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Stress orientation and relativistic effects on the separation of moving screw dislocations

Z. Q. Wang™ and 1. J. Beyerlein
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 28 January 2008; revised manuscript received 3 April 2008; published 15 May 2008)

The subsonic motion of a fast-moving, extended screw dislocation in an fcc metal under constant stress is
studied using continuum linear elastic dislocation theory and molecular dynamics (MD) simulation. In this
regime, many phenomena predicted by the theory are shown to prevail in simulation, in particular, relativistic
effects and stress orientation effects. Due to the former, the fault width is found to contract as it moves faster
until =80% of the shear wave speed, beyond which a turning point occurs preventing it from constricting to a
perfect one as speed increases further. The stress orientation effect, which is first introduced by Nabarro
[Philos. Mag. 14, 861 (1966)], is demonstrated here to manifest when the shear stress resolved in the direction
of motion and glide plane becomes high. A simple analytical expression for the steady-state fault width
accounting for both stress orientation and relativistic effects is presented. In MD simulation under arbitrary
stress states, both the dislocation velocity and separation width achieve a quasisteady state, about which they
oscillate with an amplitude and frequency that reduces with speed. The separation width oscillates about a
value close to that predicted by the new analytical expression. The drag coefficient is found to linearly increase

with speed for speeds greater than 20% of the shear wave speed.
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I. INTRODUCTION

Dislocations in fcc metals can find it energetically favor-
able to dissociate into two partial dislocations with a stacking
fault in between (Fig. 1).! The stress-free stacking fault
width, wy, is determined by a balance between the stacking
fault energy and the elastic interaction energy.'?> Accord-
ingly, wy is a function of the stacking fault energy 7, elastic
properties of the crystal, and dislocation character (e.g.,
edge, screw, and mixed).> However, in the presence of a
stress field, the actual stacking fault width w may either con-
tract or expand from wy. If the orientation of the stress is
such that the force transverse to the dislocation line is higher
on the leading partial than that on the trailing partial, then
w>w,. Conversely, when the transverse force on the trailing
partial is higher, then w<w,. This stress orientation effect
was first noted by Nabarro.*

Copley and Kear’ studied the stress orientation effect on
w of a moving dislocation and demonstrated that it is pro-
nounced only at high applied stresses and for certain crystal-
lographic orientations. Their equation of motion made use of
the difference in Schmid factors between the partials and an
exponential law to relate stress to dislocation velocity. At
such high stresses, however, the exponential stress-velocity
relationship no longer applies, and many effects not included
in their formulation, such as inertia, relativistic effects, and
dislocation drag, become important and will affect the pre-
diction of w. The equation of motion for an extended dislo-
cation including linear drag, instead of the exponential
stress-velocity law, can be found in the work of Hirth and
Lothe.? There, they used Peach-Koehler (PK) forces on each
partial in the direction of motion rather than their Schmid
factors. As proven by Nabarro,*® a PK or Schmid-factor-
based formulation will not lead to fundamentally different
results.

The stress orientation effect was later used by Bonneville
and Escaig’ to study the propensity of cross slip. A stacking
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fault width is then assumed to narrow or widen based on the
sign of the shear stress resolved normal to the dislocation
line and in its glide plane, the so-called “edge” shear stress.
With this, they presented the “narrowing-widening” concept
for cross slip: An orientation favors cross slip when a dislo-
cation narrows on its primary plane and widens on its cross-
slip plane. The stresses or velocities required to invoke a
significant stress orientation effect were not addressed and w
was not directly calculated.

In the aforementioned studies, dislocation speed v either
had no effect on w or, through a direct relationship with
stress, had an effect interchangeable with stress. This as-
sumption works well for low dislocation velocities. At high
velocities (beyond 10-20% shear wave speed), relativistic
effects, inertial effects, and changes in mobility coefficient
become important, which causes v to have a separate influ-
ence on w from stress. Early work®!! showed that fast-
moving dislocations exhibited so-called “relativistic effects”
as their speeds approached the shear wave speed C, drawing
an analogy to Einstein’s theory of relativity for particles ap-
proaching the speed of light. Their impact on the interaction
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FIG. 1. Dissociation of a perfect screw dislocation into two
partials separated by a stacking fault of width w.
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forces and energies between two fast-moving dislocations
was calculated by Weertman® and Hirth and Lothe'? using
different treatments. The latter Lagrangian formulation was
specifically applied to study w between partials in fcc and
bce metals. Relevant to the present work, they showed that a
screw dislocation in an fcc metal constricts with increasing
speed until it reaches 0.8C (where C is the transverse sound
speed) after which it expands again and eventually splits
apart at speed C. In these works, only the steady-state solu-
tions were provided, and no other forces on the dislocations,
such as applied forces and friction forces, were considered.
Later, the full dynamical equation of motion was presented
in the work of Hirth ef al.,!3 where the effective masses of
screw and edge dislocations as a function of v were derived.
In the work of Gilman,'* inertial effects were considered. He
argued that kinetic energy can be used by a moving pair of
partials to shrink w, overcoming the interaction energy be-
tween them. He used a straightforward energy balance be-
tween the kinetic energy and self-energies of the two partials
to estimate that the w for Cu will constrict at a speed of C/9.
Stress orientation and relativistic effects were not considered.

The partial separation of extended dislocations can affect
many aspects of dislocation behavior and hence deformation
of single crystals and polycrystals. The stacking fault energy
(or wy) is a material property that distinguishes its behavior
from other fcc metals. Stacking fault widths affect the acti-
vation barriers for processes that require constriction, such as
cross slip,'”~2% junction intersections,?! and climb. Cross slip,
in particular, is well known to affect workhardening,zz’24 es-
pecially in stage III, substructure formation,>® shape and
size of the plastic zone ahead of a crack tip,2’ and response
under strain reversals,”®?° to name a few. The reaction prod-
ucts between extended dislocations are different than those
between perfect ones,>?33%3! which again can impact
workhardening, particularly in reversals of low stacking fault
energy materials, such as a brass.?” When partial separations
become large, such as in high-stress or high-strain rate situ-
ations, sheets of stacking faults’>* can be generated. Free
partials can also possibly lead to twin formation through sev-
eral mechanisms.>3+-37

In recent years, three-dimensional (3D) discrete disloca-
tion dynamics (DD) simulations have been developed and
applied to study the deformation of materials. With 3D DD,
one can directly examine the motion and interaction of many
dislocations, and relate microstructural evolution to the mac-
roscopic properties of materials.’¥#? In the parametric DD
formulation of Ghoniem et al.,’° dislocations are modeled as
curved lines between nodal points. At any instant in the de-
formation, the local stress 7, velocity v, and orientation & of
each dislocation segment can be calculated as a result of the
applied stress and internal stresses due to interactions with
surrounding dislocations. Dislocation multiplication from
pinned sources and reactions, such as annihilation and junc-
tion formation, are included. Recently, the effects of intro-
ducing dislocation inertia and cross slip into the computa-
tional model were studied.??*? Inertial effects are shown to
impact predictions for rates of 10° s~' and higher (up to
10% s71).40 Cross slip also greatly affected the predictions
and in Ref. 22, its influence on the velocity distributions,
stress-strain response, slip activity, and microstructural evo-
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lution was carefully examined. The energetic criterion for
cross slip, however, did not consider w and therefore cannot
appreciate the stress orientation effect, which is predicted to
manifest under high-stress (high-rate) conditions.

In 3D DD simulations, the dislocations are perfect. Con-
sequently, many of the elementary dislocation processes
mentioned above, which depend on dislocation core struc-
tures, dislocation dissociations, and width sizes, are ne-
glected. Accounting for stacking fault width, for example, in
the energetics of cross slip and dislocation reaction, would
greatly improve the predictive capability of DD simulations.
For doing so, the simplicity of the analytical expressions
from two-dimensional (2D) dislocation theory, such as those
found by Copley and Kear® and Hirth and Lothe!? for w, is
particularly attractive. However, certain behaviors of w pre-
dicted from this theory, namely, stress orientation effects,
relativistic effects, stress-velocity relationships, elastic aniso-
tropy effects, limiting speeds, and limiting separations, have
yet to be validated. Atomistic simulations are well suited for
studying such local behaviors and interactions between a few
dislocations, as well as providing an alternative method for
testing the regimes of validity of dislocation theory.

Recently, a small number of studies have applied atomis-
tic simulation to study the changes in stacking fault width.
Aubry and Hughes*! studied the reduction in the static stack-
ing fault width due to internal stress fields, which they ex-
perimentally observed. Mordehai et al.*? carried out molecu-
lar dynamics (MD) simulations on moving screw
dislocations under a widening stress state, showing that the
stacking fault width periodically oscillates. These oscilla-
tions were found to reduce with dislocation speed and not
depend on temperature. Duesbery*® used a 2D atomistic
model to simulate the constriction process of a screw dislo-
cation under a narrowing stress state. The separation was
found to contract at a slower rate than that predicted by an
analytic elastic model (details of which were not provided).
However, it is uncertain if the system was allowed to reach
steady state at each stress state in loading and unloading in
their simulation, which is usually assumed in theory. In the
above works,*>~#* the initial partial separation of a stationary
dislocation in simulation was much larger than that from 2D
dislocation theory. In a recent MD study of KClI, Kinoshita et
al.® observed partial separation of edge dislocations when
shock compressed along the [111], but not along the [100]
and [110] directions, suggesting stress orientation effects.
MD simulations were used in Ref. 46 to explain the observed
expansion or contraction of extended dislocations intersect-
ing a free surface. Near the surface, a dislocation will rotate
to screw orientation, thereby changing the interaction energy
and hence partial separation. Many other MD simulations
observe emission of partials (and deformation twins) from
grain boundaries’>~37 and have demonstrated that the cre-
ation of stacking faults depends on loading rates’* and im-
pact velocity.*

In this paper, MD simulations and 2D dislocation theory
are combined to study the effects of orientation, stress, and
velocity on the stacking fault width of a moving screw dis-
location. We begin with a review of straight dislocation
theory for extended partial dislocations in fcc materials and
then present the full dynamical equation of motion, including
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inertia, applied stress, dislocation drag, and relativistic ef-
fects. From this, a simple expression for the steady-state w
including relativistic effects, which applies to a dislocation
of any character (edge, screw, and mixed), is developed. Due
to an interest in cross slip and high-rate deformation, MD
simulations of a moving extended screw dislocation in cop-
per under various high-stress states are performed. The MD
simulations show that the 2D dislocation theory can reason-
ably predict the stress orientation effect and that this effect
manifests at only high stresses.’ It also shows that at these
same high-stress conditions, relativistic effects are also im-
portant and our improved analytical formulation proves to be
more accurate. The stress orientation effect has significant
implications on deformations involving strain path changes
and so additional MD simulations are performed for a rever-
sal path change. Before concluding, we return to the cross-
slip analysis of Bonneville and Escaig’ and study the impli-
cations of relativistic effects on cross slip.

II. STRAIGHT DISLOCATION THEORY FOR AN
EXTENDED DISLOCATION

A. Equations of motion

Consider a perfect dislocation with Burgers vector b and
dislocation line ¢ (along x) that dissociates in its slip plane
(with normal along z) into two partials with Burgers vectors
b, and b,, both with the same dislocation line as the parent &.
The dislocation moves normal to its ¢ and movement along y
is considered. The full equation of motion in the y direction
for the two partials is

Fi(v)==Bvy,+ Fpg 1y +f,— 7 (1)

FZ(U) =_BU2)'+FPK,2y_fr+ Y (2)

where F|(v) is the inertial force Fy(v)=ma,,, a=V and v
=x are the acceleration and velocity of a dislocation at posi-
tion x, and B is the drag coefficient for the partial disloca-
tions. The Peierls barrier is not included because it is negli-
gible for fcc metals. The B for each partial is assumed equal
and may be a function of v.** m is the mass of each partial
and, at high velocity, is not constant. m is calculated from its
edge (b,) and screw (b,) components as'3

(@] o

where C= V’E is the shear wave speed, C;=\ +2u/p is the
longitudinal wave speed, u and \ are Lamé’s constants, and
p is the material density.

The Peach-Koehler force (per unit length) on each partial
due to stress o is calculated as

FPK,p = (bp : 0-) X g’ p= 1’2 (4)

We express the local stresses 7, and 7,, as 7, and 7,,
respectively. (These local resolved stresses would result from
the applied stress and long- and short-range stresses from
surrounding dislocations.) The y components of the Peach—

Koehler forces on each partial are then
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Fpg 1 =b 7+ b1y (5)
and
FPK,2=b2xTx+b2y7-ya (6)

where b,,, by, b,,, and b,, are components of b, and b, in
the x and y directions, respectively.

Unlike perfect dislocations, each partial in the extended
configuration experiences two extra forces: an attractive
force per unit length y from the energy required to create the
fault and a repulsive force f, from the interaction with the
other partial. These forces act normal to the dislocation line &
(e.g., along y in Fig. 1). The repulsive force (per unit length)
is inversely proportional to the fault width w as follows:

£=2, ™)

where A is a function of the elastic constants and the char-
acter of the partial dislocations.
For an isotropic material, A is?

(by X &) - (by X fz)] (8)

1-v

Ajgo = 2ﬂ|:(b1 -&)(by- &) +
T

Applying Eq. (8) for a dissociated screw dislocation, A be-

comes
2
Al =—|(2- 9
B0 244 1-v ©)
and for a dissociated edge dislocation, it is
2
. b ( 1 1)
Al =—|——--, 10
o8 \l-v 3 (10)

where v is Poisson’s ratio and b=|b|. For an anisotropic ma-
terial, A for a screw dislocation is?

R b (K, K,
Aaniso=;7_ Z_E > (11)

where K, and K, are energy coefficients as a function of
anisotropic elastic constants.> In Eqs. (8) and (11), interac-
tions between screw and edge are null.

B. Steady-state velocity and width

Consider the perfect screw dislocation as illustrated in
Fig. 1(a) that dissociates into a lead partial b; and trailing
partial b, separated by w in Fig. 1(b). In this case, b, =b,
=b,=b/2 and by,=—b,=—b,=-b/23 and the equations of
motion for the two partials become

may,+ Bvy, = f,— y+ (b7, + byT,) (12)
and
masy, + Buyy =~ f.+ y+ (b,7, = b,7)). (13)

By adding Egs. (12) and (13), or subtracting Eq. (13)
from Eq. (12), we have, respectively,
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ap, + a, + Uy,
m ly 2y + ly 2y =bx7'x (14)
2 2
and
mw + Bw =2(f, - y+ b,7,), (15)
where W=a,,~a,, and w=v,,~v,,. Let
+
a= diy T dyy (16)
2
and
+ Uy
v= ETUZ.L (17)

be the average acceleration and speed of the extended dislo-
cation.

If the conditions are such that both partials are able to
reach steady state and their steady-state velocities are equal,
then w=0 and w=0. In this situation, Eq. (14) becomes

b.XT.X
Us="p - (18)
In other words, the steady-state velocity vy depends only on
7, and not on 7,. Because of this, 7, is the driving component
of 7 of a screw dislocation.
With Eq. (7), Eq. (15) at steady state can be written as

A
y=by7,’

W = (19)
where w is the steady-state stacking fault width and either
Eq. (8) or Eq. (11) can be used for A. wy depends on 7, on
material constants, and on 7,, but not on 7,. For 7, <0, wg
contracts with increasing |T [ A limiting value of 7,<0 can
be estimated from the minimum distance w g at Which
the self-energies of the extended and perfect dislocations are
equal.’ For 7,>0, wg expands. In this case, 7,=y/b, repre-
sents an upper limit for 7,, at which a steady-state value of w
cannot be achieved and partial separation increases un-
bounded in time. For 7,=0, wg,=wy=A/ v, regardless of dis-

y
location speed [Eq. (18)].

C. Relativistic effects on w

In Egs. (8) and (11), A is independent of v. However,
Weertman® and Hirth and Lothe'? showed that the elastic
fields of a uniformly moving dislocation change with its
speed, a so-called relativistic effect. As the speed increases
up to the Rayleigh wave speed C,, the interaction force be-
tween the screw parts decreases and that between the edge
parts increases. Therefore, for an extended screw dislocation,
the repulsive force between the like-screw parts will decrease
and the attractive force between the oppositely signed edge
parts will increase, bringing the two partials together. The
opposite occurs for a dissociated edge dislocation. For
speeds greater than C,, like-signed edge dislocations attract
and oppositely signed ones repel. The two partials of an ex-
tended screw dislocation, for example, moving faster than
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C,, will separate with speed. At C, they will tear apart.

In the event that both partials are moving at the same
uniform speed v, one can approximately account for these
relativistic effects on wg, over the entire speed range 0
=v/C=1 in a redefined A(v). A(v) for an extended disloca-
tion in an isotropic material can be written from the work of
Weertman® or Weertman and Weertman*® as follows:

4
Alv) = {@(bl £)(b, §2)+4<C)(/31 ﬁ)(blxa)

X (b, X fz)]~ (20)

For a screw dislocation, it is

2 2
A'(v) = ub {32 (C )[(1"'52)2/,32 4,31]} (21)

and for an edge dislocation, it is

b1 c?
A(v) =— l-g_ﬂ_{gﬁz - (F)[(l + BBy - 4,31]},
(22)

where B1=1-02/C}, B3=1-02/C? and o?=1-v?/2C".

The same result is obtained using the Lagrangian-based
derivation of Hirth and Lothe,'? although the expressions
may appear in slightly different form than those of
Weertman.?

Returning to the case in which w=0 and w=0 but with
relativistic effects, w, of an extended screw dislocation is
instead

Ay _
y=byT,

Alr)
y-b,1,’

Combining Egs. (18) and (23), w, is found to be a func-
tion of both 7, and 7,. For 7,=0, w # w, when the dislocation
is moving fast under a large 7,. This case is the same as the

“no-stress” result found by Hirth and Lothe.'?
For an edge dislocation, b,.,=-b;,=-b, =-b/2\3 and

byy=b1,=b,=D/2. The steady-state VCIOCIty and stacking

fault width are vss—“ and wbs(vss)—y_% b7~ The dis-
sociated edge expands with |7,| when 7,>0, and the critical
value at which it splits infinitely apart is y/b,. It shrinks with

|7,| when 7,<0.

III. MOLECULAR DYNAMICS SIMULATION MODEL OF
A MOVING SCREW DISLOCATION

We use classical MD simulations to study the effect of 7,
and 7, on w of a moving screw dislocation. For any atom ¢,
its motion is calculated by solving Newton’s second law of
motion as follows:

f=fi=-—, 24
ma 1 1 &ri ( )

where m,, is the mass of an atom, r is the position vector, f is
the force on the atom, and E is the potential energy of the
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system. In our MD simulations, we use the embedded-atom
method, which was first developed by Daw and Baskes,*® for
E as follows:

1

N
3 2 ¢ij(rij) s

i#j,i,j=1

N
E=2 F{p)+ (25)
i=1

where F is the embedded function, ¢ is the pairwise interac-
tion between atoms i and j with separation distance r;;, and p
is the electron density. In this paper, the potential parameters
developed by Voter®' for copper are used. The simulations
were conducted at constant temperature 7=300 K. The ma-
terial constants used in the analytical calculations are calcu-
lated from the interatomic potential: ©=59.8 GPa, v
=0.315, C;=4477.1 m/s, C=2587.37 m/s, K,=82.1 GPa,
K,=47.6 GPa, and y=0.0361 J/m?. This value of v is just
slightly lower than what has been calculated or measured
elsewhere for Cu.3>>3 Yet, it is still comparable to Au, which
is also considered an intermediate stacking fault material
such as Cu. Measured partial widths for Cu and Au have
been found to be approximately the same.** y is higher than
that for Ag, which is considered a low stacking fault energy
material, and lower than that for Al, which is a common high
stacking fault energy material.

The geometrical setup of the simulation block is shown in

Fig. 2, with the x axis along [110], y axis along [112], and z

axis along [111]. In the z direction, the top and bottom of the
simulation block are free surfaces. In the x direction, we
apply periodic boundary conditions. In the y direction, we
adopted special periodic boundary conditions developed by
Rodney and Martin>* for screw dislocations. In this way, the
dislocation has an infinitely long region to propagate without
leaving the crystal. According to this setup, the stress field on
the screw dislocation from one of its images is o,
=ub/2y, where y is the relative distance (+ or —) between
the two. So, because of symmetry, there is no net force on
the screw dislocation from its images. The edge components
of the partials experience some interactions, which is negli-
gible due to the selected large y separation (~140 b). Only
under certain stress states and high-stress levels when the
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FIG. 2. (Color online) (a) The geometrical setup for the molecu-
lar dynamics simulations and the coordinate system with crystal
plane orientations. A screw dislocation is inserted in the middle of
the simulation block. (b) The perfect screw dislocation has split into
two partial dislocations separated by width w,. Atoms with less than
12 nearest neighbors are shown. Stacking fault width w is measured
as the distance between the centers of the two partials.

stacking fault can grow very wide and be close to other dis-
locations will there be strong effects that can significantly
change the stacking fault width. As we will point out later,
there is only one simulation where this is the case, prohibit-
ing a dislocation from splitting infinitely apart, as predicted
by the analytical solution when 7,> y/b, [Eq. (23)].

The simulation volume dimensions are 5.1(x) X 35.4(y)
X 21.3 nm?(z) and it contains 326 400 atoms and 102 lattice
planes. Different values for the z dimension were tested to
study the effect of surface image forces and ensure that the
predictions converge to the same values for stacking fault
width. z=21.3 nm is found to be sufficiently large, such that
within the stress limits where a dislocation is predicted to not
split apart unstably, steady state is achieved and the evolution
of v and w is not affected by the simulation size.

To visualize the dislocations, atoms with less than 12
first-nearest neighbors are plotted, so that only the partials
and not the atoms within the stacking fault are shown. The
stacking fault width is measured as the distance between the
center of the two partials, as shown in Fig. 2(b). It is ex-
pected that the calculated values for w may vary if other
choices are used to determine partial positions and define
stacking fault width.

A screw dislocation with Burgers vector b= %[1 10] (along
x) is inserted into the perfect lattice by moving all atoms

TABLE 1. Normalized steady-state stacking fault width, wg/w,, from analytical solution for different
applied stresses, 7, and 7, (stress unit: MPa), while MD results are reported inside the parentheses.

7,=0 7,==200 7,=200 7,=-=500 7,=500
iso
7.=0 1 0.71 1.69 0.50 %
A pniso
7.=0 1 0.71 1.69 0.50 %
A(v)
7.=0 1(1) 0.71 1.69 0.50 %
7,=50 0.97(1) 0.69 1.64 0.48 o
7,=100 0.89(0.95) 0.63(0.75) 1.50(1.40) 0.44(0.60) ©(2.20)
7,=200 0.80(0.75) 0.57(0.60%) 1.36(1.34) 0.40(0.45) %o
7,=500 0.73(0.65) 0.52(0.50) 1.24(1.18) 0.36(0.30) %o
“From Fig. 9.
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(a)

according to dislocation theory.? Then, the system is allowed
to relax, stress-free, for 3 ps. The dislocation dissociates in
the xy plane into two partials with Burgers vectors b; and b,
with an intrinsic fault in between following

(26)

[110] — £[121] + £[211].

The relaxed stacking fault width of the screw dislocation at
the end of relaxation is about 2.0 nm, which lies in between
the isotropic analytical prediction of 2.20 nm and anisotropic
prediction of 1.46 nm. This is the starting configuration for
all MD simulations under stress. A shear stress, 7, is applied
to all atoms lying in the top and bottom surfaces of the
simulation box. This relaxed stacking fault width is taken as
the “static and stress-free” stacking fault width w, while the
stacking fault width under stress will be referred as the “dy-
namic” stacking fault width w.

IV. RESULTS

To study the motion of the extended screw dislocation in
Eq. (26), we use three types of loading in the MD simula-
tions. In the first type, only 7, is applied. In the second type,
both 7, and 7, are applied. In the third type, 7, and 7, are
initially apphed followed by a reversal of the stress. For all
results, w and v are normalized by the static stacking fault
width w, and the shear wave speed C, respectively. For com-
parison, the analytical predictions of w using Eq. (19) or Eq.
(23) for A under these same stress states are listed in Table 1.
In the relativistic case [Eq. (23)], where A depends on v, v
calculated from the MD simulations at each value of 7, is
used. As shown in Table I, the anisotropic formulation leads
to a lower w than the isotropic one,” but the effect of aniso-
tropy (without relativistic effects) is removed by the normal-
ization wy.

A. Stacking fault width under 7, only

In this set of simulations, a wide range of 7, are applied
(7,=50-5000 MPa) while 7,=0. The time evolutions of v
and w are shown in Fig. 3 for 7,=50, 100, 200, and 500
MPa. Figure 3(a) shows that the higher the 7,, the quicker the
dislocation achieves steady state and the higher the vy. For
the stress levels simulated here, v/ C>0.2.

The MD calculations in Fig. 4 show that v nonlinearly

(b)

varies with 7. vy linearly increases with stress at low
stresses (at and below 100 MPa) where it can reach =0.45C.
Above this range, vy slowly increases with 7, seeming to
asymptotically approach C. Such deviations from the linear
stress-velocity regime are difficult to experimentally
observe,”® and have only been observed at velocities above
0.1C in LiF crystals in Refs. 56-58. This asymptotic behav-
ior has also been observed in MD simulation at different
temperatures.42 To date, the reasons for the nonlinear behav-
ior of dislocation speed with stress are unknown.

It has been observed in experimental studies and other
MD simulations that the drag coefficient B increases with
temperature in agreement with many theories.’*>*-°! There-
fore, it is quite possible that locally around a fast-moving
dislocation, the temperature increases, thereby increasing the
drag. A preliminary estimate of the temperature rise yields
only 20 K over the stress range 50-500 MPa. However, es-
timating the local temperature rise around the core of a fast-
moving dislocation is not straightforward and one should
take this result as very approximate.

We explore the notion that the asymptotic behavior could
be associated with a concomitant increase in B. B is esti-
mated by applying Eq. (18) for each (7, v,,) and plotted in
Fig. 4(b). At the lower stresses, 7,= 100 MPa, B is constant
and equal to 22 wPas, which is in reasonable agreement
with measurements for Cu.3%%? At higher stresses, it linearly
increases with 7, as follows:

1 6
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FIG. 4. (Color online) MD calculations of (a) the normalized
steady-state speeds of a screw dislocation under different applied
stresses 7,; (b) the calculated drag coefficients for different applied
stresses 7. The fitted line is Eq. (27).
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3r

25F FIG. 5. (Color online) (a)
r Changes in the normalized steady-
2F state stacking fault width as a
= | function of normalized steady-

~., 15 - . . .
= state dislocation speed, s.hov&./mg
1k the Weertman effect. Solid lines
N are from Eq. (23), and triangles
0.5:_ A A are from the MD simulations. (b)
A a4 Relationship between the applied
Od — 000" ~2000" 5000 7. and the steady-state stacking

1, (MPa) fault width w.
(b)

b The oscillations hinder a straightforward calculation of
B= K(E)H"'Bo’ (27) we. Here, an wg is estimated from the MD simulations by

where By=25.5 uPas, and K=1.053 35, which is interest-
ingly very close to unity. Note that the first term only pre-
vails when 7,>10> MPa. One should keep in mind, how-
ever, that in the linear range, B is clearly defined, while in
the asymptotical range, it arguably is not. According to Eq.
(18), we have v as a function of 7, only:

bex

K(%)7+By 28)

Uss =

Plugging this equation back to Eq. (21) for A(vy)=A(7,)
and in turn Eq. (23) for w(7,), the relationship between 7,
and w can be established and is plotted in Fig. 5(b).

With the values of B for 7,=50, 100, 200, and 500 MPa,
Eq. (1) predicts that at approximately r=28, 27, 17, and 8 ps,
respectively, the dislocation reaches 95% of its v, which is
in good agreement with the MD results.

Figure 3(b) shows the corresponding time evolution of
w/wy. Consistent with the results of other MD studies,** we
find that w oscillates during the entire simulation with a pe-
riod of a few picoseconds or less. The amplitudes of the
oscillations are generally smaller for the faster-moving dis-
locations. The peak value w,,, occurs in the beginning of the
simulation, within 6 ps. After the steady-state velocity is
reached, w continues to oscillate but at a lower amplitude.
The values of w,,, and corresponding times are listed in
Table II. The time and value of w,,,, are approximately the
same for 7,=200 MPa and decrease with 7, for 7,
>200 MPa.

averaging w/w, over a time interval of 10—15 ps much later
after v is achieved. Table I compares this w, with the ana-
lytical models (19) and (23). Figure 3 and Table I show that
for 7,=100 MPa and higher (or for v,=0.4C), the steady-
state width contracts, that is, wy/wy<<1. Because 7,=0, this
contraction is not predicted by Eq. (19) (w/wy=1), which
does not account for relativistic effects. The calculation of
w/wg using A(v) in Eq. (23), which does account for relativ-
istic effects, predicts this contraction in reasonable agree-
ment with the MD results (see first column, 7,=0 in Table I).
The agreement is reasonable considering that any coupling
between elastic anisotropy and relativistic effects are ne-
glected in Eq. (23). (As mentioned earlier, anisotropic effects
predicted in the stationary formulation [Egs. (11) and (19)]
have been removed in the normalization by wy.)

One important consequence of relativistic effects, as ex-
plained by Weertman® and Hirth and Lothe,'? is that when
the dislocation speed exceeds the Rayleigh wave speed (here
C,=~0.93C), edge dislocations of like-sign attract and
opposite-sign ones repel. Like-screw dislocations, on the
other hand, do not anomalously behave in this way, at least
in an isotropic material. However, the change in the interac-
tion between the edge components with speed dominates
over that between the screw components. Accordingly, the
partial separation of a fast-moving extended screw disloca-
tion will not continuously constrict with speed up to C, as the
repulsion between its oppositely signed edge components
will dominate and cause the stacking fault width to expand.

Figure 5 compares w, as a function of v for 7,=0 as
calculated from Eq. (23) and the MD simulations. As shown,
both theory and simulation predict that wy of an extended

TABLE II. MD results of the maximum values of the stacking fault width, as wy,,,./wq, and the time it

occurred ., (ps) in parentheses. Stresses are in MPa.

7,=0 7,=-200 7,=200 7,=-500 7,=500
7,=50 1.7(6.0)
7,=100 1.6(6.0) 13(2.0) 2.3(5.0) 13(2.0) 5.2(10.0)
7,=200 1.6(5.0) 1.8(12.0)° 2.1(4.0) 12(2.0)
7,=500 1.1(4.0) 13(2.0) 1.7(5.0) 13(2.0)

“From Fig. 9, time measured from load reversed.
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Line legend same as in (a)

FIG. 6. (Color online) (a) The
evolution of the normalized
stacking fault width and (b) the
normalized speed of a screw dis-
location under various 7, and 7,
=+200 MPa. ’
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screw constricts with speed until v,=0.8C. A further in-
crease in speed over C, causes the separation to increase
toward w, and eventually tear apart at v/C=1. The agree-
ment for the turning point velocity is not bad in spite of the
isotropic assumption used in the theory. Also in both, the
turning point occurs below C,, and around C,, wg still re-
mains below wy.

Generally, Eq. (23) agrees well with the MD predictions
below v /C=0.65, but underestimates the constriction at
higher v/ C. There are several possible reasons for this dis-
crepancy. First, we consider any errors coming from measur-
ing the stacking fault width, which become relatively larger
as the width becomes smaller (see error bars). For example,
in our case when it is 50% contracted, w is less than 5/ and
therefore including or excluding one row of atoms in deter-
mining the partial positions will generate an error of about
*2b, which is more than 40% error. Despite the generous
error, it still does not completely explain the discrepancy.
Another reason may have to do with the assumption of isot-
ropy. For dislocations of certain orientations in an aniso-
tropic material (providing three displacement components),
parallel screw-edge interactions may not be null and dy-
namic interactions between like screws and parallel screw
and edge can also exhibit anomalous behavior.%3 In the
present material model, the elastic constants for this disloca-
tion orientation are C;;=179 GPa, C, =123 GPa, and
C,4=81 GPa. The anisotropy factor is 2Cu/(Cy1—C),)
=2.89, which is relatively high. However, according to con-
tinuum theory, the dislocation in the present case [£11(110)]
is not oriented such that three displacement components are
expected.64 Last, there is the usual consideration: The dis-

30 40 50 60

Time (ps)

(b)

crepancy simply results because when w/wy=0.5 or w
=1 nm, the partials are too close for continuum theory to

apply.

B. Stacking fault width under 7, and 7,

In this set of simulations, both 7, and 7, are nonzero. In

Fig. 6, the time evolutions of w and v are plotted for 7,
=*200 MPa and 7,=100 or 500 MPa. In agreement with
Eq. (18), v is determined by the value of 7,, irregardless of
the magnitude and sense of 7,. Also, in agreement, when
7,<0, the stacking fault contracts and vice versa when T,
>0 For a given 7,, wg decreases as 7, increases. The theory
without relat1v1stlc effects [Eq. (19)], however, predicts that
w should be independent of 7,, see Table I. With relativistic
effects [Eq. (23)], the theory can explain the reduction in w
with increase in 7, (or velocity) observed in MD. As before,
oscillations in w persist and, prior to reaching steady state,
are more pronounced for the slower-moving dislocations
(7,=100 MPa).

To enhance the stress orientation effect, 7, is increased in
magnitude to £500 MPa, and 7, is either 100, 200, or 500
MPa and the results are shown in Fig. 7. Again, it is observed
in MD that w expands under positive 7, and shrinks under
negative 7,. For 7,=-500 MPa, wg, decreases further as ve-
locity increases, a trend predicted by Eq. (23), which ac-
counts for relativistic effects (see Table I), but not by Egq.
(19), which neglects it.

As discussed in Sec. II, it is possible for a sufficiently
high 7, (> 489 MPa for this material) to tear apart a dislo-
cation. Due to the finite size of the MD simulation, this be-

y AN wy,\«/”—v\,w"‘
A /[/' .\A\J\A'\fwv"

_Line legend same as in (a)

FIG. 7. (Color online) (a) The
evolution of the normalized
stacking fault width and (b) the
normalized speed of a screw dis-
location under various 7, and 7,
=+500 MPa. ”
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wiw,
v/C

FIG. 8. (Color online) (a) The
normalized stacking fault width
and (b) the normalized speed of a
screw dislocation under reverse
loadings and 7, only.

20 60 20
Time (ps)

(a)

havior cannot be simulated, as shown in Fig. 7 for 7,
=500 MPa. As described earlier, the boundary conditions
are such that we are actually simulating an array of screw
dislocations, and their interactions would prohibit an un-
bounded expansion of w.

C. Stacking fault width under a stress reversal

Stress- and velocity-induced separation of partial disloca-
tions suggests that interesting transient behavior may occur
in the event of a strain path change. In this section, we take
a preliminary look into the effect of a reversal path change
on w. We first examine the influence of the reversal sequence
and loading rate when 7,=0. In test 1, we apply
7,=500 MPa, then abruptly reverse the stress (7,
=-500 MPa) at 40 ps. Test 2 is the opposite: in the preload
7,=—500 MPa, followed by an abrupt reversal at 40 ps. In
test 3, we preload again at (7,=—500 MPa) and at 40 ps
unload and reload in reverse at a rate of 100 MPa/ps.

The w and v for these three tests are compared in Fig. 8.
The sign of the preload and loading rates did not affect the
results. wg and v are the same before and after the reload.
Due to relativistic effects (v/C=0.6), w contracts to nearly
half w, as seen earlier in Fig. 3 and Eq. (20). There is a
transition period of 10 ps after the load is reversed where v
changes and w expands to 1.6 times w,. This maximum
value w,,,, after the reload is much higher than w,,, in the
preload (see Table II).

Next, in Fig. 9, we examine the impact of the stress ori-

L 1 L L
40 60
Time (ps)

(b)

80

entation effect on a reverse path change by considering
7,7 0. In the preload, 7,=200 MPa, 7,=200 MPa, which
expands wg and after r=40 ps, the stresses are reversed:
7,=—200 MPa, 7,=-200 MPa, which contracts wg. As be-
fore, a transition period exists, during which v and w change
their values in response to the stress reversal. However, in
this case, the transition period is much longer, =30 ps. In
this period, w expands to a w,,,,=1.8, which is much higher
than w,,,, under the same state in monotonic loading. After-
ward, w contracts below w, and achieves steady state, close
to the value predicted by the model and expected under
monotonic loading (see Table I).

These few examples suggest that reverse path changes can
induce transient expansions of w, but no permanent effect on
we- A more complete strain-reversal analysis is deserving
and left for future work.

V. DISCUSSION

A. Some interpretations and limitations of continuum
dislocation theory in dynamic dislocation motion

In the present MD simulations, dislocation motion in the
speed range of 0.2C<v < C is not strictly uniform, consist-
ing of small local accelerations and decelerations and at best
reaches a quasisteady state. First, we seek insight from com-
parisons with the analytical model (1). Equation (1) predicts
oscillations with an amplitude of at most w/wg=1.0005 and
a period of 10—-15 ps when B=22 uPa s, and no oscillations
when B=50 wpPas. In the former case, the oscillations

here

| Load reversed

()=

FIG. 9. (Color online) (a) The
evolution of the normalized stack-
ing fault width and (b) the normal-
ized speed of a screw dislocation
under reverse loadings of both 7,
and 7,.
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stopped after 200 ps or so. Therefore, the concomitant in-
crease in B may explain the reduced amplitude of these os-
cillations with dislocation speed, but not their presence.
Moreover, this comparison implies that the oscillations ob-
served in the MD must not be attributed to any of the dy-
namics contained in the continuum-based equation of motion
(1) (e.g., inertia, drag, and interaction between partials).
Mordehai et al.** also attempted to analytically explain the
oscillations, but their equation of motion did not account for
the applied stress or drag. Incidentally, we find that the os-
cillations were not affected by the simulation size in the z
direction and were not reduced when the loading rate was
reduced.

The above analysis leads us to believe that the oscillations
are most likely due to the discrete atomistic nature of the
dislocation and its interaction with the crystal. This still
opens up many other possible explanations. For instance,
they could be due to oscillating damping forces (resulting
from temperature fluxes, phonon radiation from the core, and
back stresses from the initial period of acceleration®),360-68
phonon waves impinging on the dislocation causing it to
vibrate, irregular oscillating dislocation motion near C due to
nearest neighbor exchange, or nonstraight motion (zigzag-
ging) of the dislocation, which would locally change its
screw-edge character.!>% Regarding the latter, in all MD
simulations, the dislocation remained straight. Some of these
effects are expected to become more pronounced with speed,
while others are expected to diminish. Further work is re-
quired to check if these explanations are consistent with the
observed reduction in oscillations with increases in 7, (or
speed) seen here and in other works*? and their persistence
over long simulation periods.

Dislocation speeds in the present simulations did not ap-
preciably exceed C,. In Ref. 42, it was possible to achieve a
speed of C with an applied stress of 4000 MPa; however, in
the present work, the dislocation still remains subsonic at
7,= 5000 MPa due to the increasing damping forces with
speed. Whether a dislocation can move at and above C still
remains a controversial subject. According to linear elastic
dislocation theory, the energies of screw and edge disloca-
tions become infinite at C for isotropic metals and at lower
values for anisotropic metals.3-114%93 Furthermore, it has
been predicted that at high velocities near C, edge disloca-
tions can become unstable with respect to zigzagging in iso-
tropic metals,>!? and both edge and screw in anisotropic
ones.®® One- and two-dimensional discrete lattice models, in
which the singularities of continuum solutions would not oc-
cur, also predict breakdown of regular dislocation motion (in
adjacent planes in the 2D models) and core instabilities at
speeds close to but below C,%°-7! while others do not.®”-8
One possible issue with the above works is that they do not
consider all possible damping mechanisms. In this regard, a
discussion by Gilman*® proposes that dislocation speeds are
limited to the subsonic regime due to viscous and inertial
losses at its core.

B. High-rate and high-stress deformation

It is important to emphasize that the results of this work
are important only for conditions involving high values of 7,

PHYSICAL REVIEW B 77, 184112 (2008)

and 7,, where both relativistic and orientation effects can
appreciably change w from wg. Such situations can occur in
high-rate loading, shock conditions, and high-stress situa-
tions, such as near cracks, defects, and grain boundaries (par-
ticularly in nanocrystalline metals).

Partial emission can be related to the critical stress at
which a dislocation will be split apart (either 7, . for a screw
dislocation or 7, for an edge dislocation).? In the case of a
screw dislocation when 7,> 7, ., w, according to Eq. (23),
continuously expands in time as long as the stress remains
constant and is not removed. Each partial achieves a different
steady-state velocity and, hence, wy grows unbounded in
time. As they propagate, they create stacking faults into less-
stressed regions, where they can attain a finite separation. In
the case of shock along the [100] direction (7,>0), genera-
tion of stacking faults near the shock front has been observed
in very large scale MD simulations.?® These faults propa-
gated either forward with the front or back into the shocked
material. Later, when the rarefaction wave passed, the stack-
ing faults were removed. Based on our stress-reversal simu-
lations, it is possible that they contracted under the reverse
stress state.

When 7,<T,, the dislocations in our simulations were
able to achieve (quasi-) steady-state motion. However, under
actual extreme conditions, it is possible that steady state is
not achieved. For this reason, we also examined the peak
value of stacking fault width w,,,, which manifests in the
initial transient period under constant applied stress and
stress reversals (Table II). Generally, we find that wy,,,/w is
greater than unity in all cases and, not surprisingly, greater
when 7,>0 than when 7,<<0. w,,,, manifests from the os-
cillations in w and therefore the significance of w,,,, is un-
certain until the reason for the oscillations is uncovered.

In the case of a cracked crystal, twins or stacking faults
can be emitted from the crack tip, which changes the shape
of the plastic zone ahead of it. For instance, our results are
consistent with observations of dislocations (screw or mixed)
in plastic zones ahead of a crack in Ni.?” As in other metals
with low to moderate y, Ohr and co-workers?’-">73 observed
plastic zones in Ni consisting of partial dislocations. In par-
ticular, this type of plastic zone developed only in certain
crack orientations, which was realized as a stress orientation
effect by Kobayashi and Ohr.>” When the tensile axis was
oriented along the [001] direction (7,<0), no stacking faults
were observed (suggesting cross slip), but along the [111]
and [101] directions (7,>0) they were (suggesting little to
no cross slip). Metals with high v, on the other hand, gener-
ated the classical butterfly plastic zone as a result of cross
slip, regardless of orientation.

C. Implications on cross slip

The likelihood a screw segment cross slips can be deter-
mined by an activation energy calculated from the energies
for each event in the cross-slip process, starting with its con-
striction and ending with its expansion on the cross-slip
plane. This energy barrier would, undoubtedly, depend on
w), its width on the primary plane and w,, its width on the
cross-slip plane. Take, for example, the expression by
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[1-11]

[100] [201] [101]
FIG. 10. Stereographic triangle for the example discussed in

Sec. V.

Piischl!’ for the energy change associated with cross slip:
AE=E,+E,+L[E(w,) - E(w,)], (29)

where Ej, and E|, are the energies to bend the dislocation for
constriction on the primary plane and to bow out the dislo-
cation expanding on cross-slip plane, L is the length of the
segment that has cross slipped, and E(w),) and E(w,) are the
energies associated with reducing the stacking fault on the
primary plane and cross-slip planes, respectively. In theory,
E(w) is usually found to be proportional to w.>7!7 Accord-
ingly, even without an exact expression for E(w), it can be
expected that cross slip will be energetically favorable when
w, is small and w, is large and the difference (w.—w,) is
positive.’

Estimates for w, and w, can be approximated using the
steady-state value in Eq. (23), where w is a function g of 7,
7y, and y. Because 7, and 7, change as the screw dislocation
transitions from the primary glide plane to the cross-slip
plane, so will its wy, and v according to Eqgs. (23) and (18).

Suppose an axial stress *o is applied along direction 6.
In this loading situation, wy will be observed to vary as a
function % of 6, o, and 7y as follows:

W =8(T, Ty Y) = h(6,0.7). (30)

It is straightforward to find 7, and 7, given 6 and o and
therefore to convert from one function to another. Implicit in

4
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both expressions in Eq. (30) is the additional dependence on
v(7,), which arises from relativistic effects.

For this type of loading, it is natural to consider a stereo-
graphic triangle, such as the one in Fig. 10. Copley and
Kear’ defined regions in this triangle where w, widens or
narrows with stress. For tensile loading, orientations in re-
gion A would lead to a narrowing w), with stress and orien-

tations in region B+C, a widening w, with stress. For orien-
tations lying along the [311]-[201] boundary, there is no
orientation effect because, as Copley and Kear® pointed out,
the Schmid factors on each partial are equal for orientations
along this boundary. Later, Bonneville and Escaig’ defined
three regions: A, B, and C based on the narrowing-widening
behavior of both w, and w.. Narrowing or widening was
determined by the sign of 7,: 7, on the primary plane
changes sign across the [311]—[201] boundary, whereas on
the cross-slip plane it changes sign across the [211]-[101]
boundary. Consequently, tensile loads in region A lead to
narrowing of w, and w,, in region B to widening of w,, but
narrowing of w,, and in region C to widening of w, and w,.
Compression along these same directions has the opposite
effect. Cross slip, therefore, becomes more favorable in re-
gion B as the compression stress increases.’

Our formulation for wy without relativistic effects [Eq.
(19)] is also based solely on 7,, and therefore will lead to the
same conclusions as Bonneville and Escaig.” Even the analy-
sis of Copley and Kear,? which is based on Schmid factors,
would produce the same results as Eq. (19), which is based
on PK forces, as shown by Nabarro.* With relativistic effects,

however, we find from Eq. (23) that there is still a slight

orientation effect via 7, along the [311]-[201] boundary.
As an example, consider a screw dislocation with Burgers

vector %[1 10] that cross slips from its primary [111] plane to
its cross-slip plane [111] through an obtuse angle (or to
[111] through an acute angle). In this case, b1=é[1§1] and
b2=%[21_1_] on the primary plane and b LC:;—)[IEI_] and b, .
=%[21_1] on the cross-slip plane. Figure 11 compares the
change in wy,/wy and w./w, with absolute value of o/ u for

FIG. 11. Stress orientation effects on the
steady-state stacking fault width (normalized by
the zero-stress value wy) in the primary w), and
cross-slip w, planes for three compression load-
ing orientations. The solid curves account for
relativistic effects and the dotted curves do not.
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FIG. 12. The difference in the steady-state stacking fault width
between the primary and cross-slip planes for several compression
loading orientations as it varies with applied stress o. These calcu-
lations account for relativistic effects.

compressive loading along orientations [100], [311], and

[111], with and without relativistic effects, Eq. (23) (solid)
and Eq. (19) (dots), respectively. As shown, compressive
loading along the [100] direction (region A) widen both w,

and w,, whereas loading along the [111] direction (region C)
narrow them. Tensile loading along these same directions
would have the opposite effect. Widening occurs at a faster
rate than narrowing, whether it occurs under tensile loading

for [111] or compressive loading for [100]. Relativistic ef-
fects cause the width to be slightly smaller than without.

Orientations along the [311]—[201] boundary are most af-
fected by relativistic effects. Without them, there is no ori-
entation effect on the primary plane, i.e., w,=w,, because 7,
is zero. With them, there is a shrinking of w,as o (or veloc-

ity) increases. With or without, w, widens. Therefore, due to

relativistic effects, orientations along the [311]-[201]
boundary favor cross slip under compressive loading.
Figure 12 shows (w.—w,)/w, with relativistic effects’
[Eq. (23)] as a function of the absolute value of o/u for
compression loading along several orientations: [301] in re-

gion A; boundary orientations [311], [211], and [101]; [302]
in region B; and [122] and [234] in region C.

In all cases, values for w on the primary and cross-slip
planes become more disparate as stress increases. w,>w,, in

every orientation, except [122] and [234], where We<w,.
Tensile loading has the opposite effect.
For orientations on either side of (e.g., [301] and [302]) or

along the [311]-[201] boundary, the difference increases at
a relatively faster rate with stress. This occurs because wid-
ening on the cross-slip plane in these cases rapidly grows
with stress.

For orientations along the [211]-[101] boundary, both 7,

and 7, are zero on the cross-slip plane and therefore neither
orientation nor relativistic effects can affect w.=w. In these

PHYSICAL REVIEW B 77, 184112 (2008)

cases, (w.—w,)/w, reflects the shrinking of w, with stress.

For the two orientations in region C, the change in w
during cross slip is the least. Both w, and w, narrow in
region C and narrowing happens at a slow rate.

For loading directions [100] and [111], at the extreme
ends of regions A and C, respectively, (w,—w,)/w is zero
because w,=w,.. In these cases, the last term in Eq. (29)
would disappear.

In the high-velocity regime of interest here, cross slip is a
dynamic process and, thus, the energetic expression should
also include the associated change in kinetic energy. At this
stage, we only mention changes in v, when the screw dislo-
cation cross slips. For orientations within A and B, there is a
drop in vy due to a reduction in 7, from the primary to the
cross-slip plane. The reduction is greatest for the orientations
within region B. Within region C, however, v increases
from the primary to the cross-slip plane. The associated
change in kinetic energy may affect the energetics of cross
slip at high rates.

VI. CONCLUDING REMARKS AND RECOMMENDATIONS

Our MD results indicate that the stacking fault width of a
moving screw dislocation depends not only on material con-
stants (u, by, b,, and ), but also on the applied stress and its
speed. The stress orientation effect,*> that is, the expansion
or constriction of w relative to w, with changes in the mag-
nitude and sense of 7,, is clearly demonstrated. Most impor-
tantly, the present work indicates that in addition to this ef-
fect, wg, of a screw dislocation decreases as its velocity
increases, as a result of relativistic effects.*’

The results of this study can explain some of the results
reported in other MD simulation studies. In Ref. 42, the
moving screw dislocation was observed to increase in width
as the stress increased. This is a stress orientation effect be-
cause the stress was applied normal to the dislocation line,
i.e., 7,70, and not a relativistic effect as they suggest. In
fact, for speeds below C,, the relativistic effect tends to
shrink w, and not expand it. In Ref. 43, an increasing (for-
ward) then decreasing (reverse) constricting stress was ap-
plied to a screw dislocation. The partial separation-stress
curve followed a lower path in reverse than forward. It is
unknown if the reported widths were steady-state values at
each loading and unloading stress. If not, then the longer
transient after a reversal may explain the observed hysteresis.

Examples in Figs. 11 and 12 clearly show that stress ori-
entation effect on wg, becomes significant: (1) close to the
limiting values of 7, defined by Eq. (23) or Eq. (19) and (2)
for orientations away from the [311]-[201] and [211]
—[101] boundaries, and (3) when 7, is high, such that rela-
tivistic effects can cause a shrinkage of w, regardless of load-
ing orientation. Relativistic effects are most noticeable for

loading directions along the [311]-[201] boundary and ab-

sent along the [211]-[101] boundary. Otherwise, for low
values of 7, and 7, orientation effects are negligible, and the
speeds are low, so relativistic effects are negligible as well.

Regarding cross slip, Figs. 11 and 12 show that loading

orientations near the [311]-[201] boundary or in between
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the [311]-[201] and [211]-[101] boundaries (region B)
that cause pronounced narrowing-widening behavior,” and
large reductions in velocity (kinetic energy) are likely to be
the most energetically favorable for cross slip. At high
speeds where relativistic effects become important, even ori-
entations on the [311]—[201] boundary can favor cross slip.
Orientations near [111] where w quickly contracts with ap-
plied compressive stress on the primary plane are not neces-
sarily favorable for cross slip because they also lead to con-
traction on the cross-slip plane.

It is shown that linear elastic straight dislocation theory
including both stress orientation and relativistic effects can
explain the dynamical contraction or expansion observed in
MD simulations. The advantage is that reasonably accurate
and simple expressions for w, accounting for both effects,
can be written; see, for instance, Eq. (23). These analytic
expressions can benefit higher length-scale calculations, such
as DD simulations. In DD simulations, the local stress state
7, motion, and orientation of every dislocation segment can
be calculated as a result of the applied stress and the collec-
tive motion of the surrounding dislocations. To date, these

PHYSICAL REVIEW B 77, 184112 (2008)

dislocations have been assumed to be perfect, and as dis-
cussed in Sec. I, this means that many elementary dislocation
processes are neglected. Use of Eq. (23) could improve the
numerical treatment of dislocation interactions, reactions,
and cross slip. They can provide an approximation of the
instantaneous width for any given dislocation segment, as-
suming sufficient time is given to reach steady state in each
increment and the stress states are relatively uniform across
the width. Under conditions where the dislocation does not
tear apart (7, <489 MPa in our case), the steady-state widths
and speeds are achieved relatively fast, within 11-45 ps, and
over short distances, within 18—46 nm.
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