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Inelastic neutron-scattering spectra were measured on disordered solid solutions of body-centered cubic
Fe-Cr alloys of different compositions. These data were reduced from time-of-flight histograms to energy
spectra that resemble the phonon density of states �DOS� but were distorted by differences in efficiencies of the
atom species for phonon scattering. Cluster expansion formalisms were developed to both correct this neutron-
weighting problem and isolate phonon partial DOS curves of Fe and Cr atoms. An asymmetry in the phonon
entropy of mixing was identified and attributed to the larger number of low-energy modes associated with like
and unlike pairs in the first and second nearest-neighbor shells of Cr atoms compared to Fe atoms. The effect
of the phonon entropy on chemical unmixing is found to both lower the critical temperature and shift the
critical composition substantially.
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I. INTRODUCTION

A disordered solid solution, where two or more species of
atoms are distributed at random on the sites of a crystal lat-
tice, is often the thermodynamically stable state over a range
of compositions, especially for metallic alloys. Owing to
their entropy of configurations Scf, disordered solid solutions
are not expected to be thermodynamically favorable at arbi-
trarily low temperatures compared to, for example, mixtures
of ordered compounds or combinations of chemically un-
mixed structures. At higher temperatures, solid solutions are
expected to be stable over wider ranges of composition ow-
ing to Scf. The stability of solid solutions can be significantly
altered, however, by compositional variations of the phonon
entropy Sph. In several alloys, the phonon entropy is compa-
rable to the configurational entropy1–5 and is sometimes even
larger.6 The role of Sph on the relative stabilities of alloy
phases is an active area of research.7–14 The electronic origin
of phonon dynamics has been of interest over many
years.15–18 Systematics of how Sph depends on atomic size
and bond lengths are also of interest.2,3,19–21,34 Any explana-
tion, however, must account for how the spectral distribution
of the phonon density of states �DOS� depends on the atom
configurations on the lattice. The present work provides a
systematic way to interpret the phonon DOS in terms of the
local configurations of atoms in disordered solid solutions.

For phonon thermodynamics, the DOS is a central quan-
tity. Knowing the numbers of phonons in each small energy
interval is sufficient to construct a partition function for
phonons. A powerful method for measuring the DOS by ther-
mal neutron scattering is with a time-of-flight chopper spec-
trometer. The intensity of energy transfers from the neutron
to the sample can be interpreted as the spectrum of phonon
creations and annihilations and often the single-phonon ex-
citation spectrum can be obtained. For alloys, a challenge for
this method is that different elements have different efficien-
cies for phonon scattering, which are proportional to the ratio
of their neutron scattering cross-section �sc to their atomic
mass m. The displacements of different atoms in different

phonons usually have different amplitudes so different
phonons may be over- or under-represented in a DOS di-
rectly obtained from experimental measurements. The distor-
tion of the phonon DOS is termed the “neutron-weighting”
problem,4,22 and its solution is termed a neutron-weight cor-
rection.

Solving the neutron-weighting problem is tantamount to
obtaining the phonon partial density of states �PDOS� curves
for each element in the alloy �the PDOS curves weight the
amplitudes of displacement of each element for each pho-
non�. When there is a translational periodicity, as for chemi-
cally ordered alloys, inverting a Born-von Kármán lattice
dynamics model can provide PDOS curves and neutron-
weight corrections for experimental data.23–25 A less explored
approach, which is based on cluster expansion methods, of-
fers opportunities for chemically disordered alloys. Usually,
this method is used to determine disordered properties from
ordered properties.26 It has been used in approximate correc-
tions of the phonon entropy in Cu-Au22 and for a nuclear
resonant inelastic x-ray scattering �NRIXS� experiment.4 Re-
cently, the formalism of the cluster expansion was extended
to the DOS curves themselves.27,28

Both pure Fe and pure Cr have the body-centered cubic
�bcc� structure at low temperatures and bcc solid solutions
are stable in the Fe-Cr alloy system at all compositions and
modest temperatures. At low temperatures, Fe-Cr solid solu-
tions exhibit chemical unmixing over a broad range of com-
positions around the equiatomic compositions. Much experi-
mental work on the Fe-Cr system has addressed this
“spinodal decomposition,” owing to its correlation with the
brittleness of ferritic stainless steels.29,30 The thermodynam-
ics of Fe-Cr solid solutions is an important starting place for
understanding the metals physics of this unmixing. It is now
known, for example, that the critical temperature is lowered
by the relatively large Sph of the solid solution.4 Fortunately,
the high-temperature disordered state of Fe-Cr is not difficult
to preserve at low temperatures by rapid cooling and it is
possible to prepare alloys of Fe-Cr of all compositions as bcc
solid solutions with similar lattice parameters.
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II. EXPERIMENT

Alloys of stoichiometric Fe1−xCr
CrxCr

for xCr

= �1,0.99,0.97,0.90,0.80,0.70,0.47,0.30,0� were prepared
from shots of 99.99% Fe and 99.995% Cr by arc melting
under an argon atmosphere. There was a negligible mass loss
and little visible surface oxidation after melting so the com-
positions are expected to be accurate to 0.1%. The samples
of composition xCr�0.70 were then crushed to a thickness
corresponding to a neutron-scattering probability of 10%.
The samples were sealed in quartz tubes under an argon at-
mosphere and annealed at 1100 °C for several hours, which
was followed by a quench into an iced brine to ensure that
the samples were random solid solutions. Samples with
higher Fe concentration were ductile enough to be cold
rolled to thicknesses corresponding to a neutron-scattering
probability of 10%. These samples were sealed in quartz
tubes under an argon atmosphere and annealed for several
days at 1100 °C. The longer anneal time for the rolled
samples reduced the crystallographic orientation induced by
the rolling.

X-ray diffraction patterns were acquired for all samples
both before and after the anneal. The patterns indicated that
all samples had the bcc structure. There was no measurable
evidence of the sigma phase or of oxidation. Mössbauer
spectroscopy was performed on all of the samples after the
anneal. The spectra showed no indication of chemical un-
mixing.

Time-of-flight inelastic neutron-scattering data were ac-
quired using the low resolution medium energy chopper
spectrometer �LRMECS� instrument at the Intense Pulsed
Neutron Source at Argonne National Laboratory. Samples
were mounted in thin-wall aluminum cans of dimensions 7
�10 cm2. The incident beam of monochromatic neutrons
had an energy of approximately 60 meV. The flat sample
packages were tilted at a 45 degree angle off the direction of
the incident beam to minimize self shielding. All spectra
were measured at room temperature. Background data were
acquired from the empty aluminum cans under the same con-
ditions.

III. DATA ANALYSIS AND RESULTS

Our data include both coherent and incoherent scattering
from samples that are both polyatomic and polycrystalline.
The total scattering cross-section is given by the sum of the
coherent and incoherent scattering. The incoherent neutron-
scattering cross-section for nuclear scattering by a single
crystal monatomic system is

� d�

d�dE�
�inc

=
k�

k

N�inc

2��
e−2W� e�UV	e�−i�t�dt , �1�

where U=−iQ ·u�0�, V= iQ ·u�t�. The variables �inc, u�t�, W,
N, k, k�, Q, and E=�� are the incoherent cross-section,
instantaneous atomic position, Debye-Waller factor, number
of atoms in the system, initial and final neutron wave vec-
tors, phonon wave vector �wave vector transfer�, and phonon
energy, respectively. Our first approximation is that all the
measured scattering is incoherent. Despite the fact that both

Fe and Cr are strong coherent scatterers �with �inc,Fe=0.40,
�coh,Fe=11.22, �inc,Cr=1.66, and �inc,Cr=1.83 barns�, the in-
coherent approximation �IA� is acceptable when the inelastic
scattering is measured over a broad range of Q and E �Ref.
31� and the structure in Q is averaged away.

The incoherent scattering cross-section contains both elas-
tic and inelastic contributions. The elastic scattering can be
removed from the raw data so we concern ourselves only
with the inelastic scattering. The inelastic scattering is a sum
of the single and multiphonon scattering

� d�

d�dE�
�

inelastic

inc

= 

n=1

	 � d�

d�dE�
�

n-phonon

inc

, �2�

where n denotes the number of phonons created or annihi-
lated in the scattering event,

� d�

d�dE�
�

n-phonon

inc

=
k�

k

N�inc

4��

e−2W

n!
� 3�

2m
�n

�P����n-convolution,

�3�

where m is the mass of the scatterer, and

P��� =
��Q · es�2	�

�
g�����n� + 1	

+
��Q · es�2	−�

− �
g�− ����n−�	 . �4�

The index s specifies a single vibrational mode and the no-
tation �f�n-convolution specifies the sequential convolution of n
instances of the function f . The quantity ��Q ·es�2	� is the
value of �Q ·es�2 averaged over all modes of frequency �.
This is equivalent to averaging over all directions and shows
that the incoherent scattering cross-section is the same for
single crystal and polycrystalline samples. The incoherent
one-phonon scattering for a monatomic polycrystalline
sample is then

� d�

d�dE�
�

1−phonon

inc

=
k�

k

�inc

4�

N

4m
Q2e−2Wg����

�
coth�1

2
��
� � 1� , �5�

where 
=1 / �kBT�. The + denotes phonon creation and the −
phonon annihilation.

For a polyatomic sample, we invoke a virtual crystal ap-
proximation �VCA�, which assumes a single mass and scat-
tering factor for an average atom:

gnw�E,�� �e�−2�W	d���sc

m
�

d
= 


d

g�E,�� ,d�e−2Wd
�sc,d

md
. �6�

Here, gnw�E ,�� � is the DOS that results from the VCA and is
termed the neutron-weighted density of states �NWDOS�,
which is a function of the configuration of atoms on the
lattice �� . The phonon partial density of states �PDOS� of
atom d for a given local chemical arrangement �� l is given by
g�E ,�� l ,d�. The �¯	d denotes an average over all atoms. The
gnw �E ,�� � are obtained from the raw data by the following
procedure.
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The raw data expressed in terms of intensity as a function
of detector number and time-of-flight, were first corrected for
the efficiency of the detectors by using a white beam mea-
surement of pure vanadium �a fully incoherent scatterer�.
The data were then normalized by using the integrated inten-
sity in the beam monitor. An average of the counts at the
longest times-of-flight was taken as an estimate of the time-
of-flight independent background, and removed. The data
were rebinned into intensity I as a function of angle � from
5 to 145° by 0.6°, and energy E from −65.0 to 65.0 meV by
0.5 meV. The data were again rebinned to give intensity
I�Q ,E�, where Q is the wave vector transfer, which ranged
from 0.0 to 13.5 Å−1 by 0.0675 Å−1. The spectrum from the
empty container, which was scaled by 0.9 to account for the
self shielding of the sample, was subtracted from the data.
An example of such a corrected I�Q ,E� is shown in Fig. 1.
The data were cropped below Q�2.8 Å−1 to minimize con-
tributions from magnetic scattering, which dominates at
small Q. After removal of an elastic peak centered about 0
meV, the data approximately below 10 meV were replaced
by the function AE / �1−exp�−
E�� with a normalization
constant A, which was determined from the data. The instru-
ment resolution for positive neutron energy transfer is much
better than for negative �see Fig. 1� so only the data for E
0 were used for determining gnw�E ,�� �.

Finally, under the assumptions of the VCA and the IA, we
recover the one- phonon DOS by using the iterative proce-
dure described by Sears et al.32 as modified by Kresch et
al.33 This procedure corrects for thermal occupancy, Debye-
Waller factor, multiphonon �2-through 5-phonon� and mul-
tiple scattering as a function of Q, and then the �neutron-
weighted� phonon DOS is the sum over all Q of the corrected
data. These NWDOS curves are normalized to one in energy
and presented in Fig. 2.

IV. DISCUSSION

A. Phonon partial DOS

The NWDOS is a linear combination of the PDOS, which
is distorted by the differences in the efficiencies of phonon

scattering of the different atoms. To calculate thermody-
namic quantities, such as the vibrational entropy or phonon
contribution to the heat capacity, the undistorted total phonon
DOS is required,

g�E,�� � = 

d

g�E,�� l,d�xd, �7�

where xd is the concentration of atom species d �0�xd�1�.
We assume that exp�−2��W	d−Wd���1, which is most reli-
able at low temperatures, so that Eq. �6� becomes

gnw�E,�� � = ��sc

m
�

d

−1



d

g�E,�� l,d�
�sc,d

md
xd, �8�

where the normalization factor is given by

��sc

m
�

d
= �


d

�sc,d

md
xd� . �9�

In our case, phonon scattering from natural Fe is approxi-
mately three times stronger than that from natural Cr, or
�sc,Fe /mFe�3�sc,Cr /mCr. The data reduction technique de-
scribed in Sec. III produces a NWDOS, where the Fe PDOS
is overweighted by a factor of 3. This distorts the NWDOS
from the true DOS if the Fe PDOS significantly differs from
the Cr PDOS.

NRIXS is a synchrotron technique used to determine the
PDOS of a Mössbauer isotope such as 57Fe �Refs. 35–38�.
The available Fe PDOS curves from NRIXS28 can be di-
rectly used in a neutron-weight correction for the alloys
Fe30Cr70, Fe53Cr47, and Fe70Cr30. The Cr PDOS curves can
then be determined using Eq. �8�, with the results shown in
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FIG. 1. Measured I�Q ,E� for pure Cr, where E is the neutron
energy transfer to the sample. White indicate areas of higher inten-
sity, with the large elastic peak evident at 0 meV. Coherent scatter-
ing can be seen to emanate from the Bragg peaks.
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FIG. 2. Measured NWDOS curves for alloys gnw�E� and g�E�

for elements. The dashed lines are the measured Cr DOS for com-
parison. Curves are offset by integer multiples of 0.04 meV−1.

PHONON PARTIAL DENSITIES OF STATES AND… PHYSICAL REVIEW B 77, 184303 �2008�

184303-3



Fig. 3. Especially at low Fe concentrations, knowledge of the
Fe PDOS from NRIXS is useful for determining the Cr
PDOS. At higher Fe concentrations, the scattering from the
Cr atoms is overwhelmed by that of Fe atoms and a larger Fe
PDOS must be removed from the measured NWDOS to de-
termine the Cr PDOS. This inherently poor signal-to-noise
for the Cr PDOS is evident in Fig. 3 for the alloy Fe70Cr30.

The following sections describe a different method for
determining the Cr and Fe PDOS curves. This method uti-
lizes a cluster expansion technique to extract chemical trends
from the NWDOS curves. For inputs, this method requires
two PDOS curves from dilute Fe-Cr and Cr-Fe alloys. Sec-
tion IVB shows how these two “impurity” PDOS curves can
be derived from the data set in Fig. 2 with two different
methods. Section IV C describes the cluster expansion tech-
nique. Only the results of neutron-scattering experiments are
used in the subsequent analysis. The available results from
NRIXS28,39 provide a verification of the method.

B. PDOS in the dilute limit

This section presents two methods for obtaining the
PDOS of an impurity atom in an otherwise pure host. The
first method uses only the measured NWDOS curves of Fig.
2 but the statistical quality of the present data requires the
use of the second method. Both methods rely on the assump-
tion that the PDOS of the host atoms is unaltered by the
impurity atoms. For V with impurities of Cr, this assumption
has been shown to be good, owing to the similarities of the
Fermi surface of V and V-Cr,6,18 and for the same reason, we
expect this to be valid for Fe-Cr. The PDOS measured by
NRIXS of Fe3Cr97 provides a check of this assumption for
Fe-Cr.

Comparing the measured DOS of the pure element to the
measured NWDOS of a sample with small amounts of im-
purity atoms can provide the PDOS of the impurity atom by
using Eq. �8�. Figure 4�a� shows the impurity PDOS of 3%
Fe in Cr, which is determined with this method by weighted
subtraction of the lower curves of Fig. 2. Although the error
bars are quite large, it is apparent that the agreement with the
result of NRIXS39 is reasonable. Within the quality of our
experimental results, a decomposition into a host, plus impu-
rity PDOS curves, is successful for Fe-Cr dilute alloys. De-
termination of the Cr PDOS curves from this method suffers
from much larger error bars due to the lower scattering effi-
ciency of Cr atoms. Another method for acquiring the PDOS
of impurity Cr atoms is required.

The lattice dynamics of crystals with dilute impurities was
developed by Mannheim,40,41 with Green’s function tech-
niques for interatomic force constants, described by a single
longitudinal stiffness. The assumption is made that the intro-
duction of the impurity perturbs only the first nearest- neigh-
bor �1NN� bonds to the impurity atom. The only information
required for this theory are the DOS of the pure host, the
mass ratio of the host to the impurity atoms mh /md, and the
ratio of the host-host force constant to the impurity-host
force constant Kh-h /Kd-h. The force constants of Fe-Cr alloys
have been previously determined by inelastic neutron
scattering.42 The ratio Kh-h /Kd-h can be approximated by the
ratio of the 1NN longitudinal force constants of the pure host
with the 50–50 alloy. For Fe in Cr, this ratio is 1.26, which is
similar to the previously reported value of 1.25.43 The value
obtained for Cr in Fe is 1.01, which has been used in deter-
mining the impurity Cr PDOS in Fe. The impurity PDOS of
Fe, which is determined from the Mannheim method by us-
ing the pure Cr DOS measured with LRMECS, is shown in
Fig. 4�c�. The results of the Mannheim method for the PDOS
curves of both Fe and Cr in the dilute limit are used in the
analysis that follows below.
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FIG. 3. �a� Neutron-weight-corrected DOS for Fe30Cr70,
Fe53Cr47, and Fe70Cr30 by using Fe PDOS curves from NRIXS.28

�b� Cr PDOS curves determined from measured NWDOS and Fe
PDOS curves from NRIXS. The curves for Fe53Cr47 and Fe70Cr30

are offset by 0.08 and 0.20 meV−1, respectively.
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FIG. 4. PDOS of Fe in Fe3Cr97 �a� determined from the results
in the present article following the subtraction method given in the
text, �b� the results of NRIXS from the literature39 �offset by
0.1 meV−1�, and �c� determined from Mannheim Method with
KCr−Cr /KFe−Cr=1.26 using pure Cr measured at LRMECS �offset by
0.2 meV−1�.
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C. Cluster expansion method

A cluster expansion is a systematic method for expressing
a thermodynamic quantity J��� � in terms of the chemical ar-
rangement �� on a particular lattice.44–50 A set of atomic cor-
relation functions ��n� is unique to each chemical arrange-
ment �� , whereas the interaction parameters Jn are constant
for alloys with the same lattice and specific volume.26,2 Each
interaction parameter provides a measure of the thermody-
namic contribution from each type of cluster. For example,
the interaction phonon entropies provide a measure of the
phonon entropy associated with each of the terms in the clus-
ter expansion. Interaction functions Jn�E�, where E is the
energy of the quantum state associated with the particular
thermodynamic quantity, provide a more detailed picture of
the contributions from each cluster type. In the case of the
phonon entropy, the associated function is the DOS or
PDOS.28 The interaction phonon density of states �IDOS�
and interaction phonon partial density of states �IPDOS�
functions provide detailed information on how the chemical
arrangement changes the DOS and PDOS curves, respec-
tively. Physically, the forces in a system could have a long
range, but if the changes in the local chemical arrangement
control them, only short-range clusters are necessary �i.e., a
useful cluster size may or may not represent the range of the
forces�.

Two types of cluster expansions prove necessary for stud-
ies of alloys by neutron scattering: one for local thermody-
namic properties and the other for overall thermodynamics.
The PDOS is an average over a particular atom species, the
DOS is an average over all atom species, and the DOS is a
weighted sum of the PDOS functions �Eq. �7��. Typically, a
cluster expansion is performed over all atom species in what
has been termed the general cluster expansion �GCE�. To
account for the PDOS, a cluster expansion must be per-
formed on a particular atom species by using a local order
cluster expansion �LOCE�.51 Both types of cluster expan-
sions are similar in their mathematics but different in their
interpretations. A precise definition of these two types of
expansions is given in Appendix A.

The first step in performing a cluster expansion is to res-
cale the NWDOS curves by the phonon cutoff energy Ec��� �,
which is defined as

g�E,�� � = 0,E  Ec��� � . �10�

The rescaled energy, E, is given by

E = E��� � =
E

Ec��� �
, �11�

where 0�E�1. This step helps to separate the effects of
changes in bond length and bond stiffness from the effects of
atom arrangement for which the cluster expansion is de-
signed.

The next step is to determine the neutron-weighted inter-
action phonon density of states �NWIDOS� functions Gn

nw�E�.
The limitations of using random solid solutions for the de-
termination of interaction functions have been previously as-
sessed by using the condition number of the correlation func-
tion matrix.28 Here, we simply note that only a small number

of terms can be used when extracting chemical trends from
measurements of random solid solutions, owing to the lack
of both long-range and short-range order. For this reason, a
GCE using four terms, up to the triangle cluster, is utilized
for the NWDOS. The relation between the NWDOS curves
of a random solid solution of concentration xCr, gnw�E ,xCr�,
and the NWIDOS functions is �following Eq. �B6��

gnw�E,xCr���sc

m
�

d

−1

= 

n=0

3

Gn
nw�E��1 − 2xCr�n. �12�

Since there are more measurements than terms used in the
expansion, the problem is overspecified and a weighted least-
squares fitting must be performed to include all of the mea-
sured information into the NWIDOS functions. The NWI-
DOS functions and impurity PDOS curves can be used to
determine the IPDOS functions Gn�E ,d�, following the
method described in Appendix B.

D. Interaction phonon partial density of states
functions of Fe-Cr

The IPDOS functions of Fe and Cr in Fe-Cr determined
from fits to the neutron-scattering data and the impurity
PDOS curves determined from the Mannheim method �Sec.
IV B� are shown in Fig. 5. For comparison, the PDOS curves
of Fe in Fe-Cr alloys determined from NRIXS28,39 were also
used to construct the IPDOS functions of Fe and both sets of
Gn�E ,Fe� are compared in Fig. 6. The curves match well,
especially in their compositional trends, and agreement is
best for the higher Fe concentrations where the neutron-
scattering analysis is most reliable.

The effects of local order on the PDOS curves of Fe in
Fe-Cr have been previously explained28 in terms of the
Gn�E ,Fe� and the same interpretation is successful for the
effects of local order on the PDOS curves of Cr in Fe-Cr. The
n=0 term is the Cr PDOS of a random solid solution of
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FIG. 5. IPDOS functions of Fe �a� and Cr �b� in Fe-Cr deter-
mined from neutron scattering �solid lines� and NRIXS �thick
curve�. The n=0 and n=1 terms are offset by 0.08 and 0.05 meV−1,
respectively.
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Fe50Cr50. The n=1 term gives the effect on the PDOS of
having different numbers of Fe and Cr atoms in the 1NN and
second nearest-neighbor �2NN� shells of the Cr atom. The
triangle term n=2 gives the effect of the like or unlike pairs
of atoms within the 1NN and 2NN shells of the Cr atom. The
function G1�E ,Cr� is added to G0�E ,Cr� when the atom in the
1NN and 2NN shell of the Cr atom is Cr and subtracted
when it is Fe. Figure 5 shows that the effect of Cr atoms in
the 1NN and 2NN shell of the Cr atom is to decrease the
number of modes in the ranges of 0�E�0.59 and 0.83
�E�1 while increasing the number of modes in the range
0.59�E�0.83. The function G2�E ,Cr� adds to both
G0�E ,Cr� and G1�E ,Cr� when a pair in the 1NN and 2NN
shell of the Cr atom is composed of two of the same atoms.
Pairs of like atoms decrease the number of modes in the
ranges 0�E�0.56, 0.80�E�0.88, and 0.94�E�1 while
increasing the number of modes in the remaining ranges,
whereas unlike pairs do the opposite.

Comparing the Fe and Cr IPDOS functions in Fig. 5 pro-
vides further information on how a local order alters the
phonons in Fe-Cr. To show the effects of Cr concentration on
both the Fe and Cr PDOS curves, the function G1�E ,Fe� must
be multiplied by −1, as shown in Fig. 7. With increasing Cr
concentration, each of these functions is added to its respec-
tive PDOS. In both cases, increasing the Cr concentration
decreases the number of low-energy modes in the range 0
�E�0.37. In the range 0.37�E�0.67, the effects of Cr on
the PDOS curves is opposite in sign, with the magnitude of
the increase in the Fe modes being much larger than the
decrease for Cr. For E0.82, the longitudinal modes of both
Fe and Cr are reduced �shifted to lower E� by increasing the
concentration of Cr. The functions G2�E ,Fe� and G2�E ,Cr�
have similar features in the range 0�E�0.70, indicating
similar effects of the pair interaction on the longitudinal
modes of both the Fe and Cr PDOS.

The IPDOS functions can be used to construct the PDOS
curves of Fe and Cr atoms for our alloys �Fig. 8�. These
PDOS curves can then be used to construct the neutron-
weight-corrected DOS curves by following Eq. �7�. The re-
sults are shown in Fig. 9. It is evident that the neutron-weight
correction stiffens all of the DOS curves. This is expected, as

the Fe PDOS curves have more low energy modes than the
Cr PDOS curves, especially below E=0.7 but Fe atoms are
more efficient scatterers.

E. Phonon entropy

The phonon entropy Sph��� � for a specific chemical ar-
rangement �� is, in the quasiharmonic approximation,4
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FIG. 6. PDOS curves of Fe determined from neutron scattering
�lines� and NRIXS �lines with error bars�. Curves are offset by
integer multiples 0.03 meV−1.
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FIG. 7. The dependence on Cr concentration of the Fe and Cr
PDOS curves. The minus sign for Fe accounts for the �−1�n in
Eq. �A6�.
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FIG. 8. PDOS curves from the cluster expansion fitting method
for the concentrations of the alloys measured: �a� Fe PDOS curves
�solid lines� and measured pure Fe DOS �dashed line� and �b� Cr
PDOS curves �solid lines� and measured pure Cr DOS �dashed
line�. Curves are offset by integer multiples 0.04 meV−1.
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Sph��� � = 3kB�
0

	

f��E�g�E,�� �dE , �13�

with

f��E� � �f�E� + 1�ln�f�E� + 1� − f�E�ln�f�E�� , �14�

where f�E� is the Planck distribution. Both f�E� and g�E ,�� �
are obtained at the same temperature. The phonon entropy of
mixing �Sph��� � is given by

�Sph��� � = Sph��� � − 

d

xdSph�xd = 1� , �15�

where Sph�xd=1� is the phonon entropy of pure element d.
The phonon entropies of mixing from the neutron-weighted
and weight-corrected DOS curves evaluated at 293 K are
shown in Fig. 10. The entropy of mixing of the corrected
DOS curves is lower than that for the measured NWDOS
curves due to the higher scattering efficiency of the low-
energy Fe modes.

The phonon partial entropy Sph��� l ,d� for the specific local
chemical arrangement of atom d in a binary system A-B is in
the quasiharmonic approximation,

Sph��� l,d� = 3kB�
0

	

f��E�g�E,�� l,d�dE . �16�

A LOCE in E must be used to show the effects of each term
in the cluster expansion for each atom. This can be done for
Fe-Cr since the cutoff energy does not have a strong depen-
dence on the composition. For a random solid solution using
a three term LOCE, the only contribution to the phonon par-
tial entropy of mixing �Sph�xd ,d� comes from the n=2 term
and is,

�Sph�xd,d� = − 3kB�1 − �1 − 2xd�2��
0

	

f��E�G2�E,d�dE .

�17�

The integrals of 3kBf��E�Gn�E ,d� are the interaction phonon
partial entropies sph

n �d�, which are listed in Table I for room
temperature and 2000 K. Only the n=0 term has a strong
dependence on f��E� so Eq. �17� is approximately indepen-
dent of temperature. The magnitude of the phonon partial
entropy of mixing of Cr is much larger than that of Fe. The
function f��E� is largest at low energies so the differences
between sph

2 �Fe� and sph
2 �Cr� can be primarily attributed to the

low-energy modes from 0 to �25 meV.
For a random solid solution, the phonon entropy of mix-

ing of Eq. �15� is, in terms of the interaction phonon partial
entropies,

�Sph�xCr� = − 4xCr�1 − xCr���sph
1 �Cr� + sph

1 �Fe��/2

+ xCrsph
2 �Cr� + �1 − xCr�sph

2 �Fe�� . �18�

The function −4xCr�1−xCr� is a parabola with a maximum at
xCr=1 /2. The first term in brackets scales this function. In
this case, since sph

1 �d� is negative, this term introduces a posi-
tive entropy of mixing. The remaining terms associated with
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FIG. 9. Neutron-weight-corrected DOS curves from cluster ex-
pansion method �solid line� and measured neutron-weighted DOS
curves �dots�. Curves are offset by integer multiples 0.03 meV−1.
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FIG. 10. Phonon entropy of mixing determined at 293 K for
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measured NWDOS curves �solid line�, and neutron-weight-
corrected DOS curves �dashed line�. The configurational entropy of
a fully random solid solution is included to show the relative mag-
nitude of the phonon entropy.

TABLE I. Values of sph
n �d�.

sph
n �Fe� �kB /atom� sph

n �Cr� �kB /atom�

n 293 2000 293 2000

0 3.20 8.83 3.14 8.76

1 −0.05 −0.05 −0.10 −0.11

2 −0.08 −0.11 −0.27 −0.29

�
�

T �K�
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sph
2 �d�, are the equation of a line. This function introduces an

asymmetry to the phonon entropy of mixing when sph
2 �Fe�

�sph
2 �Cr�. The phonon entropy of mixing is shifted toward

pure Cr because G2�E ,Cr��G2�E ,Fe� in the energy range 0
to �25 meV.

The critical temperature and composition of the miscibil-
ity gap in Fe-Cr are 905 K and xCr=0.51, respectively.52

Assuming no change in the DOS curves as a function of
temperature, the values of sph

n �d� for n0 do not appreciably
change over the temperature range of bcc stability. Equation
�18� can be used to determine the effect of the phonon en-
tropy on the miscibility gap for spinodal decomposition.
When the phonon entropy of mixing in the bcc phase is
removed, the miscibility gap shifts up in temperature and
toward pure Cr, with a critical temperature and composition
of 1268 K and xCr=0.61, respectively. It is known that the
enthalpy of mixing is also shifted toward pure Cr,53–56 so the
phonon entropy counteracts the asymmetry of the enthalpy
of mixing �especially at higher temperatures�. Thus, the role
of the phonon entropy of mixing is to lower the critical tem-
perature of the miscibility gap and shift it toward the equi-
atomic composition.

The cluster expansion analysis delivers a higher level of
detail about how the phonon entropy of mixing depends on
local arrangements of atoms.28 At low concentrations of Fe
in a Cr host, there is a substantial distortion of the Fe PDOS
curves compared to pure Fe, and there is a smaller distortion
of the PDOS curves of Cr in Fe �Figs. 7 and 8�. A compari-
son of G1�E ,Fe� and G1�E ,Cr� �Fig. 7� shows that the con-
centration dependence of the PDOS curves is opposite for
the transverse modes but similar for the longitudinal modes.
For Fe-Cr alloys, the PDOS curves of both Fe and Cr atoms
undergo an average softening upon alloying. This leads to a
net positive phonon entropy of mixing but the net softening
of the Cr PDOS curves is greater. At low concentrations of
Fe in Cr, the large softening of the Cr PDOS curves �com-
pared to the Fe PDOS of dilute Cr in Fe� causes the phonon
entropy of mixing to rapidly rise with Fe concentration,
giving a skewness to the concentration dependence of the
phonon entropy of mixing versus composition �Fig. 10�.
Changes in the shape of the PDOS of the majority species
are relatively small yet most of the phonon thermodynamics
of mixing can be attributed to the changes in the low-energy
vibrations of the solvent species, especially Cr. It is expected
that other alloy systems will have different entropic weights
of their atom species, and these can be quantified by exam-
ining the IPDOS functions Gn�E ,d�.

V. CONCLUSION

Neutron-weighted phonon density of states �NWDOS�
curves were measured by inelastic neutron scattering for
Fe-Cr random solid solutions of various compositions.
Within the formalism of the cluster expansion, the methods
for extracting the interaction phonon density of states �IP-
DOS� functions from the NWDOS curves are described for
random solid solutions �Appendixes A and B�. From the
cluster expansion analysis, phonon partial DOS �PDOS�
curves were found for Fe and Cr in the different random

solid solutions of Fe-Cr. The Fe PDOS curves are similar to
those previously determined by NRIXS, and so are the Fe
IPDOS functions.

Using Fe and Cr PDOS curves, it is straightforward to
correct the inelastic neutron scattering from Fe-Cr alloys for
the neutron weighting caused by differences in phonon scat-
tering efficiencies of the two elements. The corrected DOS
curves are stiffer than their neutron-weighted counterparts,
owing to the higher scattering efficiency of the lower energy
Fe modes and this lowers the phonon entropy of mixing that
would otherwise be deduced from NWDOS curves obtained
from a direct reduction in inelastic scattering data under the
virtual crystal assumption.

The phonon entropy is dominated by changes in the Cr
PDOS curves, which undergoes an average softening when
Cr atoms are placed in an Fe-Cr host. The softening of the Cr
PDOS curves is also responsible for the compositional asym-
metry of the phonon entropy of mixing. The dominant effect
on the phonon entropy is from changes in the low-energy
modes of the Cr PDOS curves caused by 1NN and 2NN Fe
neighbors. The phonon entropy both shifts the miscibility
gap in composition toward the equiatomic composition and
lowers the critical temperature by �350 K.
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APPENDIX A: CLUSTER EXPANSION

The GCE is a method of expressing thermodynamic prop-
erties of an alloy in terms of its chemical arrangement �� .
“Spin variables” � are used for the two species of atoms,
where an A atom is assigned the factor �= +1 and a B atom
�=−1. A cluster is a shape made by connecting a number of
points n on the lattice. The correlation function �n is defined
as the sum over all clusters of the products of the spin vari-
ables for each atom in the cluster,

�n =
1

Nn


�pi�

�p1
�p2

¯ �pn
. �A1�

Here, n also denotes the order of each term in the expansion.
For example, in the GCE n= �0,1 ,2� for the empty, point,
and pair terms, respectively. The number of clusters of type n
is Nn. The value of the spin variable at site p is �p with each
lattice point labeled from 1 to n.26 The correlation functions
�n for a random solid solution of A and B atoms are given by

�n = �1 − 2xB�n. �A2�

The Connolly-Williams inversion technique26 can be ap-
plied to a thermodynamic quantity J��� �. Interaction param-
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eters of this thermodynamic quantity Jn can be determined
using the known values of the thermodynamic quantity
Jm��� �,

Jn = 

m=0

�g−1

Jm��� ���m,n�−1. �A3�

Here, �g is the number of terms used in the GCE and ��m,n� is
the correlation function matrix. Knowledge of Jn can then be
used to construct the thermodynamic quantity for any con-
figuration Jj��� � by using

Jj��� � = 

n=0

�g−1

Jn�� j,n� . �A4�

The machinery of the previous two equations remains valid
for functions by replacing Jn with Jn�E� and J��� � with
J�E ,�� �.

The LOCE is a method for expressing thermodynamic
properties of a particular type of atom in terms of its local
chemical arrangement �l. In the LOCE, the clusters must
contain the local point of interest l �e.g., an A atom�.51 A
cluster is a shape made by connecting a number of points
n+1 on the lattice, where the +1 arises from the inclusion of
the local point in all clusters. In the LOCE, n=0 is the point
term because every point cluster is the atom of interest d,
with �l

d= +1. The pair and triangle terms correspond to n
=1 and n=2, respectively. The local point is always assigned
�l

d= +1 so that for a binary system of A and B atoms two
different correlation functions must be used. The correlation
function for a random solid solution of A and B atoms around
a local point containing an A atom is

�n�A� = �1 − 2xB�n. �A5�

For a local point containing a B atom the correlation function
is

�n�B� = �1 − 2xA�n = �− 1�n�n�A� . �A6�

Again, the machinery of Eq. �A3� and Eq. �A4� remains valid
for both quantities and functions in the LOCE. For functions
in the LOCE, these equations are valid by replacing Jn with
Jn�E ,d�, J��� � with J�E ,�� l ,d�, and �g with �l. Here, the de-
pendence on d denotes a LOCE with a d atom as the atom at
the local point of interest and �l is the number of terms used
in the LOCE.

When the LOCE and GCE are both used to describe the
same quantity, for example, the DOS and PDOS of Eq. �7�,
the number of terms used for each cluster expansion are re-
lated by �g=�l+1. For instance, a three-term LOCE uses
clusters up to the triangle term. The equivalent GCE must
use four terms in the expansion to include the triangle term.

APPENDIX B: METHOD FOR DETERMINATION OF
Gn(E ,d)

First, consider the basic problem for an A-B binary alloy
using a four-term GCE, which requires 2�3 PDOS curves
�2 atom species, three-term LOCE� to describe the four DOS
curves. Figure 11 shows that the four measured DOS curves

�black squares� used for the GCE �solid line� can never pro-
vide enough information to acquire the two PDOS curves
�dashed lines�. In other words, there must be information on
at least one PDOS curve for each atom species in order to
solve for the remaining PDOS curves from the measured
DOS curves. However, by measuring two DOS curves of
slightly different concentrations than the two end members
�open squares with crosses�, the difference method described
in the text can be used to extract the minority species PDOS
�indicated by arrows�. In this manner, six measured DOS
curves can be used to determine the six PDOS curves re-
quired to construct the IPDOS. In the remainder of this ap-
pendix, we describe the mathematics used to extract the IP-
DOS from the NWDOS.

The NWDOS curves of Eq. �8�, gj
nw�E ,�� �, can be written

using Eq. �A4� in the LOCE formalism,

gj
nw�E,�� ���sc

m
�

d

−1

= 

d

xj,d
�sc,d

md
gj�E,�l,d� , �B1�

=

d

Cj�d�

n=0

�l−1

Gn�E,d��� j,n�d�� , �B2�

=

d

Cj�d�

n=0

�l−1

�� j,n�d��

m=0

�l−1

gm�E,�� l,d���m,n�d��−1, �B3�

where

Cj�d� = xj,d
�sc,d

Md
, �B4�

Aj
−1��� � = 


d

xj,d
�sc,d

Md
. �B5�

Here, gj
nw�E ,�� � are the NWDOS curves constructed from the

cluster expansion for each chemical arrangement �� corre-
sponding to j. Similarly, gm�E ,�� l ,d� are the IPDOS curves
for each chemical arrangement �� corresponding to m and are
used to construct Gn�E ,d�. The concentrations of each atom
species d corresponding to the chemical arrangement of j are
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FIG. 11. Example of the cluster expansion method applied to the
DOS and PDOS at a particular energy. See the text for a description
of the symbols.
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xj,d. The NWDOS curves may also be written using Eq. �A4�
in the GCE formalism,

gj
nw�E,�� ���sc

m
�

d

−1

= 

n=0

�g−1

Gn
nw�E��� j,n� , �B6�

where Gn
nw�E� are the NWIDOS functions.

Equations �B6� and �B2� can be used to relate Gn
nw�E� to

Gn�E ,d�:

G0
nw�E� =

1

2
�sc,A

mA
G0�E,A� +

§csc,B

mB
G0�E,B�� ,

Gn
nw�E� =

1

2
��sc,A

mA
�Gn−1�E,A� + Gn�E,A��

+ �− 1�n�sc,B

mB
�Gn−1�E,B� + Gn�E,B��� ,

G�g−1
nw �E� =

1

2
�sc,A

mA
G�l−1�E,A� + �− 1�n�sc,B

mB
G�l−1�E,B�� .

�B7�

This can be written in matrix form as

G� nw�E� = ��R� • �C��G� d�E� , �B8�

where the • represents a Hadamard �element-wise� product
and �R� • �C� is the matrix that relates the NWIDOS vector

G� nw�E� with the IPDOS vector G� d�E�, which are defined as

G� nw�E� = �
G0

nw�E�

G1
nw�E�

]

G�g−1
nw �E�

�, G� d�E� =�
G0�E,A�

]

G�l−1�E,A�

G0�E,B�

]

G�l−1�E,B�
� .

�B9�

The elements of the �g�2�l matrix �C� of scattering coeffi-
cients are

Cn�j,d� =
�sc,d

md
, �B10�

where �j ,d� is a compound index. For a three-term LOCE,
the matrix �R� is

�R� = 1/2�
1 0 0 1 0 0

1 1 0 − 1 − 1 0

0 1 1 0 1 1

0 0 1 0 0 − 1
� , �B11�

where the left half of the separation denotes the A atom type
and the right half the B atom type. Note that the matrix �R�
relates the IDOS to the IPDOS functions,

G� �E� = �R�G� d�E� , �B12�

which should be compared to Eq. �B8�.
The NWIDOS, which are measured in the experiment,

can now be written in terms of the PDOS as

G� nw�E� = ��R� • �C����̄�−1g�d�E� , �B13�

where

g�d�E� =�
g0�E,A�

]

g�l−1�E,A�

g0�E,B�

]

g�l−1�E,B�
� , ��̄� = ��m,n�A�� �0�

�0� ��m,n�B�� � .

�B14�

Here, ��m,n�d�� are the LOCE correlation function matrices
corresponding to the PDOS curves gm�E ,�l ,d�, which are
written as the vector g�d�E�. The PDOS of g�d�E� must be
selected to include the PDOS determined from the difference
method �or Mannheim method�, which are termed the
“known” PDOS curves g�k�E ,d�. The remaining or “un-
known” PDOS curves g�u�E ,d� can be solved for by row re-

ducing the augmented matrix ���R� • �C����̄�−1G� nw�E�� and re-
writing the system of equations in parametric form.57 The
unknown PDOS curves can then be written as a function of
the known PDOS curves and the NWIDOS functions,

g�u�E,d� = �S�� G� nw�E�

g�k�E,d�
� , �B15�

where �S� is the solution matrix and the term in brackets is
an augmented column vector. Once g�u�� ,d� has been deter-
mined, a direct inversion following:

G� d�E� = ��̄�−1g�d�E� , �B16�

produces the IPDOS functions Gn�E ,d�.
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