM interactions,
in Figs. 4–9, we omit the single-ion, symmetric anisotropic
exchange interactions, and biquadratic and three-center quar-
tic interactions, keeping only the AFM Heisenberg, Zeeman,
and weak DM interactions. Although Katsura et al. derived
the spin-induced polarization for large spin values, we have
assumed that the same physics should apply for small spin

values. In Fig. 4, we plotted M /
 versus 
B / �J̃g� for s1

=1 /2 AFM tetramers with S4 symmetry with B � �111�, T

=0, and d / �J̃g�=0.1, where dz
g=d1y

g =d2x
g =d2y

g =d and d1x
g =0,

in the limit c=a. We note that for J̃g�0 and J̃g� / J̃g=0.5, the
magnetization exhibits sharp steps close to the integral val-

ues s=1 and 2 of 
B / �J̃g�, characteristic of type-I AFM tet-

ramers. For J̃g�0 and J̃g� / J̃g=1.5, the two steps are shifted to
higher B values, and the first step is broadened. This is a
type-II AFM tetramer behavior for the DM interaction. In
Fig. 5, the corresponding curves for the spin-induced polar-
ization �Ps� are shown. In both cases, there is a sharp peak at
the inflection point of the first magnetization step, at which
the total spin value s changes from 0 to 1. In addition, there
is a discontinuity in slope at the position of each second
magnetization step, at which Ps begins its rapid decrease to

TABLE VI. Values of a�̄
� for the ground and first three excited state manifolds for FM tetramers �or the highest four excited state

manifolds of AFM tetramers�, where a1�x�=2048x6−9472x5+17 344x4−15 440x3+6924x2−1530x+135. The quantum numbers are re-
stricted by 0�s13, s24�2s1, and �s13−s24��s�s13+s24.

s ,s13,s24 a�̄
+ a�̄

−

4s1 ,2s1 ,2s1 2s1−1

8s1−1

2s1

8s1−1

4s1−1,2s1 ,2s1 �2s1−1��4s1−3�
�4s1−1��8s1−3�

2s1�4s1−3�
�4s1−1��8s1−3�

4s1−1,2s1 ,2s1−1 �2s1−1��4s1−3�
�4s1−1��8s1−3�

2s1

8s1−3

4s1−2,2s1 ,2s1 �2s1−1��32s1
2−44s1+3�

�4s1−1��8s1−1��8s1−5�
2s1�32s1

2−44s1+3�
�4s1−1��8s1−1��8s1−5�

4s1−2,2s1 ,2s1−1 16s1
3−36s1

2+26s1−3

�2s1−1��4s1−1��8s1−5�
4s1�s1−1�

�2s1−1��8s1−5�

4s1−2,2s1 ,2s1−2 16s1
3−36s1

2+26s1−3

�2s1−1��4s1−1��8s1−5�
2�8s1

3−6s1
2+2s1−1�

�2s1−1��4s1−1��8s1−5�

4s1−2,2s1−1,2s1−1 2s1−3

8s1−5

2s1

8s1−5

4s1−3,2s1 ,2s1 �2s1−1��8s1−15�
�8s1−3��8s1−7�

2s1�8s1−15�
�8s1−3��8s1−7�

4s1−3,2s1 ,2s1−1 a1�s1�
�4s1−3�2�2s1−1��4s1−1��8s1−3��8s1−7�

4s1�512s1
5−1856s1

4+2416s1
3−1420s1

2+399s1−45�
�4s1−3�2�2s1−1��4s1−1��8s1−3��8s1−7�

4s1−3,2s1 ,2s1−2 16s1
3−52s1

2+58s1−9

�2s1−1��4s1−3��8s1−7�
4s1

3−7s1
2+3s1−1

�2s1−1��4s1−3��8s1−7�

4s1−3,2s1 ,2s1−3 �2s1−1��16s1
2−48s1+45�

�4s1−3�2�8s1−7�
2�16s1

3−24s1
2+15s1−9�

�4s1−3�2�8s1−7�

4s1−3,2s1−1,2s1−1 �2s1−3��4s1−5�
�4s1−3��8s1−7�

2s1�4s1−5�
�4s1−3��8s1−7�

4s1−3,2s1−1,2s1−2 32s1
3−96s1

2+70s1−9

�4s1−1��4s1−3��8s1−7�
2�16s1

3−16s1
2+5s1−2�

�4s1−1��4s1−3��8s1−7�
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zero, which it reaches at the B value for which M just attains
saturation. Note that Ps→0 at large B, since the large B
aligns the spins at all sites, causing their vector products to

vanish. Some results for the intermediate case J̃g� / J̃g=1 are
shown in Fig. 6. In this figure, we plotted �Ps� in arbitrary
units versus � /� for s1=1 /2 AFM tetramers with S4 symme-

try at �=� /4 where d / �J̃g�=0.01 and 
B / �J̃g�=1.2 and 1,
respectively. The Ps��� curves are antisymmetric about �

=� /2. We note that the curves with 
B / �J̃g�=1,1.2 exhibit
broad maxima at � /��0.28,0.32, respectively. These broad

curves reflect the strong frustration of the spins with J̃g�= J̃g,
for which no preferred s13 and s24 values exist.

In Figs. 7–9, we plotted analogous curves for s1=1 AFM
tetramers, except that d / �J̃g�=0.01. Curves with d / �J̃g�=0.1
for s1=1 exhibit steps or peaks that are much broader than
the corresponding ones for s1=1 /2 pictured in Figs. 4–6. We
note that in Fig. 7, the dashed curve for the type-II case
J̃g� / J̃g=1.5 has wider steps at M /
=0 and 2 than at 1 and 3.
This low value of the DM strength d / �J̃g�=0.01 leads to very
sharp peaks in �Ps� for both type-I and II tetramers, as shown
in Fig. 8. However, the three peak tails are much broader for

AFM type-II tetramers with J̃g� / J̃g=1.5 than for AFM type-I

tetramers with J̃g� / J̃g=0.5. In each case, the peak positions

correspond to the first three magnetization step 
B / �J̃g� val-

TABLE VII. Values of b�̄
� and c�̄

− for the ground and first three excited state manifolds for FM tetramers �or the highest four excited state
manifolds of AFM tetramers�, where b1�s1�= �2304s1

5−6112s1
4+5968s1

3−2650s1
2+552s1−45� / ��8s1−3��8s1−7��, b2�s1�= �1024s1

4−2304s1
3

+1808s1
2−576s1+63� / ��8s1−3��8s1−7��, c1�s1�=256s1

5−640s1
4+576s1

3−240s1
2+48s1−3, and c2�s1�= �2048s1

6−8960s1
5+15 232s1

4−13 120s1
4

+6096s1
3−1440s1+135� / ��8s1−3��8s1−7��.

s ,s13,s24 b�̄
+ b�̄

− c�̄
−

4s1 ,2s1 ,2s1 24s1
2

8s1−1
−

8s1
2

8s1−1

4s1−1

2�8s1−1�

4s1−1,2s1 ,2s1 8s1�5s1−2�
8s1−3

8s1
2

8s1−3

4s1−3

2�8s1−3�

4s1−1,2s1 ,2s1−1 8s1�5s1−2�
8s1−3

−
8s1�3s1−1�

8s1−3

8s1�2s1−1�2

�4s1−1�2�8s1−3�

4s1−2,2s1 ,2s1 4�112s1
3−102s1

2+22s1−1�
�8s1−1��8s1−5�

8s1�24s1
2−15s1+1�

�8s1−1��8s1−5�
32s1

2−44s1+3

2�8s1−1��8s1−5�

4s1−2,2s1 ,2s1−1 4�14s1
2−12s1+1�
8s1−5

−
8s1�s1−1�

8s1−5

c1�s1�
2�2s1−1�2�4s1−1�2�8s1−5�

4s1−2,2s1 ,2s1−2 4�14s1
2−12s1+1�
8s1−5

−
4�10s1

2−8s1+1�
8s1−5

2s1�4s1
2−7s1+3�

�2s1−1�2�8s1−5�

4s1−2,2s1−1,2s1−1 4�14s1
2−10s1+1�
8s1−5

−
8s1�5s1−3�

8s1−5

4s1−3

2�8s1−5�

4s1−3,2s1 ,2s1 12�48s1
3−74s1

2+34s1−5�
�8s1−3��8s1−7�

8s1�40s1
2−51s1+15�

�8s1−3��8s1−7�
�4s1−1��8s1−15�
2�8s1−3��8s1−7�

4s1−3,2s1 ,2s1−1 4b1�s1�
�4s1−1��4s1−3�

8s1b2�s1�
�4s1−1��4s1−3�

c2�s1�
2�2s1−1�2�4s1−3�2

4s1−3,2s1 ,2s1−2 12�6s1
2−8s1+1�

8s1−7
−

4�6s1
2−8s1+1�
8s1−7

2�s1−1��4s1−1��16s1
3−40s1

2+29s1−8�
�2s1−1�2�4s1−3�2�8s1−7�

4s1−3,2s1 ,2s1−3 12�24s1
2−50s1

2+30s1−5�
�4s1−3��8s1−7�

−
4�56s1

3−114s1
2+72s1−15�

�4s1−3��8s1−7�
16s1�s1−1��2s1−3�
�4s1−3�2�8s1−7�

4s1−3,2s1−1,2s1−1 4�18s1
2−22s1+5�
8s1−7

−
24s1�s1−1�

8s1−7

4s1−5

2�8s1−7�

4s1−3,2s1−1,2s1−2 4�72s1
3−98s1

2+34s1−3�
�4s1−1��8s1−7�

−
4�56s1

3−70s1
2+20s1−1�

�4s1−1��8s1−7�
16�s1−1�2�2s1−1�
�4s1−3�2�8s1−7�
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ues, and the polarization also vanishes at the 
B / �J̃g� value at
which the fourth magnetization step is completed. Finally, in
Fig. 9, we plotted �Ps� in arbitrary units versus � /� with the
same parameters as in Fig. 6, except that the larger field is

for 
B / �J̃g�=1.5. The curves with 
B / �J̃g�=1,1.5 exhibit
broad maxima at � /��0.28,0.31, respectively, approxi-
mately as for the corresponding curves with s1=1 /2, and
both Ps��� curves are odd about �=� /2, as are the two
curves shown in Fig. 6 for s1=1 /2.

E. First-order antiferromagnetic level-crossing inductions

For AFM tetramers, J̃g�0. There will be 2s1+1 level
crossings, as exhibited by the magnetization steps in Figs. 4
and 7 for s1=1 /2 and 1, respectively, provided that the low-
est energy state in each s manifold does not exhibit level
repulsion. In order to specify the level-crossing inductions,
we first write Es,m

g �s13,s24�=E�,0
g +E�,1

g . We then note that the
s13 and s24 values involved in level crossings are those cor-
responding to the lowest energies for a particular s value.
These are different for type-I and II tetramers. For type-I
tetramers, the level-crossing inductions occur for

Es,s
g �2s1,2s1� = Es−1,s−1

g �2s1,2s1� , �60�

and for type-II tetramers, they occur for

Es,s
g �s/2,s/2� = Es−1,s−1

g ��s − 1 � 1�/2,�s − 1 � 1�/2�
�61�

for even s, and

Es,s
g ��s � 1�/2,�s � 1�/2� = Es−1,s−1

g ��s − 1�/2,�s − 1�/2�
�62�

for odd s. In Appendixes G and H, we presented the formulas
for the level-crossing induction parameters for both types-I
and II tetramers.

For type-I tetramers, the first-order level-crossing induc-
tions Bs1,s

g,lc�1� obtained from Eq. �60� have the remarkably
simple form


Bs1,s
g,lc�1���� = − s�J̃g + 2s1

2Jt,2
g � − Jz

gb+

2
− Jb,1

g d − Jt,1
g e

−
c1

−

3
�Jeff

g −
�2s1 − 1�
�4s1 − 1�

Jz
g	�1 − 3 cos2 �� ,

�63�

TABLE VIII. Values of a�̄
� for the ground and first three excited state manifolds for AFM tetramers �or the

highest four excited state manifolds of FM tetramers�, where x represents any value of s13 that satisfies 0
�s13, s24�2s1, and �s13−s24��s�s13+s24.

s ,s13,s24 a�̄
+ a�̄

−

0 ,x ,x �3+4x+4x2��3�−1+x+x2�−4s1�s1+1��
3�2x+3��2x−1�

�3+4x+4x2��x+x2+4s1�s1+1��
3�2x+3��2x−1�

1,x ,x −3�−1+x+x2�+4s1�s1+1�
5

−
x+x2+4s1�s1+1�

5

1,x ,x−1 −3+6x2+6x4−4s1�s1+1��1+2x2�
5�4x2−1�

4x2+2x4+4s1�s1+1��1+2x2�
5�4x2−1�

2,x ,x �2x+5��2x−3��3�1−x−x2�+4s1�s1+1��
21�2x+3��2x−1�

−
�2x+5��2x−3��x2+x+4s1�s1+1��

21�2x+3��2x−1�

2,x ,x−1 3�5−16x2+2x4�−4s1�s1+1��5−2x2�
21�4x2−1�

2x2�7−x2�+4s1�s1+1��5−2x2�
21�4x2−1�

2,x ,x−2
−

3�−3+x+x2�+4s1�s1+1�
21

4−x+x2+4s1�s1+1�
21

3,x ,x �−33+4x+4x2��−9�−1+x+x2�+4s1�s1+1��
45�2x+3��2x−1�

−
�−33+4x+4x2��x+x2+4s1�s1+1��

45�2x+3��2x−1�

3,x ,x−1 198−729x2+330x4−24x6+8s1�s1+1��33−37x2+4x4�
30�4x2−1��4x2−9�

−
169x2−102x4+8s1�s1+1��33−37x2+4x4�

30�4x2−1��4x2−9�

3,x ,x−2 1
2

1
6

3 ,x ,x−3 27−78x+63x2−24x3+6x4−8s1�s1+1�x�x−2�
18�2x−1��2x−3�

9−30x+23x2−8x3+2x4+8s1�s1+1�x�x−2�
18�2x−1��2x−3�
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Jeff
g =

J1,z
g

2
+

s1J2,z
g

4s1 − 1
, �64�

where b+=bI
s1,+�s�, c1

−=cI,1
s1,−�s�, d=dI

s1�s�, and e=eI
s1�s� are

given in Appendix G. We note that this is independent of J̃g�

and Jb,2
g , Jt,2

g just renormalizes J̃g, and that the NN and NNN
symmetric anisotropic exchange interactions combine to
yield the universal type-I level crossing form Jeff

g . Further-
more, the � dependencies of the single-ion and symmetric
anisotropic exchange contributions have the same s depen-
dencies for fixed s1. However the �-independent contribu-
tions from Jz

g, Jeff
g , Jb,1

g , and Jt,1
g separately depend on s for

fixed s1.
For the type-II AFM tetramer level-crossing inductions,

the contributions from the near-neighbor anisotropic ex-
change interaction J1,z

g have a rather simple form. As shown
in Appendix H, these contributions 
B1,z

g,lc�1�=J1,z
g f1,z�s ,�� to


Bs1,s
g,lc�1���� are independent of s1, where

FIG. 4. Plots of the magnetization M /
 versus 
B / �J̃g� of a s1

=1 /2 tetramer at T=0 with c=a, g=S4, dz
g=d1y

g =d2x
g =d2y

g =d, d1x
g

=0, d / �J̃g�=0.1, and B � �111�. The solid and dashed curves are

for the type-I �J̃g� / J̃g=0.5� and type-II �J̃g� / J̃g=1.5� tetramers,
respectively.

TABLE IX. Values of b�̄
� and c�̄

− for the ground and first three excited state manifolds for AFM tetramers �or the highest four excited state

manifolds of FM tetramers�, where b̃1�x�=12�15−19x−15x2+8x3+4x4�, b̃2�x�=3�33−37x−33x2+8x3+4x4�, b̃3�x�=3�−66+243x2−110x4

+8x6�, and b̃4�x�=−3�9−26x+21x2−8x3+2x4�.

s ,s13,s24 b�̄
+ b�̄

− c�̄
−

0 ,x ,x 8s1�s1+1�
3

4x�x+1�−8s1�s1+1�
3

3+4x+4x2

6

1 ,x ,x 4�−1+x+x2+2s1�s1+1��
5

8�x�x+1�−s1�s1+1��
5

3−4x−4x2

6

1 ,x ,x−1 4�1−2x2−2x4−2s1�s1+1��1−8x2��
5�4x2−1�

4�−3x2�1−2x2�+2s1�s1+1��1−8x2��
5�4x2−1�

3�1−x2�
10

2,x ,x b̃1�x�+8s1�s1+1��9+20x+20x2�
21�2x+3��2x−1�

−16x�9+x−16x2−8x3�−8s1�s1+1��9+20x+20x2�
21�2x+3��2x−1�

15−4x−4x2

42

2,x ,x−1 4�5−16x2+2x4+2s1�s1+1��1+8x2��
7�4x2−1�

−
4�7x2−10x4+2s1�s1+1��1+8x2��

7�4x2−1�
15+x2

42

2,x ,x−2 4�−3+x−x2+6s1�s1+1��
7

4�1−2x+2x2−6s1�s1+1��
7

8�2+x−x2�
63

3,x ,x 8�b̃2�x�+s1�s1+1��87+44x+44x2��
45�2x+3��2x−1�

−
4�x�111+43x−136x2−68x3�+2s1�s1+1��87+44x+44x2��

45�2x+3��2x−1�
33−4x−4x2

90

3,x ,x−1 4�b̃3�x�−2s1�s1+1��87+52x2−64x4��
15�4x2−1��4x2−9�

8�x2�107−151x2+44x4�+s1�s1+1��87+52x2−64x4��
15�4x2−1��4x2−9�

132−17x2

360

3,x ,x−2 4�−3+2s1�s1+1��
3

−
4�x�1−x�+2s1�s1+1��

3

23+4x−4x2

72

3,x ,x−3 4�b̃4�x�+2s1�s1+1��9−32x+16x2��
9�2x−3��2x−1�

−
8�−9+30x−35x2+20x3−5x4+s1�s1+1��9−32x+16x2��

9�2x−3��2x−1�
5�3+2x−x2�

72
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f1,z�s,�� = �
�s − 1�

4s
�1 + �2s − 1�cos2 �� s odd

s

4�s − 1�
�1 + �2s − 3�cos2 �� s even.�

�65�

Note, in particular, that for s=1, f1,z�1,��=0. However, the
single-ion and NNN symmetric anisotropic exchange contri-
butions to the level-crossing inductions depend on both s and
s1 in different ways.

1. s1=1 Õ2 first-order antiferromagnetic level crossings

For the simplest case s1=1 /2, as in AFM Cu4 tetramers,
the single-ion interaction Jz

g does not contribute to the first-
order eigenstate energies, as for the dimer of equal s1=1 /2
spins.5 By using the results given in Appendixes G and H

and Table IV, the expressions for the 
B1/2,s
g,lc�1���� functions

are particularly simple. For s1=1 /2 effective-dimer AFM

type-I tetramers, J̃g�0 and J̃g�− J̃g�0,


B1/2,1
g,lc�1���� = − J̃g +

1

2
�Jb,1

g − Jt,2
g � +

1

6
Jeff

g �1 − 3 cos2 �� ,

�66�

FIG. 5. Plots of the magnitude of the spin-induced polarization

�Ps� in arbitrary units versus 
B / �J̃g� at T=0 of a s1=1 /2 tetramer

with c=a, g=S4, dz
g=d1y

g =d2x
g =d2y

g =d, d1x
g =0, d / �J̃g�=0.1, and

B � �111�. The solid and dashed curves are for the type-I �J̃g� / J̃g

=0.5� and type-II �J̃g� / J̃g=1.5� tetramers, respectively.

FIG. 6. Plots of the magnitude of the spin-induced polarization
�Ps� in arbitrary units versus � /� at T=0 of a s1=1 /2 tetramer with

c=a, g=S4, J̃g� / J̃g=1, dz
g=d1y

g =d2x
g =d2y

g =d, d1x
g =0, d / �J̃g � =0.01,

and �=� /4. The solid and dashed curves are for 
B / �J̃g�=1 and
1.2, respectively.

FIG. 7. Plots of the magnetization M /
 versus 
B / �J̃g� of a s1

=1 tetramer at T=0 with c=a, g=S4, dz
g=d1y

g =d2x
g =d2y

g =d, d1x
g =0,

d / �J̃g�=0.01, and B � �111�. The solid and dashed curves are for the

type-I �J̃g� / J̃g=0.5� and type-II �J̃g� / J̃g=1.5� tetramers, respectively.

FIG. 8. Plots of the magnitude of the spin-induced polarization

�Ps� in arbitrary units versus 
B / �J̃g� at T=0 of a s1=1 tetramer with

c=a, g=S4, dz
g=d1y

g =d2x
g =d2y

g =d, d1x
g =0, d / �J̃g�=0.01, and B � �111�.

The solid and dashed curves are for the type-I �J̃g� / J̃g=0.5� and

type-II �J̃g� / J̃g=1.5� tetramers, respectively.
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B1/2,2
g,lc�1���� = − 2J̃g + Jb,1

g − Jt,2
g −

1

2
Jeff

g �1 − 3 cos2 �� ,

�67�

where Jeff
g is given by Eq. �64� with s1=1 /2. For frustrated

type-II AFM tetramers with s1=1 /2, J̃g�0 and J̃g− J̃g��0,


B1/2,1
g,lc�1���� = − J̃g� −

1

4
�3Jb,1

g − Jt,1
g � +

Jb,2
g

2
+

1

4
J2,z

g �1 + cos2 �� ,

�68�


B1/2,2
g,lc�1���� = − J̃g − J̃g� +

5

4
�Jb,1

g − Jt,1
g � +

1

2
�Jb,2

g − Jt,2
g �

+
1

4
�2J1,z

g + J2,z
g ��1 + cos2 �� . �69�

Even in this simplest of all tetramer cases, there is still a
qualitative difference between the level-crossing inductions
of type-I and type-II AFM s1=1 /2 tetramers. For type-I s1

=1 /2 tetramers, there are only two parameters, J̃g+ �Jt,2
g

−Jb,1
g � /2 and Jeff

g = �J1,z
g +J2,z

g � /2, that affect the two level
crossings. However, for type-II s1=1 /2 tetramers, the two
level crossings are governed by four effective parameters.
These expressions also show that type-II AFM tetramers
have a more complex level-crossing induction variation than
do type-I s1=1 /2 AFM tetramers. For this special s1=1 /2
example, the � dependencies of the first and second 
B1/2,s

g,lc�1�

are opposite in sign for type I, but can have the same sign for
type II. In Fig. 10, we illustrate these s1=1 /2 behaviors for

type I with Jeff
g / J̃g=0.2 and for type II with J2,z

g / J̃g=0.2 and

J̃g− J̃g�=0.5�J̃g�.
In the special case of Td symmetry, we have J̃Td

= J̃Td
� =J,

Jb,1
Td =Jb,2

Td =Jb, Jt,1
Td =Jt,2

Td =Jt, and Jq,z
Td =0. Since for s1=1 /2, Hb

g

and Ht
g are diagonal, the Jb and Jt dependencies of the eigen-

state energies are exact. Hence, the only difference between
type-I and type-II s1=1 /2 tetramers with Td symmetry is

determined by the sign of Jb−Jt, as is evident by comparing
Eqs. �66�–�69�. In any event, there are no � dependencies to
the first-order level-crossing inductions for s1=1 /2 AFM tet-
ramers with Td symmetry.

2. s1Ð1 first-order antiferromagnetic level crossings

For s1�1 /2, the AFM level crossings become much more
complex than for the s1=1 /2 case, as single-ion anisotropies
Jz

g are allowed, and the biquadratic and three-center quartic
interactions Jb,q

g and Jt,q
g differently affect the various level

crossings. We first consider the simplest s1�1 /2 case, s1
=1, appropriate for AFM Ni4 tetramers. The first-order
eigenstate energy parameters are listed in Table V. For the
isotropic case Jz

g=Jq,z
g =0, the Hamiltonian matrix is block

diagonal, and the resulting eigenvalues are listed in Table X.
Analytic expressions for the s=1, 2, 3, and 4 first-order
level-crossing inductions B1,s

g,lc�1���� for type-I and type-II s1
=1 tetramers are given in Appendix F. In Figs. 11 and 12, we
plotted the � dependencies of the first-order level-crossing

inductions 
B1,s
g,lc�1���� / �J̃g� for g=C4h, D4h, C4v, S4, and D2d,

for two AFM type-I examples and for three type-II examples

with J̃g− J̃g�=0.5�J̃g�, respectively. In each curve, we allow
only one of the anisotropy interaction strengths to be nonva-
nishing. In Fig. 11, the solid and dashed curves are for

Jz
g / J̃g=0.2 and Jeff

g / J̃g=0.2, respectively, where Jeff
g =J1,z

g /2
+J2,z

g /3 for s1=1. We note from Eq. �63� and from Fig. 11
that for type I, the single-ion and symmetric exchange
anisotropies lead to opposite � dependencies, both having a
change in sign just before the second level crossing, and the
dependence of 
B1,s

g,lc�1� on Jb,1
g decreases with increasing s.

In Fig. 12, we illustrate the s1=1 type-II level crossings,

setting J̃g− J̃g�=0.5�J̃g�. The solid curves are for Jz
g / J̃g=0.2 for

g=C4h, D4h, C4v, S4, and D2d, as in Fig. 11. The dashed and

dotted curves are for J1,z
g / J̃g=0.4 and J2,z

g / J̃g=0.4, respec-
tively. For each curve, the type-II isotropic exchange param-
eters lead to a larger gap between the s=2 and s=3 level
crossings. The sign of the � dependencies of the single-ion
�solid� curves changes between s=2 and s=3. The effects of

FIG. 9. Plots of the magnitude of the spin-induced polarization
�Ps� in arbitrary units versus � /� at T=0 of a s1=1 tetramer with

c=a, g=S4, J̃g� / J̃g=1, dz
g=d1y

g =d2x
g =d2y

g =d, d1x
g =0, d / �J̃g � =0.01,

and �=� /4. The solid and dashed curves are for 
B / �J̃g�=1 and
1.5, respectively.
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FIG. 10. Plots of the s1=1 /2 first-order level crossing


B1/2,s
g,lc�1���� / �J̃g�, where � is the angle between B and ẑ, with Jb,q

g

=0, Jeff
g / J̃g=0.2, J̃g�− J̃g�0 �solid, type I� and J2,z

g / J̃g=0.2, J̃g− J̃g�

=0.5�J̃g� �dashed, type II�.
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the NN symmetric anisotropic exchange interactions vanish
for s=1, but increase in magnitude with increasing s for s
=2, 3, and 4. The sign of the � dependence of the level
crossing due to the NNN symmetric anisotropic exchange
interactions does not change, but its magnitude monotoni-
cally increases. Thus, type-II AFM s1=1 tetramers have a
richer set of first-order level-crossing behaviors than do

type-I AFM s1=1 tetramers, and the unpictured biquadratic
and three-center quartic interactions increase this richness.

In Figs. 13 and 14, the analogous type-I and type-II first-
order AFM level-crossing inductions are plotted versus � for
s1=3 /2 equal-spin tetramers, such as Cr4. The notation is the
same as in Figs. 11 and 12. For type-I s1=3 /2 AFM tetram-
ers, the single-ion and symmetric anisotropic exchange inter-
actions lead to different � dependencies of the level-crossing
inductions, each with a change in sign in the � dependence at
about the second level crossing, as seen in Fig. 13. For
type-II s1=3 /2 AFM tetramers, the sign changes appear be-
tween the second and third level crossings, as shown in Fig.
14. Although not pictured, the contributions for s1=3 /2 to
the level-crossing inductions from Jb,q

g and Jt,q
g can easily be

calculated from Eq. �56� and the expressions for dIIo
3/2�s�,

dIIe
3/2�s�, eIIo

3/2�s�, and eIIe
3/2�s� in Appendix H. They contribute to

TABLE X. Eigenstate energies E�̄ of H=H0
g,r+Hb

g+Ht
g for s1

=1 as a function of the quantum numbers �̄=s, s13, and s24 �prior to
the s-manifold diagonalizations� in the absence of anisotropy inter-
actions. The two additional s=2 eigenstate energies E2�

= 1
2 �a��b2+56�Jb,1

g �2�, where a=3J̃g−9J̃g�− 63
4 Jb,1

g −7Jb,2
g + 15

4 Jt,1
g

+6Jt,2
g and b=3J̃g−3J̃g�+ 17

4 Jb,1
g +3Jb,2

g − 33
4 Jt,1

g +6Jt,2
g . The two sets

of doubly degenerate s=1 eigenstates have E1�= 1
2 �A

+B���A−B�2+4C2�, where A=3J̃g−4J̃g�− 23
4 Jb,1

g −2Jb,2
g + 1

12Jt,1
g , B

=−J̃g�−9Jb,1
g −5Jb,2

g + 23
3 Jt,1

g , and C=
�5
3 �3Jb,1

g −4Jt,1
g �, and E0�= 1

2 ��
+�����−��2+4
2�, where �=−6J̃g+6J̃g�− 32

3 Jb,1
g −2Jb,2

g − 22
3 Jt,1

g

+12Jt,2
g , �= 16

3 �Jt,1
g −Jb,1

g �−8Jb,2
g , and 
= 4�5

3 �Jt,1
g −Jb,1

g �.

�̄=ss13s24 E�̄

422 −4J̃g−6J̃g�−4Jb,1
g −2Jb,2

g −4Jt,1
g −8Jt,2

g

322 −6J̃g�−4Jb,1
g −2Jb,2

g

312,321 −2J̃g−4J̃g�− 43
9 Jb,1

g −2Jb,2
g + 7

9Jt,1
g

212,221 J̃g−4J̃g�− 307
36 Jb,1

g −2Jb,2
g + 55

36Jt,1
g

211 −J̃g−2J̃g�− 31
4 Jb,1

g −2Jb,2
g + 23

4 Jt,1
g +2Jt,2
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222,202,220 −3J̃g�−4Jb,1
g −5Jb,2

g ,E2�

122 2J̃g−3J̃g�− 31
4 Jb,1

g −2Jb,2
g − 25

4 Jt,1
g +10Jt,2

g

111 J̃g−2J̃g�− 15
4 Jb,1

g −2Jb,2
g − 1

4Jt,1
g −2Jt,2

g

121,101 E1�

112,110 E1�

011 −2J̃g+2J̃g�−8Jb,1
g −2Jb,2

g +6Jt,1
g −4Jt,2

g

022,000 E0�

FIG. 11. Plots of the first-order level crossing B1,s
g,lc�1���� / �J̃g� for

type I, J̃g− J̃g��0, Jb,q
g =0, and s1=1. Solid curves, Jz

g / J̃g=0.2.

Dashed curves, Jeff
g / J̃g=0.2.

FIG. 12. Plots of the first-order level crossing 
B1,s
g,lc�1���� / �J̃g�

for type II with g=C4h ,D4h, C4v, S4, D2d, J̃g− J̃g�=0.5�J̃g�, Jb,q
g =0,

and s1=1. Solid curves, Jz
g / J̃g=0.2. Dashed curves, J1,z

g / J̃g=0.4.

Dotted curves, J2,z
g / J̃g=0.4.

FIG. 13. Plots of the first-order level crossing 
B3/2,s
g,lc�1���� / �J̃g�

for type I, J̃g− J̃g��0, Jb,q
g =0, and s1=3 /2. Solid curves, Jz

g / J̃g

=0.1. Dashed curves, Jeff
g / J̃g=0.1.
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a more complex level-crossing pattern than for s1=1.
For g=Td with s1�1 /2, we still have Jq,z

g =Jz
g=0, so that

the first-order level-crossing inductions 
Bs1,s
Td,lc�1���� / �J̃Td

�
vary from integral values only by �-independent constants
due to the biquadratic Jb,1

Td =Jb,2
Td =Jb and three-center quartic

Jt,1
Td =Jt,2

Td =Jt interaction strengths. For s1=1 without any an-
isotropy interactions, the exact eigenstates are compiled in
Table X.

VII. SELF-CONSISTENT HARTREE APPROXIMATION

A. Partition function and thermodynamics

The self-consistent Hartree approximation, or strong ex-
change limit,37 provides accurate results for the B depen-

dence of the specific heat and magnetization at low kBT / �J̃g�
and not too small 
B / �J̃g�,5 where kB is Boltzmann’s con-
stant. In this approximation, E�

g=E�,0
g +E�,1

g is given by Eqs.
�55� and �57�, respectively. We shall present the self-
consistent Hartree approximation of four measurable quanti-
ties in the induction representation. We first define the trace
valid for our eigenstate representation as follows:

Tr� � �
�

= �
s13,s24=0

2s1

�
m=−s

s

�
s=�s13−s24�

s13+s24

. �70�

The partition function in the self-consistent Hartree approxi-
mation may then be written

Zg
�1� = Tr� e−�E�

g
, �71�

where �=1 /kBT. In this compact notation, the self-consistent
Hartree magnetization Mg

�1��B ,T� and specific heat
Cg,V

�1� �B ,T� are given by

Mg
�1��B,T� = 
 Tr��me−�E�

g
�/Zg

�1�, �72�

Cg,V
�1� �B,T�
kB�2 =

Tr�†�E�
g�2e−�E�

g
‡

Zg
�1� − �Tr��E�

ge−�E�
g
�

Zg
�1� 
2

. �73�

We note that there are strong differences between the

low-T behavior of FM and AFM tetramers. We assume �J̃g�
� �J̃g�− J̃g�. For FM tetramers with J̃g�0, the low-T thermo-
dynamic behavior is dominated by the s=4s1, m=−4s1 state,
leading to

Mg
�1��B,T� �

T→0

B̂B4s1

��
B� , �74�

where BS�x� is the Brillouin function. The universality of this
function renders thermodynamic studies useless for the de-
termination of the microscopic parameters. For AFM tetram-

ers with J̃g�0, however, there will be interesting level-
crossing effects, which can be employed to measure the
microscopic interaction parameters, as discussed in detail in
Sec. VI. As for dimers, CV�B ,T� for AFM tetramers at suffi-
ciently low T exhibits 2s1 central minima at the level-
crossing inductions Bs1,s

g,lc����Bs1,s
g,lc�1���� that vanish as T→0,

which are equally surrounded by peaks of equal height.5 As
for the magnetization, CV�B ,T� for FM tetramers at low T
reduces to that of a monomer with spin 4s1, yielding a rather
uninteresting Schottky anomaly.

B. Electron paramagnetic resonance

However, the microscopic nature of FM tetramers can be
better probed either by EPR or INS techniques. The self-
consistent Hartree EPR absorption I�−�,�

g,�1��B ,�� for clock-
wise ��=1� or counterclockwise ��=−1� circularly polarized
oscillatory fields normal to B is

I�−�,�
g,�1� =


2

Zg
�1�Tr� Tr�� e−�E�

g
�M�,���

2���E�
g − E��

g + ��

− ��E��
g − E�

g + ��� , �75�

where M�,��=As
�m�m�,m+��s�,s�s13� ,s13

�s24� ,s24
and Tr��=���. The

strong resonant inductions appear at


Bres
g,�1� = � � +

�2m + ��
2

�1 − 3 cos2 ��J̃z
g,�̄, �76�

where J̃z
g,�̄ is given by Eq. �58�. We note that J̃z

g,�̄ contains the
three effective microscopic anisotropy interactions, Jz

g, J1,z
g ,

and J2,z
g , multiplied by the constants a�̄

+, −c�̄
−, and −a�̄

− /2,
respectively. In Tables VI and VII, the values of these pa-
rameters for the FM ground state and the first three excited
state manifolds for arbitrary s1 are given. We note that EPR
measurements are insensitive to the Heisenberg, biquadratic,
and three-center quartic exchange interactions, which pre-
serve m.

For either FM or AFM s1=1 /2 tetramers, EPR measure-
ments can only probe the two microscopic symmetric aniso-
tropic exchange interaction parameters J1,z

g and J2,z
g , and mea-

surements of the two s=1 excited states are sufficient to
determine them. For FM tetramers with s1�1, it is a bit
more difficult. From Tables VI and VII and from Eq. �G1�, it
is easily seen that the �s ,s13,s24�= �s ,2s1 ,2s1� states all pro-
vide measurements of the same combination of these three
microscopic interactions. This can also be seen from Tables

FIG. 14. Plots of the first-order level crossing 
B3/2,s
g,lc�1���� / �J̃g�

for type II with g=C4h, D4h, C4v, S4, D2d, J̃g− J̃g�=0.5�J̃g�, Jb,q
g =0,

and s1=3 /2. Solid curves, Jz
g / J̃g=0.2. Dashed curves, J1,z

g / J̃g=0.4.

Dotted curves, J2,z
g / J̃g=0.4.
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IV and V for s1=1 /2 and 1. Hence, for FM tetramers with
s1�1 /2, measurements of the ground s=4s1 and the first
excited state manifold with s=4s1−1 are insufficient to com-
pletely determine the three microscopic interactions. In order
to stay within a single s value for FM tetramers, one would
need to study the second �or higher� excited state manifold
with s=4s1−2 �or lower� in order to obtain sufficient infor-
mation to determine the three microscopic anisotropy inter-
action strengths. For AFM tetramers with s1�1, EPR tran-
sitions in the ground state are not allowed, but measurements
of the first excited s=1 state manifold would suffice to de-
termine Jz

g and the Jq,z
g , as seen from the formulas in Tables

VIII and IX.

C. Inelastic neutron scattering

The Hartree INS cross section Sg
�1��B ,q ,�� in the induc-

tion representation is

Sg
�1� = Tr� Tr�� e−�E�

g�
�,�

���,� − q̂�q̂���
n,n�

eiq·�rn−rn�����Sn�,�
† ����

�����Sn,������� + E�
g − E��

g � , �77�

where � ,�=x� ,y� ,z�, q̂x�=sin �b,q cos �b,q, q̂y�
=sin �b,q sin �b,q, and q̂z�=cos �b,q; �b,q and �b,q describe the
relative orientations of B and q,5 the rn are given by Eq. �1�,
and the ����Sn,���� are given �with x�→x, etc.� by Eqs. �E1�
and �E2�. The scalar q · �rn−rn�� is invariant under the rota-
tion �Eq. �45��. After some algebra, we rewrite Sg

�1��q ,�� as

Sg
�1� = Tr� e−�E�

g�
��

��� + E�
g − E��

g ��sin2 �b,qL�,���q�

+
�2 − sin2 �b,q�

4
M�,���q�	 , �78�

where the Hartree functions L�,���q� and M�,���q� are given
in Appendix I. They are independent of B. Since E�

g is well
behaved as B→0, Eq. �78� is accurate for all B.

As for the dimer,5 additional EPR and INS transitions
with amplitudes higher order in the anisotropy parameters Jz

g,

J1,z
g , and J2,z

g relative to J̃g are obtained in the extended Har-
tree approximation, but will be presented elsewhere for
brevity.51

VIII. DISCUSSION

The quadratic phenomenological total spin anisotropy
model widely used in fitting experimental data on SMM’s is

Hp = A − DSz
2 − E�Sx

2 − Sy
2� , �79�

where A represents the isotropic total spin interactions, and
D and E are measures of the axial and azimuthal total spin
anisotropies, respectively.1 Often, additional quartic terms
are added.22,52 The anisotropy is defined relative to the total
spin principal axes, which, for equal-spin high-symmetry
systems, are the molecular axis vectors. It is easy to evaluate

E�
p= ���H̃p��� in the induction representation. One obtains

Eqs. �55� and �57� provided that

A = A0 + �A , �80�

A0 = − J̃gs�s + 1�/2 − 
Bm , �81�

�A = �E�̄,0
g − �J̃z

g,�̄, �82�

D = J̃z
g,�̄, �83�

E = 0, �84�

where �E�̄,0
g , J̃z

g,�̄, and �J̃z
g,�̄ are given by Eqs. �56�, �58�, and

�59�, respectively, which contain the constants a�̄
�, b�̄

�, c�̄
−,

B�̄, and T�̄. Precise formulas for all of these quantities at
arbitrary �̄ appear in Appendix F, along with Tables VI–IX
of the values of a�̄

�, b�̄
�, and c�̄

− for arbitrary s1 in the ground
and lowest three excited state manifolds for FM and AFM
tetramers, respectively. Usually, one assumes the strong ex-
change limit, so that the isotropic A0 is sufficiently large that
it remains constant for B=0 and can be neglected. A nonva-
nishing E would lead to a term in Eq. �57� proportional to
sin2 � cos�2��, as for the dimer,5 which does not arise in the
first-order calculation for the high-spin tetramers under con-
sideration based on the microscopic parameters alone.
Hence, the D term in Hp alone correctly describes the � and
m dependencies of E�,0

g +E�,1
g provided that the quantum

numbers s13 and s24 remain constant.
More important, the additional constant term �A has gen-

erally been neglected. Even to zeroth order, the sign of J̃g

− J̃g� in �E�̄,0
g distinguishes between type-I and type-II tetram-

ers, the distinction of which is absent in the phenomenologi-
cal model. Moreover, the different first-order dependencies
of A and D on �̄ are important in determining the level-
crossing inductions for AFM tetramers, each of which in-
volves two values of s and m, and for type II, different s13
and s24 values, as well. The zero-field energy spectrum is
thus more complicated than that given by the usual phenom-
enological model, which could lead to substantially different
fits to experiment.

For simplicity, the only higher order interactions we have
considered are the isotropic NN and NNN biquadratic and
three-center quartic exchange interactions. These isotropic
interactions are rotationally invariant, so they are indepen-
dent of � in the induction representation. Hence, they only
contribute to �A. Thus, they modify the positions but neither
the � dependencies of the AFM level-crossing inductions nor
any EPR transitions.

In the ground state of FM tetramers, �̄ is restricted to the
single set of values, �s ,s13,s24�= �4s1 ,2s1 ,2s1�. In this high-
spin case, Hp can provide a correct phenomenology of the
ground state energy. However, if applied to the two low-
lying excited states with s=4s1−1, for instance, one would
infer two different A and D values from those obtained in
the ground state. Moreover, as noted above, since all states
with �s13,s24�= �2s1 ,2s1� contain the same combination of a�̄

�

and c�̄
−, in order to exploit the �̄ dependence of D to obtain an

unambiguous EPR measurement of the three microscopic pa-
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rameters Jz
g, J1,z

g , and J2,z
g , for s1�1 /2, one needs to examine

higher eigenstate manifolds, such as the manifold with s
=4s1−2. For this manifold, Hp would require four different
A and D values. For AFM tetramers, the ground s=0 state
manifold has 2s1 states that are all split in first order, except
for tetramers with Td symmetry and vanishing biquadratic
and three-center quartic interactions. Hence, the phenomeno-
logical model works best in describing only a single state
with fixed �s ,s13,s24�. This is more restrictive than the usual
assumption of its applicability to all states with fixed
s.18,52–55

We note that the FM Cu4 tetramer Cu4OCl6�TPPO�6 was
claimed to have Td symmetry and a s=2 ground state.12–14 It
is noteworthy that those authors thought that anisotropic ex-
change interactions might be responsible for their observed
zero-field energy splittings.12,15 Since tetramers with Td sym-
metry do not have either symmetric or antisymmetric aniso-
tropic exchange interactions, another explanation must be
considered. From Tables VI and VII, it is evident that the FM
ground state is nondegenerate for all s1, even for those
SMM’s with lower symmetries allowing anisotropic ex-
change interactions. It therefore appears that the sample may
not have been single phase,12–14 as in a nominally S4 Ni4
tetramer,22 allowing for an apparent ground state splitting.

We note that for the FM Fe4 SMM, Fe4�thme�2�dpm�6,
where H3thme is 1,1,1-tris�hydroxymethyl�ethane and Hdpm
is dipivaloylmethane,52–54 the high D3 symmetry also pre-
cludes the E term in Hp. Nevertheless, in fits to INS data, it
was assumed that E�0,52,55 in order to obtain the appropri-
ate anticrossing gaps, so that either the powdered sample did
not have pure D3 symmetry or the phenomenological model
they used �Eq. �79��, plus two quartic terms obeying D3 sym-
metry, was not appropriate. Since single-ion interactions ap-
peared to be important,52 the total spin might not have been
a well-defined quantum number, as in at least one Fe2 dimer
and in Fe8.5,6,8,9 However, we note that it might be interesting
to investigate whether second-order DM effects might yield
an effective finite E value.

By using a microscopic Hamiltonian, detailed fits to
the four magnetization step data obtained in large pulsed
fields on powder samples of the AFM Ni4 tetramer
�Mo12

V O30�	2-OH�10H2�NiII�H2O�3
4� or �Ni4Mo12
 were
presented.46 Although the molecule has C1v symmetry, it is
close to exhibiting C3v symmetry. Since the steps with mid-
points at 4.5, 8.9, 20.1, and 32 T were unevenly spaced, the
authors assumed the molecule to have weak but important
biquadratic interactions. The �M /�B versus B data gave full
widths to these steps of approximately 2.7, 3.6, 5.0, and
12 T. To limit the number of fitting parameters, they as-
sumed C3v symmetry for the Heisenberg and biquadratic in-
teractions, and Td symmetry for the single-ion and aniso-
tropic exchange interactions. In addition, they allowed the
two Heisenberg interaction strengths to have strong magnetic
field dependencies, and solved their Hamiltonian numeri-
cally, which can incorporate the site-dependent single-ion in-
teractions for Td symmetry. This model fits the full magneti-
zation and �M /�B curves nicely. However, subsequent
magnetoinfrared studies of that compound were made, re-
vealing only very small differences in the responses at B
=0 and 14 T,61 providing little, if any, justification for such

strong magnetic field dependencies of the Heisenberg inter-
action strengths.

More recently, a remarkably simple fit to the four level-
crossing midpoints was made by Kostyuchenko.50 In this fit,
the �Ni4Mo12
 molecule was assumed to have Td symmetry,
so that J̃Td

= J̃Td
� =−J, and a plausible argument was presented

that the strength −J3=Jt,1
Td =Jt,2

Td of the isotropic three-center
quartic interactions ought to be comparable in magnitude to
that �−J2=Jb,1

Td =Jb,2
Td � of the biquadratic interactions. We de-

note this model as the JJ2J3 model. Since each of these terms
preserves the s quantum number, the Hamiltonian matrix in
the absence of single-ion and anisotropic exchange interac-
tions is block diagonal, and for s1=1, it is possible to obtain
the exact eigenvalues in terms of the three parameters
J ,J2 ,J3. However, in his fit to the magnetization level-
crossing midpoint data on �Ni4Mo12
, he found J2=J3, which
implies that he claimed to fit the four linear equations for the
four unequally spaced level-crossing midpoints with two pa-
rameters. Although two of those equations were nearly de-
generate, three were clearly nondegenerate, rendering his
two-parameter fit inaccurate.

In Appendix F, we extended the calculation of Ko-
styuchenko to the five lower symmetries, so that there are six

isotropic interactions J̃g, J̃g�, Jb,q
g , and Jt,q

g for q=1 and 2, and
our results are listed in Table X. We note that Kostyuchenko
took the Heisenberg energies to be J�s�s+1�−2s1�s1+1�� /2,
so each of his eigenstate energies differ from ours for s1=1
by the irrelevant constant 4J. In the limit of Td symmetry
investigated by Kostyuchenko, our results agree with those
of Kostyuchenko for the s=4 and s=0 state manifolds, and
for one state each of the s=2 and s=3 state manifolds. How-
ever, our results do not agree with his for the other s=1, 2,
and 3 states, except for the special case J2=J3, which is what
he claimed to have obtained in his fit.50

Even if one takes the correct forms for the eigenstate en-
ergies with Td symmetry �neglecting the second-order single-
ion anisotropy contributions� given in the Appendixes, one
still has to solve four equations with three parameters J, J2,
and J3. In case there remains an accidental remaining degen-
eracy, we try to do this. We first assumed J2�J3, taking the
minimum eigenstate energy within each s manifold, but no
consistent solution to the equations for the four level cross-
ings could be found. We then assumed J3�J2. For each s
manifold, the minimum energy is then E0=16J2−8J3,
E1−, E2=3J+ 39

4 J2− 31
4 J3, E3=6J+ 61

9 J2− 7
9J3, and E4=10J

+6J2+12J3, respectively, where E1−=J+ 87
8 J2− 31

8 J3

− 1
24

��91J3−75J2�2+320�3J2−4J3�2. In this case, the square
root appears with opposite signs in the equations for the first
and second level crossings, so that we add those two equa-
tions to obtain three linear equations in three unknowns.
Solving these three unknowns, we then find the J, J2, and J3
values listed in Table XI. These results necessarily fit the
midpoints of the third and fourth level crossings precisely.
Substituting these values into the equations for the first and
second level crossings, we obtain 4.35 and 9.05 T, which are
in remarkably good agreement with the experimental values
of 4.5 and 8.9 T, respectively. Hence, Kostyuchenko’s idea
that the three-center terms could be important is valid.50 It is
remarkable that one can obtain a good fit to four level-
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crossing midpoints with only three parameters. Nevertheless,
these parameters do not give rise to any widths to the tran-
sitions, unlike the experiments.46

In Appendix F, we listed the type-I and type-II first-order
level-crossing inductions for s1=1 AFM tetramers with the
six ISPG symmetries under study. Although our quantization
scheme is appropriate for the C1v symmetry of �Ni4Mo12
,
the number of independent parameters for that low symmetry
is very large. Nevertheless, one can quantitatively fit the four
experimental level-crossing induction midpoints by assum-
ing some approximate symmetry such as D2d or S4, for which
Jz

g is nonvanishing. The midpoint of each level crossing oc-
curs at �=� /4 and the width of each level crossing is ob-
tained from the difference between its values at �=0 and �
=� /2. We first tried to fit the data assuming a type-I tet-
ramer. In this case, the widths of the four level crossings are
determined by the single parameter �Jz

g−3Jeff
g �. A least-

squares fit of this parameter to the widths of the four level
crossings gave �Jz

g−3Jeff
g �=6.94
 T, which leads to the calcu-

lated widths listed in Table XI. There are then two choices
for the signs of this parameter. For each sign choice, we fit
the four midpoint equations to the remaining four param-
eters, and our results are listed in Table XI.

Both of these type-I fits have the additional restriction that

J̃g�� J̃g, but no restrictions on Jb,2
g are obtained. Both of these

fits provide reasonable values of the microscopic parameters,
which is consistent with the strong-exchange limit. The sec-
ond ��� fit leads to a smaller magnitude of Jeff

g =J1,z
g /2

+J2,z
g /3, which might be expected physically, but it also leads

to a somewhat larger Jz
g magnitude. In either case, an inclu-

sion of the effective anisotropy parameters greatly modifies
the Heisenberg, biquadratic, and three-center quartic interac-
tion strengths from those values in the JJ2J3 model, as seen
from Table XI.

With the nine parameters in the four type-II tetramer
level-crossing inductions listed in the Appendixes, one might
do better by fitting not only the midpoints but also the widths
of the level-crossing inductions. For type II, the four widths
are given, respectively, by ��Jz

g+J2,z
g � /2�, ��Jz

g+J1,z
g +J2,z

g � /2�,
�−3Jz

g /2+5J1,z
g /6+J2,z

g /2�, and �−3Jz
g /2+5J1,z

g /3+J2,z
g /2�. We

fit the widths using a standard least-squares procedure, tak-
ing into account all possible signs of the four linear combi-
nations of the three parameters. The ������ and ������
combinations gave equivalent best fits, with Jz

g ,J1,z
g , and J2,z

g ,
each having equal and opposite signs in the two combina-
tions. The parameters for these fits are listed in Table XI. The
standard deviations for the three types of fits were thus �II
=0.569 T, �I=1.57 T, and �JJ2J3

=6.15 T, so that the type-II
fit to the transition widths is the superior one, although the
type-I fit is not too bad, considering the limited number of
parameters.

We then had to solve the four midpoint equations with the

six parameters, J̃g , J̃g� and Jb,q
g ,Jt,q

g for q=1 and 2, subject to

the type-II assumption J̃g�− J̃g�0. There are an infinite num-
ber of ways to do this, as arbitrary choices for two param-
eters can be made. No type-II solution with Jt,1

g =Jt,2
g =0 could

TABLE XI. Type-I and type-II fitting parameters for the data of Schnack et al. on �Ni4Mo12
 �Ref. 46�.
Upper table: The JJ2J3 column is the midpoint only fit with J̃g�= J̃g=−J, Jb,1

g =Jb,2
g =−J2, and Jt,1

g =Jt,2
g =−J3.

The � and � columns refer to least-squares fit to the four widths for the two signs of Jz
g−3Jeff

g , and the last
three columns are for the type-II least-squares fit to the four widths from the ������ and ������
anisotropy interaction sign cases, respectively, with the arbitrary assumptions J̃g� / J̃g=1.5 and Jt,2

g =Jb,2
g . The

JJ2J3 and type-II values for the type-I parameters are listed for comparison. Indeterminate values are left
blank. Lower table: Comparison of level-crossing widths in the three models with experiment �see text�.

−Ji
g /kB JJ2J3 I+ �K� I− �K� II�+−−−� �K� II�−+ + + � �K�

−�J̃g+2Jt,2
g � /kB

9.45 11.21 10.60 8.06 9.08

−J̃g /kB
7.51 4.62 5.14

−J̃g� /kB
7.51 6.94 7.71

−Jz
g /kB 0 2.90 4.71 −0.982 0.982

−Jeff
g /kB 0 4.07 −1.53 −4.34 4.34

−J1,z
g /kB 0 −12.8 12.8

−J2,z
g /kB 0 6.16 −6.16

−Jb,1
g /kB 0.764 2.84 2.56 3.36 3.62

−Jb,2
g /kB 0.764 1.72 1.97

−Jt,1
g /kB 0.967 0.620 0.374 −3.73 −1.97

−Jt,2
g /kB 0.967 1.72 1.97


�B�expt� �T� 
�B�JJ2J3� �T� 
�B�I� �T� 
�B�II� �T�

2.7 0 4.9 1.9

3.6 0 1.9 2.8

5.0 0 6.4 4.5

12 0 10.4 12.5
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be found. Hence, to illustrate some of the possible solutions,
we arbitrarily chose J̃g�=1.5J̃g and Jb,2

g =Jt,2
g . The resulting

parameter values for these choices are listed in Table XI.
In Table XI, the anisotropy parameters Jz

g and Jeff
g obtained

in our ��� type-I and ������ type-II fits are in rather good
agreement with each other. However, the values for Jt,1

g are
quite different in these cases. We have examined other
type-II fits, using different assumptions for Jb,2

g and Jt,2
g , and

the resulting values for Jb,q
g and Jt,q

g �for q=1, and 2� signifi-
cantly vary with the assumptions, so the particular values of
the biquadratic and three-center quartic interactions should
not be taken too seriously. We also note that the type-II fit
gives very large values for the symmetric anisotropic ex-
change interaction strengths. However, the J1,z

g and J2,z
g , while

both very large, are opposite in sign, so that the type-I com-
bination Jeff

g , while still large, cannot be ruled out for type-II
fits. In one type-I and both type-II fits, fitting to the transition
widths gave a larger Jeff

g than Jz
g, which was unexpected. We

note that Schnack et al.46 had included single-ion anisotropy,
but not symmetric anisotropic exchange. The different phys-
ics implied from this work is therefore the evidence for a
strong symmetric anisotropic exchange in �Ni4Mo12
. We
have also shown that it is possible to perform an accurate fit
to the data without any field dependencies to the microscopic
interaction parameters. However, since the magnitudes of the

Jq,z
g are comparable to or larger than J̃g, and J̃g�, the strong-

exchange limit is questionable, and subsequent fits using an
exact diagonalization of the full Hamiltonian matrix are
warranted.51

We note that nonvanishing DM interactions �which vanish
in first order� do give some additional widths to the level
crossings, and these might provide an additional contribution
to the broad third and fourth level crossings observed in
experiment.46 The best fit to experiment may not be either
type I or type II, but may involve a more complicated analy-
sis involving other states within some of the constant s mani-
folds.

However, with only polycrystalline data available, it is
difficult to uniquely distinguish the different possible aniso-
tropy interaction strengths. When single crystals of sufficient
size for low-temperature magnetization measurements are
made, we intend to fit the data by using a more consistent set
of parameters, neglecting any field dependencies, if
possible.51

We note that our formulation of the single-ion
matrix elements in terms of a pair of dimers is
applicable to low-symmetry systems such as
Mo12O30�	2-OH�10H2�Ni�H2O�3
4, abbreviated as
�Ni4Mo12
,46 systems such as Ni4 tetramers obtained from
salts of �Ni4�H2O�2�PW9O34�2�10− with C2v symmetry,56 and
the unequal-spin systems Mn2

IIMn2
III and Ni2

IIMn2
III.57,58 In the

first system with C1v symmetry, one would expect many
more single-ion, symmetric anisotropic exchange, and DM
interactions, making definitive fits to the existing powder
magnetization data problematic.46 However, to improve the
fits to experiments on this compound, one might approximate
the ISPG as C3v. The study of C3v or D3 symmetry systems,
such as the Fe4 compound Fe4�thme�2�dpm�6 and the CrIIINi3

II

tetramer with a s=9 /2 ground state,52,59 would require

a reformulation of the quantization scheme to ���
= �s ,m ,s123,s12,s1� and the calculation of the appropriate
single-ion matrix elements, which are not yet in the
literature.31 Even classical Heisenberg models of such sys-
tems show strongly different dynamics than of systems with
Td symmetry.34,60

Finally, the DM interactions can also give rise to an elec-
tric polarization and, hence, to multiferroic behavior. Our
results suggest that this behavior should apply for tetramers
with all possible individual spin values, as long as there is no
center of inversion symmetry connecting the interacting spin
pairs. For tetramers with S4 and D2d or lower symmetry, this
should be observable. Our results indicate that these effects
should also occur for quantum spins.

IX. CONCLUSIONS

We presented a theory of high-symmetry single molecule
magnets based on the microscopic interactions between the
individual spins. We derived a compact form for the exact
single-spin matrix elements for four general spins. We used
the local axial and azimuthal vector groups to construct the
invariant single-ion and symmetric anisotropic exchange
Hamiltonians, and the molecular representation to obtain the
Dzyaloshinskii-Moriya and biquadratic and three-center
quartic interactions for equal-spin s1 tetramers with ionic site
point group symmetries Td, D4h, D2d, S4, C4h, or C4v. Each
vector group introduces site-dependent molecular single-ion
and anisotropic exchange interactions. Assuming weak effec-
tive site-independent single-ion, symmetric exchange aniso-
tropy, and isotropic biquadratic and three-center quartic ex-
change interactions, we evaluated the first-order corrections
to the eigenstate energies. Depending on the relative
strengths of the near-neighbor and next-nearest-neighbor
Heisenberg exchange interactions, there are generally two
types of high-symmetry tetramers. For the single-ion and
symmetric exchange anisotropy interactions, we provided
analytic results and illustrations of the antiferromagnetic
level-crossing inductions. We used our first-order results to
provide preliminary fits to the low-temperature magnetiza-
tion data on an AFM Ni4 tetramer, and we found evidence for
strong symmetric anisotropic exchange interactions in that
material. We also provided Hartree expressions for the mag-
netization, specific heat, EPR absorption, and INS cross sec-
tion, which are accurate at low temperatures and arbitrary
magnetic fields. For ferromagnetic tetramers, we provided a
procedure for a precise EPR determination of three of the
microscopic anisotropy parameters. We predict that geo-
metrically frustrated tetramers with symmetries S4 and D2d,
as well as C2v

13, are likely candidate materials for multiferroic
states. Our procedure is extendable to more general systems.
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APPENDIX A: SYMMETRY OPERATION MATRICES

Rotations of �� /2 about the z axis are represented by

O1,2 = � 0 �1 0

�1 0 0

0 0 1
� . �A1�

Rotations of � about the x and y axes are represented by

O3,4 = ��1 0 0

0 �1 0

0 0 − 1
� . �A2�

Rotations of � about the z axis and reflections in the xy plane
are respectively represented by

O5,6 = ��1 0 0

0 �1 0

0 0 �1
� . �A3�

Rotations of � about the y= �x diagonal axes are repre-
sented by

O7,8 = � 0 �1 0

�1 0 0

0 0 − 1
� . �A4�

Reflections in the xz and yz mirror planes are represented
by

O9,10 = ��1 0 0

0 �1 0

0 0 1
� . �A5�

Reflections in the mirror planes containing the z axis and the
diagonals y= �x are represented by

O11,12 = � 0 �1 0

�1 0 0

0 0 1
� . �A6�

Reflections in the mirror planes containing the y axis and the
lines z= �x are represented by

O13,14 = � 0 0 �1

0 1 0

�1 0 0
� . �A7�

Reflections in the mirror planes containing the x axis and the
lines y= �z are represented by

O15,16 = �1 0 0

0 0 �1

0 �1 0
� . �A8�

For Td, clockwise rotations of 2� /3 about the cube diagonals
are represented by

O17,18 = � 0 �1 0

0 0 1

�1 0 0
� �A9�

and

O19,20 = � 0 �1 0

0 0 − 1

�1 0 0
� . �A10�

Counterclockwise rotations of 2� /3 about the cube diago-
nals are represented by O


T=O

−1 for 
=17, . . . ,20. Finally,

there are six S4 improper rotations consisting of rotations
about a high-symmetry axis of �� /2 followed by a reflec-
tion in the plane perpendicular to the rotation axis. For S4
symmetry, z is the high-symmetry axis and the operations are
represented by

O21,22 = � 0 �1 0

�1 0 0

0 0 − 1
� . �A11�

For Td symmetry, we also have

O23,24 = �− 1 0 0

0 0 �1

0 �1 0
� �A12�

and

O25,26 = � 0 0 �1

0 − 1 0

�1 0 0
� . �A13�

All ISPG symmetries allow the identity operation, which
we omit for brevity, listing only the following:33

For C4h symmetry, OC4h = �O1 ,O2 ,O6
;
for D4h symmetry, OD4h = �O1 ,O2 ,O3 ,O4 ,O6 ,O7 ,O8
;
for C4v symmetry, OC4v= �O1 ,O2 ,O9 ,O10,O11,O12
;
for the lowest ISPG symmetry under study, S4, OS4

= �O21,O22
;
for D2d symmetry, OD2d = �O3 ,O4 ,O6 ,O11,O12
; finally,

for the highest symmetry under study, Td,

OTd = �O3,O4,O6,O11,O12,O13,O14,O15,O16,O17,O18,O19,O20,O17
−1,O18

−1,O19
−1,O20

−1,O21,O22,O23,O24,O25,O26
 . �A14�
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APPENDIX B: MOLECULAR SINGLE-ION INTERACTIONS

The site-independent interactions in the molecular representation are

Jz
g = �Ja

g for g = C4h and D4h
1
2 �Ja

g�3 cos2 �1
g − 1� + 3Je

g sin2 �1
g� for g = C4v for D2d,

� �B1�

Jz
S4 =

Ja
S4

2
�3 cos2 �1

S4 − 1� −
3

2
Je

S4 sin2 �1
S4 cos�2�1

S4� , �B2�

Jz
Td = 0. �B3�

For g=D4h, the only nonvanishing site-dependent single-
ion interaction is

Kxy
D4h�n� = �− 1�n+1Je

D4h. �B4�

For g=C4h, the two nonvanishing site-dependent single-ion
interactions are

Jxy
C4h = Je

C4h cos�2�1
C4h� , �B5�

Kxy
C4h�n� = �− 1�n+1Je

C4h sin�2�1
C4h� . �B6�

For g=C4v ,D2d, the three nonvanishing site-dependent
single-ion interactions in Eq. �32� are

Kxy
g �n� =

�− 1�n+1

2
�Ja

g sin2 �1
g + Je

g�1 + cos2 �1
g�� , �B7�

Kxz
g �n� =

1

2
cos��2n − 1�

�

4

sin�2�1

g��Ja
g − Je

g� , �B8�

Kyz
g �n� =

1

2
sin��2n − 1�

�

4

sin�2�1

g��Ja
g − Je

g� . �B9�

For S4, the single-ion site-dependent interactions are

Jxy
S4 = − J1 cos�2�1

S4� + J2 sin�2�1
S4� , �B10�

Kxy
S4�n� = �− 1�n�J1 sin�2�1

S4� + J2 cos�2�1
S4�� , �B11�

Kxz
S4�n� = �− 1�n+1�J3 cos��1

S4 −
n�

2
	 − J4 sin��1

S4 −
n�

2
	
 ,

�B12�

Kyz
S4�n� = �− 1�n+1�J3 sin��1

S4 −
n�

2
	 + J4 cos��1

S4 −
n�

2
	
 ,

�B13�

J1 =
1

2
�Ja

S4 sin2 �1
S4 − Je

S4�1 + cos2 �1
S4�cos�2�1

S4�� ,

�B14�

J2 = Je
S4 cos �1

S4 sin�2�1
S4� , �B15�

J3 =
1

2
sin�2�1

S4��Ja
S4 + Je

S4 cos�2�1
S4�� , �B16�

J4 = Je
S4 sin �1

S4 sin�2�1
S4� . �B17�

The site-dependent single-ion interactions for Td symme-
try are easily obtained from Eqs. �B7�–�B9� by setting �1

D2d

→ tan−1��2� and Je
Td→0,

Kxy
Td�n� =

�− 1�n

3
Ja

Td, �B18�

Kxz
Td�n� =

�2

3
cos��2n − 1�

�

4

Ja

Td, �B19�

Kyz
Td�n� =

�2

3
sin��2n − 1�

�

4

Ja

Td. �B20�

APPENDIX C: MOLECULAR ANISOTROPIC EXCHANGE
INTERACTIONS

We first consider the symmetric anisotropic exchange in-
teractions, letting q=1 and 2 and p=q+1. For simplicity of
presentation, we write

Jq,�
g =

1

2
�Jc,q

g � Jf ,q
g � . �C1�

Then, the isotropic exchange renormalizations may be writ-
ten as

�Jg = �Jg� = 0 for g = C4h,D4h,C4v, and Td, �C2�

�JD2d
= − J1,−

D2d sin2 �12
D2d, �C3�

�JD2d
� = − J2,−

D2d, �C4�

�JS4
,�JS4

� =
sin2 �1p

S4

2
�Jf ,q

S4 + Jc,q
S4 cos�2�1p

S4�� . �C5�

In Eq. �C5�, q=1 and 2 corresponds to �JS4
and �Js4

� , respec-
tively.
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The nonvanishing site-independent symmetric anisotropic
exchange interactions in the molecular representation are

Jq,z
g = − Jf ,q

g for g = C4h,D4h, and C4v, �C6�

J1,z
D2d =

Jf ,1
D2d

2
�1 − 3 cos2 �12

D2d� −
3Jc,1

D2d

2
sin2 �12

D2d, �C7�

J2,z
D2d = − J2,−

D2d − Jc,2
D2d, �C8�

Jq,z
S4 =

Jf ,q
S4

2
�1 − 3 cos2 �1p

S4� +
3Jc,q

S4

2
sin2 �1p

S4 cos�2�1p
S4� .

�C9�

For g=C4h, the nonvanishing site-dependent symmetric
anisotropic exchange interactions in Eq. �37� have strengths

Kq,xy
C4h = Jc,q

C4h sin�2�1p
C4h� , �C10�

Jq,xy
C4h = − Jc,q

C4h cos�2�1p
C4h� , �C11�

where �1p
g =�1p

g +�1p
g . For g=D4h and C4v, the nonvanishing

site-dependent symmetric anisotropic exchange interaction
strengths are

J1,xy
g = − Jc,1

g , �C12�

K2,xy
g = − Jc,2

g . �C13�

Again, the more interesting group is g=S4. We find

Jq,xy
S4 = − J̃1 cos�2�1p

S4� + J̃2 sin�2�1p
S4� , �C14�

Kq,xy
S4 = J̃1 sin�2�1p

S4� + J̃2 cos�2�1p
S4� , �C15�

Kq,xz
S4 �n� = − J̃3 cos��1p

S4 −
n�

2
	 + J̃4 sin��1p

S4 −
n�

2
	 ,

�C16�

Kq,yz
S4 �n� = − J̃3 sin��1p

S4 −
n�

2
	 − J̃4 cos��1p

S4 −
n�

2
	 ,

�C17�

J̃1 =
1

2
�Jf ,q

S4 sin2 �1p
S4 − Jc,q

S4 �1 + cos2 �1p
S4�cos�2�1p

S4�� ,

�C18�

J̃2 = Jc,q
S4 cos �1p

S4 sin�2�1p
S4� , �C19�

J̃3 =
1

2
sin�2�1p

S4��Jf ,q
S4 + Jc,q

S4 cos�2�1p
S4�� , �C20�

J̃4 = Jc,q
S4 sin �1p

S4 sin�2�1p
S4� . �C21�

For g=D2d, the nonvanishing site-dependent anisotropic
exchange interaction strengths are

J1,xy
D2d = −

Jf ,1
D2d

2
sin2 �12

D2d −
Jc,1

D2d

2
�1 + cos2 �12

D2d� , �C22�

K1,xz
D2d�n� = cos�n�/2�J1,+

D2d sin 2�12
D2d, �C23�

K1,yz
D2d�n� = − sin�n�/2�J1,+

D2d sin 2�12
D2d, �C24�

K2,xy
D2d = − J2,+

D2d. �C25�

For g=Td, there are no symmetric or antisymmetric aniso-
tropic exchange interactions.

The antisymmetric anisotropic exchange interactions in
the molecular representation are given for g=C4h ,D4h ,S4,
and D2d by

dz
g�n� = dz

g for g = C4h and D4h, �C26�

dq
g = 0 for g = C4h and D4h, �C27�

dz
g�n� = dz

g�− 1�n+1 for g = S4 and D2d, �C28�

d1
D2d = dy1

D2dŷ , �C29�

d2
D2d = dx2

D2d�x̂ + ŷ� , �C30�

d1
S4 = dx1

S4x̂ + dy1
S4ŷ , �C31�

d2
S4 = dx2

S4x̂ + dy2
S4ŷ . �C32�

Tetramers with the lowest-symmetry S4 require five param-
eters to describe the full DM interactions, those with D2d
symmetry require three parameters, those with either C4h or
D4h symmetry require just one parameter, and tetramers with
Td or C4v symmetry have no DM interactions.

APPENDIX D: C2v
13 DZYALOSHINSKII-MORIYA

INTERACTIONS

For the �2�2� grid compounds with approximate C2v
13

symmetry, the four spins lie on the corners of a rhombus of
side a with the position vectors relative to the origin given by

rn =
a
�2

�x̂�sin��2n − 1��/4� + cos��2n − 1��/4�cos �0�

+ ŷ cos��2n − 1��/4�sin �0� , �D1�

where the acute angle �0 satisfies � /2��0�� /3 for the
�2�2� grid compounds.47,48 There are three C2v

13 symmetry

operations,49 OC2v
13

= �O5 ,O27,O28
, where

O27,28 = ��cos �0 �sin �0 0

�sin �0 �cos �0 0

0 0 1
� . �D2�

The NNN and next-next-nearest-neighbor DM interactions,
corresponding to pairs across the diagonals, vanish due to
Moriya rule �3� and invariance under O27,28. However, as for
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C4h and D4h symmetries, the DM interactions between NN
spins do not vanish for C2v

13 symmetry, but are given by

HDM
C2v

13

= �
n=1

4

�dz�− 1�n+1ẑ + d sin�n�/2�

− d̃ cos�n�/2�� · �Sn � Sn+1� , �D3�

d̃ = O2
C2v

13

· d = O27 · d , �D4�

for a general two-vector d in the xy plane. We note that Eq.
�D3� is invariant under all three symmetries of C2v

13.

APPENDIX E: COMPACT SINGLE-ION MATRIX
ELEMENTS

By using the Schwinger boson technique of representing a
spin by two noninteracting bosons and checking our results
by using the standard Clebsch–Gordan algebra with the as-
sistance of symbolic manipulation software, we find the
single-spin matrix elements with general �sn
= �s1 ,s2 ,s3 ,s4�
to be

����Sn,z��� = �m�,m�m�s�,s�s13,s13� ,s24,s24�
�sn
,s,n

+ �s�,s+1C−s−1
m �s13,s13� ,s24,s24�

�sn
,−s−1,n

+ �s�,s−1Cs
m�s13,s13� ,s24,s24�

�sn
,s,n � , �E1�

����Sn,���� = �m�,m+��As
�m�s�,s�s13,s13� ,s24,s24�

�sn
,s,n

− �s�,s+1D−s−1
�,m �s13,s13� ,s24,s24�

�sn
,−s−1,n

+ �s�,s−1Ds
�,m�s13,s13� ,s24,s24�

�sn
,s,n � , �E2�

Cs
m = �s2 − m2, �E3�

Ds
�,m = ���s − �m��s − �m − 1� , �E4�

�s13,s13� ,s24,s24�
�sn
,s,n

= �s24� ,s24
�n

−�s1,s3

s24,s,n�s13,s13� �

+ �s13� ,s13
�n

+�s2,s4

s13,s,n�s24,s24� � , �E5�

�s13,s13� ,s24,s24�
�sn
,s,n

= �s24� ,s24
�n

−�s1,s3

s24,s,n�s13,s13� �

+ �s13� ,s13
�n

+�s2,s4

s13,s,n�s24,s24� � , �E6�

�s1,s3

s24,s,n�s13,s13� � =
1

4
�1 + �s,s13,s24

��s13� ,s13
− �2 sin��2n − 1��/4�

��Fs1,s3,s
s13,s24�s13� ,s13−1 + Fs1,s3,s

s13+1,s24�s13� ,s13+1� , �E7�

�s1,s3

s24,s,n�s13,s13� � = −
�− 1�n

4
�s,s13,s24

�s13� ,s13

+ �2 sin��2n − 1��/4��Gs1,s3,s
s13,s24�s13� ,s13−1

+ Gs1,s3,−s
s13+1,s24�s13� ,s13+1� , �E8�

Fs1,s3,s
s13,s24 =

�s13,s1,s3
As+s13

s24 As24

s−s13

4s�s + 1�
, �E9�

Gs1,s3,s
s13,s24 =

�s13,s1,s3
As+s13

s24 As+s13−1
s24

4s�4s2 − 1
, �E10�

�z,x,y =
Ax+z

y Ay
x−z

�z2�4z2 − 1�
, �E11�

�z,x,y =
x�x + 1� − y�y + 1�

z�z + 1�
, �E12�

�n
� =

1

2
�1 � �− 1�n� , �E13�

where As
m is given by Eq. �51�. The prefactors m, As

�m, Cs
m,

C−s−1
m , Ds

�,m, and D−s−1
�,m are consequences of the Wigner–

Eckart theorem for a vector operator.33 The challenge was to
obtain the coefficients �s13,s13� ,s24,s24�

�sn
,s,n and �s13,s13� ,s24,s24�
�sn
,s,n . Their

hierarchical structure based on the unequal-spin dimer sug-
gests that analogous coefficients with n�4 may be
obtainable.5 Details will be presented elsewhere.51

APPENDIX F: FIRST-ORDER EIGENSTATE ENERGY
CONSTANTS

The constants appearing in the first-order eigenstate ener-
gies �57� are

c�̄
� =

1

4
�1 � �s,s13,s24

2 − �s,s13,s24

2 − �s+1,s13,s24

2 � , �F1�

a�̄
� = c�̄

+ � 2� �
�=�1

��Fs1,s1,s
s13+��+1�/2,s24�2

− �
��=�1

�Gs1,s1,���s+��1+���/2
s13+�1+��/2,s24 �2
 + �s13 ↔ s24�� ,

�F2�

b�̄
� =

1

8 �
��=�1

�2s + 1 + ���2��s+�1+���/2,s13,s24

2

� 8 �
�=�1

��Gs1,s1,���s+��1+���/2
s13+�1+��/2,s24 �2 + �s13 ↔ s24��� ,

�F3�

where the Fs1,s3,s
s13,s24, Gs1,s3,s

s13,s24, �z,x,y, and �z,x,y, are given by Eqs.
�E9�–�E12�, respectively.

In order to calculate the matrix elements ��� �Hb,1
g ��� and

��� �Ht,1
g ���, we first write them as

����Hb,1
g ��� = −

Jb,1
g

4 �
n=1

4

�
��

����Sn · Sn+1 + Sn+1 · Sn����

�����Sn · Sn+1 + Sn+1 · Sn��� , �F4�
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����Ht,1
g ��� = −

Jt,1
g

4 �
n=1,3

�
n�=2,4

�
��

����Sn · Sn+1 + Sn+1 · Sn����

�����Sn� · Sn�+1 + Sn�+1 · Sn���� , �F5�

so that we need to calculate the intermediate matrix elements
��� �Sn ·Sn+1+Sn+1 ·Sn ���. We note that for any n, Sn ·Sn+1
commutes with the Hamiltonian consisting of the Heisen-
berg, biquadratic, and three-center quartic terms and, thus,
should preserve the quantum number s. It is also easy to see
that it should preserve the quantum number m. We have ex-
plicitly checked that our single-ion matrix element forms
yield these results.

We then performed two additional checks of our matrix
element forms. First, we evaluated

����S1 · S3��� = ��,���s�s + 1�� 1

16
�1 + �s,s13,s24

�2 − �Fs1,s1,s
s13,s24�2

− �Fs1,s1,s
s13+1,s24�2
 + s�2s − 1�� 1

16
�s,s13,s24

2

− �Gs1,s1,−s
s13,s24 �2 − �Gs1,s1,−s

s13+1,s24�2
 + �s + 1��2s + 3�

�� 1

16
�s+1,s13,s24

2 − �Gs1,s1,s+1
s13,s24 �2

− �Gs1,s1,s+1
s13+1,s24�2
�

= �1

2
s13�s13 + 1� − s1�s1 + 1�
��,��, �F6�

as required, where ��,�� is defined in Eq. �54�. Similarly,
��� �S2 ·S4 ��� is found from the above by setting s13↔s24, as
required. Then, we found

�
n=1

4

����Sn · Sn+1��� =
g0��̄�

4
��,��, �F7�

where

g0��̄� = s�s + 1��1 − �s,s13,s24

2 � − s�2s − 1��s,s13,s24

2

− �s + 1��2s + 3��s+1,s13,s24

2

= 2�s�s + 1� − s13�s13 + 1� − s24�s24 + 1�� , �F8�

as required. We may then write

����Sn · Sn+1 + Sn+1 · Sn��� = �s,s��m,m�Ms13,s13�
s24,s24� ��̄,n� ,

�F9�

where

M
s13,s13�
s24,s24� ��̄,n� = �s13� ,s13

�s24� ,s24

g0��̄�
8

+ �− 1�n+1

� �
�,��=�1

�s24� ,s24+��s13� ,s13+��h�,����̄�

− �2 sin��2n − 1�
�

4



� �
�=�1

�s13� ,s13
�s24� ,s24+�

g���̄�
4

− �2 sin��2n + 1�
�

4



� �
�=�1

�s13� ,s13+��s24� ,s24

g̃���̄�
4

, �F10�

with

g� = �
�1=�1

�s�s + 1��1 + �s,s13,s24+��1+�1�/2�Fs1,s1,s
s24+�1+��/2,s13

+
1

2
�2s + 1 + 2�1��2s + 1 + �1�

� �
�2=�1

�s+��1+1�/2,s13,s24+��+�2�/2Gs1,s1,�1�2s+�2�1+�1�/2
s24+�1+��/2,s13 
 ,

�F11�

h�,� = s�s + 1�Fs1,s1,s
s13+��+1�/2,s24Fs1,s1,s

s24+�1+��/2,s13+�

+
1

2 �
�1=�1

��2s + 1 + �1��2s + 1 + 2�1�

�Gs1,s1,�1�s+��1+�1�/2
s13+�1+��/2,s24 Gs1,s1,−�1�s−��1+�1�/2

s24+�1+��/2,s13+� � + �s13 ↔ s24� ,

�F12�

h+,− = �
�=�1

�s�s + 1�Fs1,s1,s
s13+1,s24−�1−��/2Fs1,s1,s

s24,s13+�1+��/2

+
1

2 �
�1=�1

�2s + �1 + 1��2s + 2�1 + 1�

�Gs1,s1,��1s+��1+�1�/2
s13+1,s24−�1−��/2 Gs1,s1,��1s+��1+�1�/2

s24,s13+�1+��/2 
 , �F13�

where g̃���̄� and h−,+��̄�= h̃+,−��̄� are respectively obtained
from g���̄� and h+,−��̄� by setting s13↔s24.

Letting x=s13 and y=s24, these expressions may be sim-
plified to yield

h�,��s,x,y� = − �s,0�x,y
�2x + 1 + ��

2
�x+�1+��/2,s1,s1

2

���2x + 2 + ���2x + �� − �1 − �s,0�
�x − y�2

s�s + 1�

��x+�1+��/2,s1,s1
�y+�1+��/2,s1,s1
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���x + y + 1 + ��2 − s2

���x + y + 1 + ��2 − �s + 1�2, �F14�

h+,−�s,x,y� =
�x + y + 1�2

s�s + 1�
�x,s1,s1

�y+1,s1,s1

���s + 1�2 − �x − y − 1�2�s2 − �x − y − 1�2,

�F15�

g��s,x,y� = �x+�1+��/2,s1,s1
��x + �1 + ��/2�2 − �y − s�2

���y + s + 1�2 − �x + �1 + ��/2�2. �F16�

The diagonal matrix elements of Hb,1
g and Ht,1

g are then
easily found to be

���Hb,1
g ��� = − Jb,1

g B�̄, �F17�

���Ht,1
g ��� = − Jt,1

g T�̄, �F18�

where

B�̄ = �
�=�1

�h�,�
2 ��̄� +

1

16
�g�

2��̄� + g̃�
2��̄��	 + h+,−

2 ��̄� + h̃+,−
2 ��̄�

+
1

64
g0

2��̄� , �F19�

T�̄ =
g0

2��̄�
64

− h+,−
2 ��̄� − h̃+,−

2 ��̄� − �
�=�1

h�,�
2 ��̄� , �F20�

where we made use of the fact that

�
n=2,4

sin��2n � 1��/4� = �
n=1,3

sin��2n � 1��/4� = 0,

�F21�

so that there are no contributions from g� and g̃� in Eq.
�F20�.

For s1=1 /2, the matrix ��� �Hb,1
g +Ht,1

g ��� is diagonal, so
these interactions can be treated exactly, and are listed in
Table IV. The analogous list of first-order parameters for s1
=1 is given in Table V. For s1�1, since these quartic inter-
actions preserve s to the extent that the single-ion and ex-
change anisotropy interactions can be neglected or treated in
first order only, the resulting matrix is block diagonal, as
noted by Kostyuchenko.50 In Table X, we present the exact
eigenstates for s1=1 of the Hamiltonian H0

g,r+Hb
g+Ht

g for
the six symmetries under consideration. Inclusion of the an-
isotropy interactions to first order can be made by using
Table V.

In Tables VI and VII and Tables VIII and IX, we listed
analytic formulas for the first-order anisotropy coefficients
a�̄

�, b�̄
�, and c�̄

� for the lowest four eigenstate manifolds of
FM and AFM tetramers, respectively. In both cases, the
manifolds are restricted by 0�s13, s24�2s1 and �s13−s24�
�s�s13+s24. In addition, the coefficients are symmetric un-
der s13↔s24, as illustrated for s1=1 /2,1 in Tables IV and V.
These tables provide the complete first-order set of aniso-

tropy parameters for s1�3 /2. Of the 54 distinct s1=2 states,
these formulas provide the anisotropy parameters for all but
the nine s=4 states. General formulas for the anisotropy pa-
rameters and B�̄ and T�̄ are given by Eqs. �F1�–�F3�, �F19�,
and �F20�.

For type-I and II tetramers, the sth AFM level-crossing
induction in the first-order approximation may be written as


Bs1,s
g,lc�1���� = − J̃gs −  �J̃g� − J̃g�2ss1

2Jt,2
g +  �J̃g − J̃g����J̃g − J̃g�

+ 2s1�s1 + 1�Jb,2
g �E� s + 1

2
	 − Jb,2

g �E� s + 1

2
	
3

− Jt,2
g E� s

2
	�sE� s + 1

2
	 − 2s1�s1 + 1�
�

−
Jz

g

2
�a2

+ + 2b+ + a1
+ cos2 ��

+
J1,z

g

2
�c2

− +
1

2
�b+ + b−� + c1

− cos2 �

+

J2,z
g

4
�a2

− + b− + a1
− cos2 �� − Jb,1

g d − Jt,1
g e , �F22�

where  �s� is the standard Heaviside step function, E�x� is
the largest integer in x, and the level-crossing parameters aj

�,
b�, and cj

− for j=1, 2 and d and e are functions of s, s1, and
the tetramer type. For type II, the functions are different for
even and odd s.

The AFM level-crossing parameters are defined according
to

a1
� = s�2s − 1�as,s13,s24

s1,� − �s − 1��2s − 3�as−1,s13� ,s24�
s1,�

,

�F23�

a2
� = sas,s13,s24

s1,� − �s − 1�as−1,s13� ,s24�
s1,�

, �F24�

b� = bs,s13,s24

s1,� − bs−1,s13� ,s24�
s1,�

, �F25�

c1
− = s�2s − 1�cs,s13,s24

s1,− − �s − 1��2s − 3�cs−1,s13� ,s24�
s1,−

,

�F26�

c2
− = scs,s13,s24

s1,− − �s − 1�cs−1,s13� ,s24�
s1,−

, �F27�

d = B�̄ − B�̄�, �F28�

e = T�̄ − T�̄�, �F29�

where

�̄� = �s − 1,s13� ,s24� 
 �F30�

and the s13� and s24� values depend on the tetramer type. In
Appendixes G and H, we evaluate aj

�, b�, cj
−, d, and e for

type-I and type-II AFM tetramers.
For s1=1 /2, type-I and II first-order level-crossing induc-

tions 
B1/2,s
g,lc�1���� are given in the text. In that simplest ex-
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ample, there are no effects of single-ion anisotropy. Hence,
to illustrate the full dependencies on all of the microscopic
parameters under study, we list the s1=1 first-order level-
crossing inductions. For type I, we have


B1,1
g,lc�1���� = − J̃g +

1

12
�35Jb,1

g + 13Jt,1
g � − 2Jt,2

g

− Jz
g�7

6
−

7

10
cos2 �	

+
7

10
Jeff

g �1 − 3 cos2 �� , �F31�


B1,2
g,lc�1���� = − 2J̃g + 2Jb,1

g + 4Jt,1
g − 4Jt,2

g

+ Jz
g�31

42
−

19

70
cos2 �	

−
19

70
Jeff

g �1 − 3 cos2 �� , �F32�


B1,3
g,lc�1���� = − 3J̃g +

1

4
�7Jb,1

g − 9Jt,1
g � − 6Jt,2

g

+ Jz
g�181

210
−

13

14
cos2 �	

−
13

14
Jeff

g �1 − 3 cos2 �� , �F33�


B1,4
g,lc�1���� = − 4J̃g − 4Jt,1

g − 8Jt,2
g + Jz

g�83

70
−

3

2
cos2 �	

−
3

2
Jeff

g �1 − 3 cos2 �� . �F34�

The type-II first-order level-crossing inductions for s1=1 are


B1,1
g,lc�1���� = − J̃g� −

1

3
�11Jb,1

g + 9Jt,1
g � + 3Jb,2

g

−
Jz

g

6
�5 − 3 cos2 �� +

J2,z
g

6
�1 + 3 cos2 �� ,

�F35�


B1,2
g,lc�1���� = − J̃g − J̃g� +

1

12
�15Jb,1

g + 23Jt,1
g � + 3Jb,2

g + 2Jt,2
g

+
Jz

g

2
�5 + cos2 �� +

J1,z
g

2
�1 + cos2 ��

+
J2,z

g

6
�1 + 3 cos2 �� , �F36�


B1,3
g,lc�1���� = − J̃g − 2J̃g� +

1

36
�107Jb,1

g + 179Jt,1
g � − 2Jt,2

g

+ Jz
g�43

30
−

3

2
cos2 �	 +

J1,z
g

6
�1 + 5 cos2 ��

+
J2,z

g

2
�1 + cos2 �� , �F37�


B1,4
g,lc�1���� = − 2J̃g − 2J̃g� +

1

9
�7Jb,1

g − 29Jt,1� − 8Jt,2
g

+ Jz
g�83

70
−

3

2
cos2 �	 +

J1,z
g

3
�1 + 5 cos2 ��

+
J2,z

g

2
�1 + cos2 �� . �F38�

APPENDIX G: TYPE-I FIRST-ORDER
ANTIFERROMAGNETIC LEVEL-CROSSING

CONSTANTS

The type-I constants are relevant for both J̃g�− J̃g�0 AFM
level-crossing inductions and for some low energy FM mani-

fold states �with J̃g�� J̃g�0�. We let as,s13,s24

s1,� �a�̄
�. For gen-

eral s and s1, we have

as,2s1,2s1

s1,� = cs,2s1,2s1

s1,− �1 �
1

4s1 − 1
	 , �G1�

bs,2s1,2s1

s1,� =
1

2�2s + 3��2s − 1��s�s + 1� + �2s�s + 1� − 1�

��8s1�2s1 + 1� − s�s + 1��

�
1

4s1 − 1
�2�16s1

2 + s�s + 1���s�s + 1� − 1�

− 8s1�2s�s + 1� − 1�

 , �G2�

cs,2s1,2s1

s1,− =
3�s�s + 1� − 1� − 8s1�2s1 + 1�

2�2s − 1��2s + 3�
, �G3�

Bs,2s1,2s1

s1 =
1

16
�s�s + 1� − 4s1�2s1 + 1��2

+
s�s + 1��4s1 − s��s + 4s1 + 1�

8�4s1 − 1�
+

s1
2�4s1 + 1�
�4s1 − 1�

�s,0,

�G4�

Ts,2s1,2s1

s1 =
1

16
�s�s + 1� − 4s1�2s1 + 1��2 −

s1
2�4s1 + 1�
�4s1 − 1�

�s,0.

�G5�

From these expressions, we may evaluate the type-I first-
order level-crossing inductions for AFM tetramers. From Eq.
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�60� and the definitions of the level-crossing constants in
Eqs. �F23�–�F30�, we rewrite them to explicitly indicate the
s1, s, and type dependencies, and for type I, it is easy to show
that

aI,j
s1,��s� = cI,j

s1,−�s��1 �
1

4s1 − 1
	 , �G6�

bI
s1,��s� = −

2s�8s1�2s1 + 1� + 4s4 − 10s2 + 3�
�4s2 − 1��4s2 − 9� �1 �

1

4s1 − 1
	 ,

�G7�

cI,1
s1,−�s� =

3�4s3 + 5s2 − 3s − 3 − 8s1�2s1 + 1��
2�2s + 1��2s + 3�

, �G8�

cI,2
s1,−�s� =

3�4s4 − 9s2 − s + 3� + �4s2 − 4s + 3�8s1�2s1 + 1�
2�4s2 − 1��4s2 − 9�

,

�G9�

dI
s1�s� =

s�s2�4s1 − 3� + 8s1�s1 + 1 − 4s1
2��

4�4s1 − 1�
−

s1
2�4s1 + 1�
�4s1 − 1�

�s,1,

�G10�

eI
s1�s� =

s

4
�s2 − 4s1�2s1 + 1�� +

s1
2�4s1 + 1�
�4s1 − 1�

�s,1, �G11�

for j=1 and 2. For s1=1 /2, it is easy to see that aI,j
1/2,+�s�

=bI
1/2,+�s�=0 for s=1 and 2, as expected.

Letting aI,j
s1,��s�=aj

�, bI
s1,��s�=b�, and cI,j

s1,−�s�=cj
−, it is

easy to show that for type-I tetramers,

c2
− +

1

2
�b+ + b−� = −

1

3
c1

−, �G12�

a2
− + b− = −

1

3
a1

− = −
4s1

3�4s1 − 1�
c1

−. �G13�

This implies that for type I, the axial NN and NNN aniso-
tropic exchange interactions may be combined to yield an
effective axial anisotropic exchange interaction given by Eq.
�64�.

For the single-ion contributions to the level-crossing in-
ductions, no such simple relation can be found. We note that

a2
+ + b+ = −

1

3
a1

+, �G14�

but the overall quantity a2
++2b++a1

+ cos2 � in Eq. �F22� con-
tains the extra quantity b+, which depends on s and s1.

APPENDIX H: TYPE-II FIRST-ORDER
ANTIFERROMAGNETIC LEVEL-CROSSING

CONSTANTS

For type-II AFM tetramers with even s, the relevant pa-
rameters are

as,s/2,s/2
s1,� =

1

2�2s − 1��s − 1 �
�16s1�s1 + 1� − s2 − 2s + 6�

2�s + 3� 	 , �H1�

bs,s/2,s/2
s1,� =

1

2�2s − 1��s2 �
�16s1�s1 + 1��s2 + 2s − 1� − s�s3 + 4s2 + s − 4��

s + 3
	 , �H2�

cs,s/2,s/2
− =

s − 1

2�2s − 1�
, �H3�

Bs,s/2,s/2
s1 =

s4

64
+

s�s + 1��16s1�s1 + 1� − s�s + 4��
16�s + 3�

+ �1 − �s,0�
�s + 1��16s1�s1 + 1� − s2 + 4�

128s�s + 3�
�s + 2��16s1�s1 + 1� − s�s + 4��

+ �s,0
4s1

2�s1 + 1�2

3
, �H4�

Ts,s/2,s/2
s1 =

s4

64
− �s,0

4s1
2�s1 + 1�2

3
− �1 − �s,0�

�s + 1��16s1�s1 + 1� − s2 + 4�
128s�s + 3�

�s + 2��16s1�s1 + 1� − s�s + 4�� . �H5�

For odd s, the relevant parameters are

as,�s+1�/2,�s−1�/2
s1,� =

1

2s�2s − 1��s2 − s + 1 �
�16s1�s1 + 1��s2 + 3s − 1� − s4 − 5s3 + 11s − 11�

2�s + 2��s + 4� 	 , �H6�

bs,�s+1�/2,�s−1�/2
s1,� =

1

2�2s − 1��s2 − 1 �
�16s1�s1 + 1��s3 + 5s2 + 4s − 3� − �s + 1��s4 + 6s3 + 7s2 − 3s + 1��

�s + 2��s + 4� 	 , �H7�
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cs,�s+1�/2,�s−1�/2
− =

�s + 1��s − 1�2

2s2�2s − 1�
, �H8�

Bs,�s+1�/2,�s−1�/2
s1 =

�s2 − 1�2

64
+

�s + 1�2

32�s + 2�
�16s1�s1 + 1� − �s + 3��s − 1�� + �16s1�s1 + 1� − �s + 3��s − 1��2 �s + 1�4

256s2�s + 2�2

+ �16s1�s1 + 1� − �s + 3��s − 1���16s1�s1 + 1� − �s + 5��s + 1��
�2s + 3��s2 − 2s − 1�2

256s3�s + 1��s + 4��2s + 1�2 , �H9�

Ts,�s+1�/2,�s−1�/2
s1 =

�s2 − 1�2

64
−

�s + 1�4

256s2�s + 2�2 �16s1�s1 + 1� − �s + 3��s − 1��2 − �16s1�s1 + 1� − �s + 3��s − 1��

��16s1�s1 + 1� − �s + 5��s + 1��
�2s + 3��s2 − 2s − 1�2

256s3�s + 1��s + 4��2s + 1�2 . �H10�

From these expressions, we may obtain the type-II AFM level-crossing induction parameters by using Eqs. �61�, �62�, and
�F23�–�F30�. For even s, we find

aIIe,1
s1,��s� =

2s − 3

2
�

48s1�s1 + 1� − 2s3 − 5s2 + 6s + 18

4�s + 1��s + 3�
, �H11�

aIIe,2
s1,��s� =

1

2�2s − 1��2s − 3��2s2 − 6s + 3 �
16s1�s1 + 1��2s2 − 4s + 3� + 2s4 + 2s3 − 9s2 − 18s + 18

2�s + 1��s + 3� 
 , �H12�

bIIe
s1,��s� =

s

�2s − 1��2s − 3��s − 1 �
16s1�s1 + 1��s − 2� − 4s4 − 7s3 + 20s2 + 14s − 18

2�s + 1��s + 3� 
 , �H13�

cIIe,1
− �s� =

s�2s − 3�
2�s − 1�

, �H14�

cIIe,2
− �s� =

s�2s2 − 4s + 1�
2�s − 1��2s − 1��2s − 3�

, �H15�

dIIe
s1 �s� = Bs,s/2,s/2

s1 − Bs−1,s/2,�s−2�/s
s1 , �H16�

eIIe
s1 �s� = Ts,s/2,s/2

s1 − Ts−1,s/2,�s−2�/s
s1 . �H17�

Combining aIIe,2
s1,− �s� and bIIe

s1,−�s�, we find

aIIe,2
s1,− + bIIe

s1,− =
1

2
−

16s1�s1 + 1� − �2s3 + 7s2 + 2s − 6�
4�s + 1��s + 3�

. �H18�

We note that this expression substantially differs from that for aIIe,1
s1,− �s�, except for s1=1 /2 and s=2. Similarly, it is elementary

to combine cIIe,2
− �s� and �bIIe

s1,+�s�+bIIe
s1,−�s�� /2. We find

cIIe,2
− �s� +

1

2
�bIIe

s1,+�s� + bIIe
s1,−�s�� =

s

2�s − 1�
. �H19�

This simple expression differs from that for cIIe,1
− �s� by a factor 2s−3. However, at s=2, the only even s value for s1=1 /2, they

are equivalent. In addition, as for type I, there is no simple relation between the single-ion parameters aIIe,2
s1,+ �s�+2bIIe

s1,+�s� and
aIIe,1

s1,+ �s�.
For odd s, the type-II level-crossing induction parameters are

aIIo,1
s1,��s� =

2s − 1

2
�

48s1�s1 + 1� − 2s3 − 11s2 − 10s + 17

4�s + 2��s + 4�
, �H20�

aIIo,2
s1,��s� =

1

2�2s − 1��2s − 3��2s2 − 2s − 1 �
16s1�s1 + 1��2s2 + 1� + 2s4 + 10s3 + 9s2 − 22s − 5

2�s + 2��s + 4� 
 , �H21�
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bIIo
s1,��s� =

1

�2s − 1��2s − 3���s − 1��s − 2� �
16s1�s1 + 1��s2 − 4s + 1� − 4s5 − 19s4 + 54s2 − 2s − 5

2�s + 2��s + 4� 
 , �H22�

cIIo,1
− �s� =

�s − 1��2s − 1�
2s

, �H23�

cIIo,2
− �s� =

�s − 1��2s2 − 4s + 3�
2s�2s − 1��2s − 3�

, �H24�

dIIo
s1 �s� = Bs,�s+1�/2,�s−1�/2

s1 − Bs−1,�s−1�/2,�s−1�/2
s1 , �H25�

eIIo
s1 �s� = Ts,�s+1�/2,�s−1�/2

s1 − Ts−1,�s−1�/2,�s−1�/2
s1 , �H26�

where, for s=1, the last two equations reduce to

dIIo
s1 �1� =

s1

6
�4s1

3 + 8s1
2 + 7s1 + 3� , �H27�

eIIo
s1 �1� = −

s1

6
�4s1

3 + 8s1
2 + 3s1 − 1� . �H28�

We note that aIIe,j
1/2,+�2�=aIIo,j

1/2,+�1�=bIIe
1/2,+�2�=bIIo

1/2,+�1�=0 for
j=1 and 2, as expected. However, by combining aIIo,2

s1,− �s� and
bIIo

s1,−�s�, we have

aIIo,2
s1,− + bIIo

s1,− =
1

2
−

16s1�s1 + 1� − �2s3 + 13s2 + 22s + 5�
4�s + 2��s + 4�

,

�H29�

which substantially differs from the version with s1=1 /2.
In addition, it is elementary to combine cIIo,2

− �s�+ �bIIo
s1,+�s�

+bIIo
s1,−�s�� /2. We find

cIIo,2
− �s� +

1

2
�bIIo

s1,+�s� + bIIo
s1,−�s�� =

�s − 1�
2s

, �H30�

which differs from cIIo,1
− �s� by a factor 2s−1. At s=1, the

only relevant odd s value for s1=1 /2, these are equivalent. In
addition, as for type I and the even crossings of type II, there
is no simple relation between the single-ion parameters
aIIo,2

s1,+ �s�+2bIIo
s1,+�s� and aIIo,1

s1,+ �s�.

APPENDIX I: HARTREE INELASTIC NEUTRON
SCATTERING FUNCTIONS

The functions L�,���q� and M�,���q� in the self-consistent
Hartree INS Sg

�1��q ,�� in the induction representation are
given by

L�,���q� = �m�,m�s24� ,s24�m2�s�,s��s13� ,s13
f �̄,0�q�

+ �
��=�1

�s13� ,s13+��f �̄,1
�� �q�	

+ �
��=�1

�s�,s+���C−��s−���+1�/2
m �2��s13� ,s13

f �̄,2
�� �q�

+ �
��=�1

�s13� ,s13+��f �̄,3
��,���q�	
 + � s13 ↔ s24

s13� ↔ s24�

qy → − qy
� ,

�I1�

M�,���q� = �
�=�1

�m�,m+��s24� ,s24��As
�m�2�s�,s��s13� ,s13

f �̄,0�q�

+ �
��=�1

�s13� ,s13+��f �̄,1
�� �q�	

+ �
��=�1

�s�,s+���D−��s−���+1�/2
�,m �2��s13� ,s13

f �̄,2
�� �q�

+ �
��=�1

�s13� ,s13+��f �̄,3
��,���q�	
 + � s13 ↔ s24

s13� ↔ s24�

qy → − qy
� ,

�I2�

f �̄,0�q� =
1

8
�f+�q� + �s,s13,s24

2 f−�q� − 2�s,s13,s24
sin�qxa�sin�qya�� ,

�I3�

f �̄,1
�� �q� = 2�1 − cos�a�qx + qy��
�Fs1,s1,s

s13+���+1�/2,s24�2, �I4�

f �̄,2
�� �q� =

1

8
f−�q��s+���+1�/2,s13,s24

2 , �I5�

f �̄,3
��,���q� = 2�1 − cos�a�qx + qy��
�Gs1,s1,����s+�����+1�/2

s13+���+1�/2,s24 �2,

�I6�

f��q� = 1 + cos�qxa�cos�qya� � cos�qzc��cos�qxa�

+ cos�qya�� , �I7�

where As
m, Cs

m, Ds
�̃,m, Fs1,s3,s

s13,s24, Gs1,s3,s
s13,s24, �z,x,y, and �z,x,y are

given by Eqs. �51�, �E3�, �E4�, and �E9�–�E12�, respectively.
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