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We study quasiparticle and electron-hole pair excitations in the presence of spin polarization within the
framework of many-body perturbation theory. The influence of magnetic ordering on linear optical response is
examined in detail for collinear spins. Whereas Hedin’s expression for the exchange-correlation self-energy in
the GW approximation remains diagonal with respect to the one-particle spin quantum number, the Bethe-
Salpeter equation becomes more complex: The separation between triplet and singlet excitons no longer holds.
The submatrices of the two-particle Hamiltonian are coupled by the matrix elements of the bare Coulomb
potential which account for local-field effects. Therefore, the rank of the corresponding eigenvalue problem
doubles. Numerical results are computed from first principles for the antiferromagnetic insulator MnO starting
from electronic states obtained with nonlocal exchange-correlation potentials. The calculated electronic struc-
ture and optical absorption spectra including excitonic and local-field effects are compared with experimental
data. The dominance of interatomic transitions between Mn atoms in the interband region of the optical

absorption is revealed.

DOI: 10.1103/PhysRevB.77.184408

I. INTRODUCTION

Recent years have seen impressive methodological
progress in accurate numerical modeling of optical properties
from first principles using many-body perturbation theory
(MBPT).! It has become possible to compute one-particle but
also two-particle electronic excitations in an accurate manner
using Hedin’s GW approximation (GWA).>3 Besides the
Dyson equation also the Bethe-Salpeter equation (BSE) for
electron-hole pair excitations has been solved in the frame-
work of the same approximation in order to account for ex-
citonic and local-field contributions to the (singlet) polariza-
tion function.*"® However, the large numerical effort has
limited these parameter-free calculations to small systems,
such as bulk semiconductors with few atoms in the unit
cell®!! or simple semiconductor surfaces.'>!3 Recently, this
methodology has also been applied to molecular
structures.'*~'® In all these applications only spin-paired
electrons occur which occupy completely filled electron
shells in the ground state. Optical spectra of systems with
spin polarization or magnetic ordering have not been studied
in the context of MBPT until now.

However, spin-dependent phenomena become more and
more important also for nonmetallic materials. This holds for
transition-metal oxides'’!” (TMOs) with antiferromagnetic
ordering below the Néel temperature or transition-metal
nitrides’®?! which may be transferred into a ferromagnetic
ground state in thin strained layers. One driving force is the
development of spintronics,?” especially after the discovery
of ferromagnetic diluted magnetic semiconductors?®** in
which small amounts of transition metals are incorporated
into host semiconductors such as GaAs, GaN, or ZnO.
Quasi-one-dimensional systems as metal chains on semicon-
ductor surfaces may show novel spin-dependent phenomena
such as a possible spin-charge separation in the electronic
excitations.>>»?® Exciton formation and optical excitations in
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polymer chains of m-conjugated compounds are also found
to be spin dependent.”’ Moreover, electronic excitations in
molecules containing magnetic ions are influenced by spin
polarization.?

The antiferromagnetic TMOs, such as MnO and NiO, rep-
resent prototypical systems to investigate the influence of
spin polarization on many-body effects in optical spectra, in
particular the electron-hole interaction. These oxides have
small primitive unit cells containing only four atoms. They
are insulators with not too small gaps and hence not too
strong electronic screening of the electron-hole attraction.
The TMOs show an antiferromagnetic ordering of the
transition-metal spins due to their partially filled 3d shells.
Because of the high localization of the d states, strong Cou-
lomb correlation may occur in these systems. Consequently,
this class of materials represents typical Mott insulators.'!
Their treatment is accompanied by difficulties to deal cor-
rectly with the ground-state properties and the electronic
structure.?>3° Especially, conventional density functional
theory (DFT) with a local or semilocal description of the
exchange-correlation (XC) energy functional within the local
spin density approximation (LSDA) or generalized gradient
approximation (GGA) with spin polarization are known to be
inadequate to account for the electronic structure of materials
with localized d orbitals. Different ways have been suggested
to overcome the mentioned deficiencies of the (semi)local
approaches. One is to include a self-interaction correction
(SIC).3' In another approach, the so-called LDA (GGA)
+U method,'®3%32 an orbital-dependent correction is added
to the LDA (GGA) XC potential. Further, the spatial nonlo-
cality of exchange and correlation can be partially accounted
for by a hybrid functional approach.’® Meanwhile, one-
particle electronic excitations and band structures of MnO
and NiO have also been treated within the quasiparticle (QP)
approach using the GWA for the XC self-energy.'®?33 Re-
cently, a new approach to the electronic structure of strongly
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correlated materials has been developed, the dynamical
mean-field theory.’® Its self-consistent implementation has
been shown to be directly related to Hedin’s GW perturba-
tion theory.’’

In the present paper we investigate electron-hole pair ex-
citations with spin polarization within the framework of
MBPT. In Sec. II the theoretical framework is developed. We
study Hedin’s equations for systems with magnetic ordering
and derive the BSE for the polarization function in the case
of noncollinear spins. The BSE is solved in the limit of col-
linear spin polarization.

Numerical results for excitonic effects and optical absorp-
tion spectra are presented for the antiferromagnetic insulator
MnO. We consider the paradigmatic case of MnO, since the
Mn?* ion possesses a half-filled shell (34°) with maximum
total spin according to Hund’s rule and spin subbands which
are either completely filled or empty.

For the calculations we apply DFT3® within the GGA in
order to obtain the structurally relaxed ground-state configu-
ration with magnetic ordering. The Kohn-Sham* (KS) ei-
genvalues and eigenfunctions allow for a representation of
the one- and two-particle Green’s functions whose poles de-
fine the respective excitation energies. The resulting elec-
tronic band structure of MnO is discussed in Sec. III. DFT
with the nonlocal HSEO3 (Ref. 40) XC functional is utilized
to provide a better starting point for the calculation of the
electronic QP spectrum. The latter is obtained within the
GWA for the XC self-energy.*'*?> The large number of k
points required for the calculation of optical spectra necessi-
tates a computationally less expensive way to generate QP
energies. Therefore, we calculate the QP electronic structure
also in a simplified scheme based on GGA+U and the
scissors-operator approach,*> which, however, widely repro-
duces the results of the more sophisticated approach.

Finally, in Sec. IV we calculate optical spectra and exam-
ine excitonic as well as spin effects in these spectra. The
BSE, which becomes a matrix equation in spin space in the
presence of spin polarization, is solved, taking into account
the screened electron-hole attraction and the bare electron-
hole exchange term. The results are discussed and compared
with available experimental data.

II. THEORETICAL APPROACHES

A. Fundamental system of equations

In order to address the problem of solving the BSE for
magnetic materials we derive the basic equations of MBPT
with special attention to effects arising from the inclusion of
spin polarization. For systems with noncollinear spins the
many-body Hamiltonian can be divided into three contribu-
tions,

Besides the one-particle operator of the kinetic energy,
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with the creation operator zﬁ;’f(r) and the annihilation operator
i (r) for an electron with spin variable s at the point r in real
space, an external potential is considered which is generally
not diagonal with respect to the spin variables and contains a
magnetic field and the spin-orbit coupling term,

V=2 J dr Y1)V (1) g, (), (3)

VV(r) X p). @

Vss’(r) = V(r)éss' + UpOssr (B(l’) + 2

2emqc
Here, V(r) represents a scalar external potential, while o
denotes the vector of Pauli matrices. Magnetism is treated in
the nonrelativistic limit. More precisely, a Pauli term propor-
tional to the magnetic field B(r) is included, whereas addi-
tional contributions arising from the vector potential are ne-
glected. The limit of collinear spin polarization is obtained if
B(r) has a fixed direction which can be labeled z without
loss of generality. The electron-electron interaction

z}:%E J dr f dr’ g, (e )l (e = 1) () (),
(5)

with the Coulomb potential v(r—r')=e¢
scribed in the longitudinal approach, while current-induced
effects and spin-spin coupling are neglected.

Introducing the abbreviation 1=r;#; for spatial and time
coordinate, the time-ordered one-particle Green’s function of
the N-particle system is defined by

G<511 522) =

whereas T denotes the time-ordering symbol and |N) the
N-particle ground state. The Green’s function fulfills the
Dyson equation of motion
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with the Hartree potential Vy(r)=[dr’ v(r—r’)n(r’) which
is only determined by the electron density n(r). Therefore,
the Hartree potential is spin independent. In contrast to the

Hartree potential the XC self-energy 2, which obeys the
equation

(0)=-2 f d(34)v(1 -3)

§3854
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depends on the spin variables. The superscript 3* stands for

xL(,) !
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an infinitesimal shift of the time coordinate to keep the cor-
rect time ordering. The self-energy can be expressed by
means of the density-density correlation function

(L) =me (22]42) -6 e(2)] @

51 51
which contains the two-particle Green’s function

12
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and the product of two single-particle Green’s functions.
We consider a vanishingly small external perturbation
Ui,i‘ft(r), which also comprises a magnetic contribution,

51 52
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U_t:;it(r) = Vtat(r) 555’ T BTy - Btesr(r) . (1 1)
Applying the method of variational derivatives and assuming
that Uiejr(r) does not induce any phase transition with respect
to the initial Hamiltonian (1), we find Hedin’s equations for a
magnetic system which account for the noncollinear spin
structure. The self-energy in the Dyson equation (7) can be

expressed by means of

3(22)=-n3 [ acae(s) (2l

Y3Y4

Jw(r4),  (12)
with the dynamically screened Coulomb potential

W(12)_v(1—2)+2fd(34)v(1 3)P(] )W), (13)
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The screened potential is governed by the irreducible polar-
ization function

sl s2 2 f d(34)L0 s] K

$384

)
with the independent-particle polarizability
O ) Bt ) R
The vertex function I" is determined by a BSE of the form
2)=-001-2)8(1-3)8, .5,
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whose kernel

(2= ga(i2)/e6(l)

equates the functional derivative of the self-energy with re-
spect to the Green’s function. Inserting (16) into (14) yields a
BSE for the irreducible polarization function,
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This four-point quantity is related to the two-point polariza-
tion function by

11
P(Sl 51

P(22)=P(2N]2%). (19)

For reasons of clarity the spin variables are explicitly de-
noted wherever they appear in the formulas. As one can see,
the bare Coulomb potential and its screened counterpart are
the only quantities that do not explicitly depend on spin. The
consequences of this observation will be discussed in more
detail below.

B. Relation to optical response

Optical response properties as well as the dynamically
screened Coulomb potential W depend on the microscopic
dielectric function & or its inverse !, respectively. For the
screened potential the relation

W(12)=fd3 v(1-3)e71(23) (20)

holds. It has to be stressed that W and &' are spin-
independent quantities. Considering the two-point counter-
part of the density-density correlation function (9), which is
defined analogously to (19), the explicit expression

e!(12) = 5(1—2)+2fd3 v(1-3)L(}}) (@D

5783

for the inverse dielectric function is derived. At this point it
is important to note that the sum has to be taken over both
spin variables s, and s3, while the integral only runs over one
spatial and time coordinate. This equation is crucial for the
treatment of spin in the framework of MBPT. It shows that
the space- and time-dependent dielectric response is deter-
mined by the contributions from all electrons, no matter what
the values of their spin variables are. Inverting the last equa-
tion results in an expression for the microscopic dielectric
function,

e(12)=8(1-2) - Efd3u(1—3)P(W) (22)

§253

which is governed by the irreducible polarization function
(14) and, once again, contains a sum over all spin variables.

The transition from microscopic dielectric response to
macroscopic optics is performed by a spatial averaging pro-
cedure according to Adler*® and Wiser.** In the optical limit
of vanishing wave vector q— 0 the Fourier transform of the
macroscopic dielectric function for a translationally invariant
system can be obtained according to
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1
Eac(G, @) = lim (23)

q—0 8_1((1 + G,q + G,, (,()) G=G'=0
Henceforth, the wave vector q runs over the Brillouin zone
(BZ), while G and G’ denote elements of the reciprocal Bra-
vais lattice. The unit vector in the direction of light incidence
is labeled G=q/|q|. The off-diagonal elements G # G’ of the
inverse dielectric matrix describe local-field effects (LFEs)—
i.e., the differences between microscopic and macroscopic
electric fields in the system. The consequences of Eq. (23)
for the kernel in the BSE of the corresponding macroscopic
polarization function will be discussed below.

C. Random-phase approximation for collinear spins

The restriction to collinear spin polarization allows for
substantial simplifications of the formalism. This is demon-
strated here for the dielectric function in random-phase ap-
proximation (RPA). Within the scope of collinear magnetism
the one-particle wave functions, which are in general two-
component spinors, can be split into a spin and a spatial part
according to

(") = puls)(r),

whereas the latter depends parametrically on the spin quan-
tum number m= 1, |. The spinors 7,,(s) constitute the basis
in one-particle spin space. For reasons of conciseness the
band index and the k point are labeled by a single spatial
quantum number N. The spatial eigenfunctions ¢}'(r)
=(r|\m) as well as the corresponding eigenvalues &} are
calculated in a KS scheme,* thus solving the equation

2

— ﬁ—A + V’"(r) + VH(r) + XC(r)

2my (r)—s)\(p)\(r)

(24)

self-consistently with the density-dependent XC potential
V¥ The corresponding Green’s function of independent KS
particles in Bloch-Fourier representation becomes diagonal
in spin space with diagonal elements,

2 e (r)e ()

G"(rr',w
fiw— &'

which are determined by the contributions of spin-up and
spin-down electrons, respectively.

The frequency-dependent dielectric function in the optical
limit results from a Fourier transform of Eq. (22),

8((1’(0):1 ()| |2 E E <)\1m1|eqr|)\lm >

MY\ N AN

N A\
m ml ny

w) . (26)

Here, the crystal volume is labeled by (). In the case of the
RPA the polarization function P has to be approximated by
the independent-particle polarizability (15). Due to the spin
selection rule, only such optical transitions where the spin
quantum number in the valence and conduction band does
not change contribute to the absorption in collinear spin-

X{(\ymye'™ r|7\2”12>P(

my
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polarized systems. Other transitions are dipole forbidden. In
the limit of vanishing q the transition matrix elements be-
tween filled valence bands v and empty conduction bands ¢
can be evaluated by means of the velocity operator

M(ckmm - plokm)

m m ’

my €ck ~ €uk

(ckm|e' " [vkm) = (27)
whereas p denotes the momentum operator. By introducing a
broadening 7 to circumvent the singularities in the complex
plane one ends up with

1 e*h? (ckm|pJvkm) |?
e w)=1+— —
Q 8O’nO cvkm €k~ €k
1
X > (28)

B_tlack gy — Bh(w+i7y)

for the microscopic dielectric function in the Cartesian direc-
tion a. It has to be stressed that, in line with the one-particle
spin selection rule, this equation obviously does not contain
any contributions to optical absorption which arise from
spin-flip processes. This is reasonable as in the framework of
collinear spin polarization any mechanisms that could flip
spins are absent. Such mechanisms could be a coupling of
orbital motion with spin or the influence of noncollinear
magnetization. For the collinear spin-polarized case Eq. (28)
shows that one simply has to sum over the contributions
from spin-up and spin-down electrons which can be calcu-
lated independently.

D. Hedin’s GW approximation

As the computational costs for solving Hedin’s equations
self-consistently for any condensed-matter system are pro-
hibitively large, approximations are necessary. Within the
GW approach the vertex function (16) is approximated by
the contribution arising from the & function. For the self-
energy (12) this implies

3(, 2)=ihG(, 2 wr2). (29)

On this level of approximation the spin dependence of the
self-energy is completely ruled by the spin dependence of the
Green’s function. This is particularly convenient in the limit
of collinear spins where the Green’s function is diagonal in
spin space [see Eq. (25)] and the self-energy for spin-up and
spin-down electrons can be calculated independently. Never-
theless, it should be kept in mind that the screening in W has
to be evaluated in RPA by adding up the contributions from
all electrons.

Starting from the Dyson equation (7) one can derive a QP
equation®

2

P v v S ED I =EeD.  (30)
2m0

whose solutions are the one-particle wave functions |¢}") and
energy eigenvalues E)' of the QP excitations. Assuming that
|\') = [\m) holds,*! the QP eigenvalues can be determined
in first-order perturbation theory on top of the KS results (the
so-called GyW, approach) using
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E) = &) + Z)' Re(Am|2"(e)) = Vigc|Am), (31)
with the QP renormalization factor
azm -1
Zy = (1 - Re(\m| 92"e) |)\m>> . (32)
de m
S:S)\

E. Electron-hole excitations for collinear spins

Including electron-hole interaction in the calculation of
optical properties means going beyond the RPA, thus consid-
ering a nonvanishing kernel Z in the BSE (18). Following
the concept of iterating Hedin’s equations the self-energy
which enters the kernel (17) is approximated in the GW ap-
proximation [see Eq. (29)]. Subsequently, the functional de-
rivative is carried out, whereas the variation of W with re-
spect to G is neglected.” Hanke and Sham>® have
demonstrated that it is possible to derive a BSE for a gener-

alized polarization function P which directly yields &,,,, in
analogy to Eq. (22) and circumvents the inversion procedure
(23). In the kernel

;(] 2
=]
=58

) == 8(1-3)8,,, 02— 4)8,, W(1*2)

5384

+8(1-2)8, 83"~ 4)8, (1 - 3)

35

(33)

of the BSE for P the bare Coulomb potential & appears ad-
ditionally to the screened electron-hole attraction W.
Thereby, the overbar signifies that the exchange term v has to
be taken without its long-range Fourier component G=0.
The occurrence of the dynamically screened Coulomb poten-
tial in the kernel prohibits the formulation of a closed BSE’

for P depending on only one frequency w. Thus, the dynam-
ics of screening is neglected and only the static screening
W(r,r")8(t—t") is considered.

For semiconductors and insulators, whose bands are either
completely filled or empty, the BSE (18) with the kernel (33)
can be rewritten as an eigenvalue problem for an effective
two-particle Hamiltonian H,,,.,

ck vk | 'k’ vk’ 'k v'k’ ck vk
2 2 Hexc(mt, my | m! )AA( m! ) = EAAA( )

m. m, m, memy,
! ! !
c'v'k
m.m,

(34)

In this Hamiltonian the coupling between resonant and anti-
resonant contributions as well as interaction matrix elements
that do not conserve the particle numbers are usually ne-
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glected. The solution of the eigenvalue problem determines
the spectral representation of the four-point polarization
function,

ck vk 4 # ('K’ v'k’
AA(mumu)AA< m, m, )

ok oklo'K K Lom)
P I EDY ED
¢ Myl m, m A ﬁw—EA
The so-called excitonic or pair Hamiltonian
ck vk |c'k’ v'k’
I_Ie)cc(mC my | m! m) )
m .
=+ (Eckf - Evll())accravv/ a(k’ﬁmtméamvm’
Sy ' O W( cvk lc'v'k’ )
= Omm! Om ' W coKm 70 K mem,,
7 | A ! !
+ 5mfm05m;m;v( cokmm|c'v'kK'm.m)) (36)

comprises three contributions. First, the diagonal part given
by the differences of the QP eigenvalues in conduction and
valence bands according to Eq. (31) describes the excitation
of noninteracting quasielectrons and quasiholes. Second, the
Hamiltonian includes the matrix elements of the statically
screened Coulomb potential

W( cokmmy|c'v'k' m.m,)

=fdrf dr’ @ (r) @ (W) grp(e’) @™ (r'),
(37

which describe the attractive interaction between electrons
and holes. The third contribution to the excitonic Hamil-
tonian arises from the truncated bare Coulomb potential

o( cokmom|c'v'K'm.m])

=fdrf dr’ @ () @e(r)o(r —x") el s, (1)@ s (x),
(38)

which accounts for LFEs.

It is worthwhile to examine the spin structure of the re-
sulting two-particle Hamiltonian more detailed. If one writes
down H,,,. in two-particle spin space which is spanned by the
products of electron and hole one-particle spins and thereby
omits orbital dependencies, one finds

(EL-E)-w'l+5! 0 0 o't (me=Tm,=1)
0 (El-E)-w! 0 0 (me=1m,=1)
H,, = L_ gt 17 = =1) (39)
0 0 (E'-E)-w 0 (m.=1m,=1)
it 0 0 (EL—EY-wH gl [ (me= | m,=])
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In the non-spin-polarized case it is common practice to diag-
onalize this Hamiltonian in spin space by utilizing singlet
and triplet pair states instead of products of one-particle
spins as basis sets. Consequently, the singlet and the three
triplet contributions can be treated independently. Due to se-
lection rules, it turns out that only the singlet contribution is
relevant for the calculation of optical spectra. Thus, the rank
of the BSE Hamiltonian can be reduced by a factor of 4
and it is sufficient to solve the eigenvalue problem of H,,,
=(E.—E,)—W+20 in the singlet subspace.

If spin polarization is present, the two-particle problem
becomes more complex. In contrast to the non-spin-polarized
case the interaction matrix elements and QP eigenvalues de-
pend explicitly on the one-particle spin quantum numbers.
That is why it is futile to perform a basis change to singlet
and triplet states as the pair spin quantum number is no
longer well defined. However, Eq. (26) for the dielectric
function shows that, due to the optical selection rules, it suf-
fices to solve the eigenvalue problem in the subspace which
is determined by m.=m,. The corresponding submatrix of
the excitonic Hamiltonian (39), which is decoupled from the
rest of the matrix, is spanned by the single-particle transi-
tions with one and the same spin quantum number in the
valence and conduction band |[vkm)— |ckm); i.e., no spin
flips occur. Consequently, the rank of the excitonic eigen-
value problem for the calculation of the optical response can
be decreased by a factor of 2 in comparison to the eigenvalue
problem (34). Exploiting this observation we obtain for the
macroscopic dielectric function

242
€9 (0) =14 é - ﬁZE
€0y A

2 <Ckm|pa|vkm>*AA(ckvk) ?

m m m m
cvkm €ck ~ €k

1
XX
p==1 Er— Bh(w+ivy)
whereas the transition energies E, and the contributions
AA(Ck Uk) of a certain single-particle transition are deter-

m m
mined as solutions of the reduced eigenvalue problem,

ckvk|c'k’ v'Kk’ c'k'v'k") _ (ck vk)
E exc(m ml m m )AA( m m' )_EAAA m m/>

c'v'k'm'

(40)

(41)

in which only pair amplitudes A, diagonal in the spin quan-
tum number appear.

III. GEOMETRY AND ELECTRONIC STRUCTURE:
NUMERICAL APPROXIMATIONS AND RESULTS

A. Ground state

In order to compute total energies, magnetization and
electron densities we start with the spin-polarized DFT-GGA
implementation in the Vienna ab initio simulation package
(vASP).*> The pseudopotentials are generated by means of the
projector-augmented-wave (PAW) method*® that allows for

PHYSICAL REVIEW B 77, 184408 (2008)

the accurate treatment of the Mn 3d, Mn 4s, O 2s, and O 2p
valence electrons. In the region between the atomic cores the
wave functions are expanded in plane waves up to a cutoff
energy of 315 eV. The XC functional is parametrized as pro-
posed by Perdew and Wang.*’*® For intermediate spin polar-
izations we use the interpolation proposed by von Barth and
Hedin.*® For the ground-state calculations the BZ is sampled
with a mesh of 8 X 8X 8 Monkhorst-Pack k points® corre-
sponding to 60 k points in the irreducible wedge of the zone.

The minimization of total energy with respect to the
atomic geometry and the arrangement of the Mn spins leads
to a type-II antiferromagnetic (AFII) insulator that crystal-
lizes in a rhombohedrally distorted rocksalt structure with a
nominal lattice constant of 8.87 A for the conventional mag-
netic cell. We find B=146 GPa for the isothermal bulk
modulus and B'=4.0 for its pressure derivative. The rhom-
bohedral distortion takes the form of a compression along the
[111] direction with a distortion angle a=1.7° with respect to
the cubic unit cell. The local magnetic moment at the Mn
atoms amounts to uw=4.3up. These results are in good agree-
ment with neutron diffraction experiments®'>? below the
Néel temperature of Tn=118 K and other DFT-GGA
calculations.?*-3

B. Electronic band structure

The ground-state calculations yield a KS band structure
for antiferromagnetic MnO [see Fig. 1(a)] which exhibits the
most important features observed also in previous theoretical
studies.!” The uppermost valence bands are dominated by
fairly flat e, and 1,, bands derived from Mn 3d states. At
values of about 3-7 eV below the valence-band maximum
(VBM), which is located at the T point in the BZ, the O 2p
bands with a rather strong dispersion occur. The lowest con-
duction band is a dispersive band with mainly Mn 4s char-
acter around its minimum at I". The higher unoccupied bands
are dominated by empty Mn 3d levels. Characteristic direct
and indirect gap values as well as the band splitting A, be-
tween the occupied e, and t,, levels at I" are listed in Table 1.
They clearly indicate the typical underestimation of band
gaps by the eigenvalues of a DFT calculation using local or
semilocal XC functionals.*'*> The experimental gap mea-
sured by optical absorption®* and photoconductivity>>
amounts to 3.6-3.8 eV and 3.8—4.2 eV, respectively. Combi-
nation of x-ray photoemission (XPS) data and
bremsstrahlung-isochromat spectroscopy>® (BIS) leads to a
gap of about 3.9+ 0.4 eV. The measured distance A, be-
tween the valence-band e, and 1,, levels is about 1.9 eV
according to Ref. 56. Computations applying the nonlocal
PBEO XC functional®® give rise to the larger value of 4.02
eV for the fundamental gap. We have utilized the spatially
nonlocal HSE03 (Ref. 40) XC functional to obtain KS ener-
gies closer to the QP band structure [see Fig. 1(b)]. The
calculated band structure and density of states (DOS) are
similar to the PBEO results in Ref. 30.

Despite the gap openings due to the nonlocality of the XC
potential in PBEO and HSEO3, QP corrections are still miss-
ing. Recently, Faleev et al.'® presented a band structure for
MnO applying a new kind of self-consistent (SC) GW ap-
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FIG. 1. (Color online) Band structures for MnO based on the
GGA (a), HSEO3 (b), and GGA+U (c) approaches (black lines).
The corresponding QP energies in GyW,, are plotted as green dots
(a) and red dots (b). In (c) the blue dashed lines indicate the
scissors-shifted conduction bands. The VBM is set to zero in all
plots.

proximation based on the all-electron, full-potential linear
muffin-tin orbital method. Their results may be considered as
a benchmark. In principle, the QP equation (30) has to be
solved self-consistently, but this procedure is computation-
ally extremely demanding. Therefore, we adopt the prevail-
ing GyW, approximation—i.e., the application of one-shot
perturbation theory on top of a starting electronic structure
from a DFT calculation. This approach is obviously most
justified in the cases where the DFT starting point is close to
the final QP result. It has been shown®’ that DFT calculations
with HSEO3 potentials yield such good starting points which
can be successfully combined with a GyW,, calculation lead-
ing to gaps and shallow d-electron binding energies for semi-
conductors and insulators in good agreement with experi-
mental results. As can be seen from Fig. 1 and Table I the QP
corrections which are calculated within the PAW
framework>® still open the fundamental gaps substantially.
The G,W, calculations were performed using an 8 X 8 X8
k-point mesh including the I' point and 150 bands for an
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TABLE 1. Direct and indirect gaps (the corresponding high-
symmetry points in the BZ are indicated) and the e,~1,, splitting
A, of the valence bands at the I" point. All values in eV.

Method Indirect gap Direct gap A,
T—T Ir—r L—L
GGA 0.7 14 1.2 1.3
HSEO03 2.5 3.1 4.2 1.7
GGA+U 1.3 1.9 2.5 1.6
GGA+GyW, 1.6 2.1 32 1.5
HSEO03+G,W, 32 39 5.8 2.0
GGA+U+A 43 49 5.5 1.6

appropriate description of the screening function.

Examining the computed band structures in more detail
one can see that all performed calculations yield an indirect
insulator with a fundamental gap between the VBM at T and
the conduction-band minimum (CBM) at I'. As already men-
tioned, the GGA and GGA+G,W, with gaps of 0.7 eV and
1.6 eV, respectively, severely underestimate the experimental
values. One might argue that the underestimation of the gap
in the GGA could be corrected by a scissors shift in the
calculation of optical properties. But such an approach fails
due to another deficiency of the DFT-GGA which predicts
the lowest direct gap at L, whereas the HSEO3 and G,W,
calculations as well as results from the literature'*3? agree
about the position of the lowest direct gap at I". Hence, in the
case of MnO the GGA represents a bad starting point for the
calculation of optical properties, where the transitions near
the direct gap are important for the properties of the absorp-
tion onset.

The HSEO3 approach overcomes most of the above-
mentioned deficiencies [cf. Fig. 1(b) and Table I]. It yields
2.5 eV and 3.1 eV for the lowest indirect and direct gaps,
respectively. These values are already sufficiently close to
experimental results to justify the perturbational treatment of
the GWA which results in 3.2 eV and 3.9 eV for the indirect
and direct gaps in good agreement with the experimental
values. In Fig. 2 the DOS computed in the HSE03+GyW,,
approach is compared to results from XPS and BIS
measurements.’® The main features of the DOS—i.e., the
position of the Mn 3d bands and the gap—can be reproduced
in good agreement with the experimental data.

The drawback of this approach is that HSEO3 and
HSEO03+GyW, calculations are extremely time consuming
and cannot be carried out for the large number of k points
which is required for the computation of the excitonic matrix
(36). Therefore, we have to find a way to obtain a band
structure with less computational cost. We compute QP ei-
genvalues and wave functions in a simplified scheme, while
the more sophisticated HSE03+G,W, results serve as a
benchmark. In a first step we apply the GGA + U method?? in
the approach of Dudarev et al.>® where only the difference
between the on-site Coulomb interaction and the exchange
parameter, U—J, determines the band structure. A value U
—J=2.0 eV yields a good fit for the valence band positions
obtained in the HSE03+GyW, framework. Larger values of
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FIG. 2. (Color online) DOS and partial DOS (projected on 1,,
and e, levels) for MnO computed within HSE03+ G, W, (red line)
and GGA+U+A with U=2.0 eV and a scissors shift A=3.0 eV
(blue line) in comparison with the experimental XPS+BIS mea-
surements (upper panel) from Ref. 56. The calculated spectra are
broadened by convolution with a Gaussian with 0.6 eV full width at
half maximum. For the computed curves the VBM is set to zero
while the 7,, peak of the experiment is aligned with the 7,, peak in
the GGA+U+A DOS.

about 67 eV as predicted in the literature3?3%%0 shift down
the occupied Mn 3d bands too much. They do not open the
gap significantly, since the CBM at I" shows s-like character
and the VBM is no longer dominated by Mn 3d states for
larger values of U and, therefore, scarcely affected by the
additional potential.

Whereas the fit for the valence bands in GGA+ U is quite
good, the fundamental gap is still severely underestimated
[see Fig. 1(c) and Table I]. Approximate QP corrections can
be obtained by an additional scissors shift A to account for
the remaining gap underestimation. A value A=3.0 eV is
chosen such that the obtained DOS shows reasonable agree-
ment with the measured curve and the HSEO03 + G,W, result
(see Fig. 2). Especially the characteristic peaks which arise
from the #,, and e, states in the occupied and empty bands
can be well reproduced; only the width of the conduction
bands is slightly underestimated. The main deficiency of the
GGA+U+A approach is the lower dispersion of the first
conduction band in comparison to HSE03+G,W,, resulting
in larger indirect and direct gaps. However, this effect has
almost no influence on the DOS (cf. Fig. 2) and the joint
DOS, since both are comparably small in the respective en-
ergy region. Consequently, we conclude that the GGA+U
+A approach may be utilized as a starting point for the com-
putations of optical properties and excitonic effects despite a
slight shift of the absorption edge toward higher energies.

IV. DIELECTRIC FUNCTION AND EXCITONIC
EFFECTS

A. Computation of optical spectra

For the evaluation of optical spectra a mesh of 10X 10
X 10 Monkhorst-Pack k points is used to sample the BZ. The
k mesh is shifted by 0.2X0.3 X 0.5 fractions of the distance
between two adjacent k points, thus avoiding spurious ef-
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fects from high-symmetry points and taking into account
more symmetry-inequivalent k points. This procedure results
in a denser energy sampling of the optical spectra. In addi-
tion to the pair energies of noninteracting quasielectrons and
quasiholes the calculation of the excitonic Hamiltonian (36)
requires the computation of Coulomb matrix elements. The
dielectric function for the matrix elements of W in the
Hamiltonian is described using a model screening function,®!
which is fully determined by the electron density in the sys-
tem and the static electronic dielectric constant. The value
£,=495 for the latter has been taken from
measurements.5>%3 The number of pair states in the spin-
polarized excitonic Hamiltonian is determined by 2N.X N,
X Ny with N, the number of conduction bands, N, the num-
ber of valence bands, and Ny the number of k points. As
explained in more detail above, the factor of 2 is a conse-
quence of the inclusion of collinear magnetism. We restrict
the size of the matrix by means of an energy cutoff; i.e., we
include all electron-hole pairs with GGA+ U transition ener-
gies below this cutoff.

Optical spectra are obtained from the excitonic Hamil-
tonian in two different ways. In order to discuss oscillator
strengths and excitonic wave functions of interesting
electron-hole pairs, the eigenvalue problem is solved by a
diagonalization of the pair Hamiltonian. For the calculation
of optical spectra in an extended frequency range a huge
number of pair states, typically between 50 000 and 100 000,
is required. As it is not possible to diagonalize matrices of
this size due to computational costs, the time-development
scheme introduced by Schmidt er al.®* is applied. Due to its
quadratic scaling, this method reduces the computational ef-
fort significantly and yields the dielectric function directly
without explicitly evaluating the eigenvalues and eigenvec-
tors of the excitonic Hamiltonian.

B. Optical properties

The rhombohedral distortion of the rocksalt structure and
the magnetic ordering along the [111] direction in antiferro-
magnetic MnO give rise to a macroscopic anisotropy. Due to
this effect, deviations from cubic symmetry should occur.
However, they are extremely small and their study requires
an accuracy which is beyond that of the applied methods.
Therefore, the anisotropy is omitted and only the trace of the
dielectric tensor is studied. This is in agreement with the
experiments>*%>% in which no anisotropy has been resolved.

The average dielectric function in the independent-
quasiparticle approximation,” more precisely in the RPA,
but with the scissors shift already included, is plotted in Fig.
3. In the inset the imaginary part is divided into contributions
from different optical transitions. We have distinguished
three groups of initial valence bands according to the orbital
symmetry of the mainly contributing states: the two highest
valence bands with mainly Mn 3d e, character, the three Mn
3d th, bands, and finally the transitions from the more dis-
persive valence bands at lower energies. The related optical
transitions explain the peak structure of the imaginary part of
the dielectric function shown in Fig. 3. The lowest peak at
about 6.0 eV is clearly related to optical transitions from Mn
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FIG. 3. (Color online) Real (dashed line) and imaginary (solid
line) part of the dielectric function e(w) calculated in independent-
quasiparticle approximation (GGA+U+A) versus photon energy
fiw. In the inset the absorption spectrum (black solid line) is divided
into contributions from initial states in the two highest valence
bands with [ character (blue dotted line), the three Iy, valence
bands (green dashed line), and the lower dispersive valence bands
(red dash-dotted line).

3d e, states into conduction bands. However, these transi-
tions also yield significant contributions to the main peak at
a photon energy of 7.8 eV. The latter is also affected by the
transitions from the occupied Mn 3d t,, bands. The high-
energy region above 9 eV is essentially related to optical
transitions from the lower dispersive valence bands which
include the O 2p states.

In Fig. 4 the imaginary part of the dielectric function in
the independent-quasiparticle approximation is compared
with the results from a calculation including the screened
electron-hole attraction and local-field effects using a Lorent-
zian broadening of 0.1 eV and an energy cutoff of 7.5 eV. We
find the same general tendencies which have been discussed
for the optical absorption of many semiconductors and insu-
lators before.”!1:6498 The inclusion of the electron-hole at-
traction yields a significant redshift of the absorption spec-
trum which amounts to approximately 0.8 eV in the case of
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FIG. 4. (Color online) Imaginary part of the dielectric function
e(w) versus photon energy fiw. The spectra are calculated on dif-
ferent levels of approximation: independent quasiparticles in the
GGA+U+A approach with (red dashed line) and without (black
dotted line) LFEs, interacting quasiparticles by solving the BSE
with electron-hole attraction and LFEs (blue solid line).
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FIG. 5. (Color online) Comparison of calculated and measured
absorption spectra. The low-energy part of the calculated curve
which includes excitonic effects (blue solid line) is continued by the
spectrum in independent-quasiparticle approximation (black solid
line). Experimental data are taken from Messick er al. (Ref. 65) (red
dot-dashed line) and Ksendzov et al. (Ref. 66) (red dashed line).

MnO. Furthermore, a redistribution of spectral weight to
lower photon energies is observable. In particular, the oscil-
lator strength of the first peak at 5.2 eV almost doubles in
comparison to the independent-quasiparticle calculation and
an additional shoulder at 5.4 eV appears. A new feature that
emerges in the excitonic calculation is a shoulder at 6.6 eV
below the strongest peak at 7.1 eV. In the case of MnO the
influence of the LFEs on the imaginary part of the dielectric
function turns out to be almost negligible. In comparison to
semiconductors like Si*° the LFEs are much weaker for two
reasons. First, the matrix elements of U are significantly
smaller due to a stronger localization and lower overlap of
the contributing wave functions. Second, according to Eq.
(38) the electron-hole exchange can only occur between elec-
trons and holes with the same spin quantum number, which
are localized at Mn atoms with different spin orientations
and, hence, at least in second-nearest-neighbor distance.

For the computation of an optical spectrum with excitonic
effects in a wide energy range, which can be compared to the
experimental results of Messick et al.% and Ksendzov et al.®
(see Fig. 5), the number of k points is reduced to 512 in the
full BZ, thus enabling the use of a larger cutoff energy of
12.0 eV for the contributing noninteracting electron-hole
pairs. The curve in Fig. 5 is broadened by y=0.2 eV. Due to
the reduced number of k points and the larger broadening,
the shoulder at 6.6 eV is not resolved. Comparing with mea-
surements one first has to note that the available experimen-
tal data differ significantly, as is shown in Fig. 5. In the
energy range below 7 eV, Refs. 65 and 66 agree about the
positions of the reflectance peaks, but significant discrepan-
cies are reported for the oscillator strengths in the imaginary
part of the dielectric function. Concerning the main features
of the spectrum, the calculated curve for Im &,,,.(w) agrees
with the findings of Ref. 66: We find two pronounced peaks
at 5.3 eV and 7 eV matching the positions of the maxima of
the experimental curve. The relative oscillator strength of
these peaks differs from the intensity ratio obtained by
Ksendzov et al.; i.e., the second peak is much stronger in the
calculated spectrum. In the energy range between 8 eV and
11 eV the measured values can be reproduced. For higher
photon energies a BSE treatment is not possible due to
memory restrictions.
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FIG. 6. (Color online) Imaginary part of the macroscopic dielec-
tric function ,,,.(w) (blue line) and oscillator strengths (black bars)
versus the respective pair-excitation energies in the low-energy
range of the spectrum.

In the literature several references’*%°~7! can be found
which report about optical transitions below the fundamental
gap. It is argued® that these transitions are related to intra-
atomic spin-flip d-d excitations between the valence and
conduction states of one and the same Mn atom. As the op-
tical selection rules in the absence of spin-orbit coupling do
not allow for such transitions, they cannot be observed in the
computed spectra.

C. Interplay of excitonic and spin effects

The most remarkable new feature in the absorption spec-
trum with excitonic effects is the above-mentioned enhance-
ment of the peak at 5.2 eV. In order to understand its origin
we examine the oscillator strengths of the excitonic transi-
tions that contribute to the absorption spectrum in that re-
gion. For the calculations we use a refined unshifted k-point
mesh of 12X 12X 12 points in the BZ and include only the
two highest occupied bands and the lowest empty band in the
excitonic Hamiltonian. In Fig. 6 the computed oscillator
strengths, obtained by direct diagonalization of the Hamil-
tonian, are plotted versus the corresponding pair excitation
energies. For comparison the calculated optical absorption
from Fig. 4 is also given. It can be seen that the appearance
of the peak is clearly related to an excitonic resonance state
with a comparatively large oscillator strength.

In the following we analyze the excitonic two-particle
wave function for this specific resonance state. The two-
particle wave function for fixed one-particle spin m is de-
fined by

r,r') = 2 Ap () @) @ (), (42)

cvk

whereas the coordinate r refers to the position of the electron
and r’ to that of the hole. We fix the hole at a Mn atom
whose spin-up 3d orbitals are occupied and compute the cor-
responding spin-resolved density distribution of the electron
according to

PA(rr’) = AR (r.r)? (43)

for the resonance state (see Fig. 7). As is visible in Fig. 7, the
spin-up electron is located mainly in the vicinity of Mn at-
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FIG. 7. (Color online) Spin-up density distribution of the exci-
tonic wave function in the (001) plane for the resonance state at 5.2
eV. Light red balls represent Mn atoms with occupied 3d spin-up
orbitals and dark blue balls their counterparts with filled 3d spin-
down orbitals. Oxygen atoms are denoted by small black spheres,
while the position of the hole is indicated by the large black ball in
the center.

oms with occupied 3d spin-down orbitals. This behavior can
be understood by means of the spin selection rule for dipole-
allowed optical transitions: An electron from a spin-up or-
bital can only be excited in empty spin-up orbitals. The latter
are located at the Mn atoms whose spin-down orbitals are
filled. Consequently, the density of the spin-up excitonic
wave function is high at the Mn atoms with filled spin-down
orbitals and very low around the conversely occupied Mn
atoms. This supports the picture of the dominance of inter-
atomic transitions in the interband region of the absorption
spectrum and shows the importance of the consideration of
spin-polarization effects for the calculation of optical spectra
of magnetic systems.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have derived the Dyson and Bethe-
Salpeter equation for a spin-polarized system with noncol-
linear or collinear spins. The explicit calculations have been
performed for the paradigmatic example of antiferromag-
netic MnO within Hedin’s GW approach and the restriction
to collinearity. The QP self-energy is diagonal with respect to
the spin quantum number and, therefore, only shifts the KS
energy of a one-particle state with defined spin. Because of
the strong localization of the Mn 3d states, the description of
the KS states in a (semi)local approach represents a bad start-
ing point for a subsequent QP calculation in first-order per-
turbation theory. As an improved starting point, we have
used a spatially nonlocal XC functional in the KS equation.
The resulting QP picture correctly describes the band struc-
ture, including details of the conduction and valence bands.

The spin influence is much more drastic for the two-
particle excitations which are relevant for the calculation of
optical properties. The spin polarization in the system modi-
fies the screened Coulomb attraction between electrons and
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holes as well as the electron-hole exchange via the spatial
parts of the one-particle wave functions. The separation of
singlet and triplet states in the excitonic two-particle Hamil-
tonian no longer holds for magnetic systems. In order to
account for the huge number of contributing electron-hole
pairs, the QP energies and wave functions are approximated
by those obtained within the GGA+ U scheme with QP shifts
from a scissors operator approach. The optical absorption
spectrum of MnO is remarkably influenced by the many-
body effects. The inclusion of the interaction terms yields a
significant overall redshift of the spectrum as well as a redis-
tribution of spectral weight to lower energies. The influence
of LFEs is small due to the antiferromagnetic ordering. It has
been shown that it is important to take spin effects into ac-

PHYSICAL REVIEW B 77, 184408 (2008)

count to explain the character of the interatomic transitions
between Mn atoms with reversely oriented spins. The distri-
bution of the electron-hole pair wave function clearly reveals
the spin ordering in the antiferromagnetic system.
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