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Small crystals are known to melt at a different temperature than the bulk; it is usually lower for freestanding
nanocrystals. However, the size-dependent melting temperature is often analyzed with approximate formulas,
corresponding to the limits of metastability of the solid cluster, instead of accounting for nucleation at an
intermediate temperature. In addition, the advent of nanofabrication of inclusions in a host matrix adds a
parameter to the problem: the different interactions of the matrix with the solid and the liquid phases. We
address the issue of freezing and melting of spherical inclusions with a thermodynamically consistent model
for nucleation of the new phase. The role of the matrix is included in the model through the contact angle of
the liquid-solid interface on the matrix material, which strongly affects the nucleation behavior. We emphasize
how the matrix curvature modifies the classical result for heterogeneous nucleation on a plane surface. The
proposed formulation is simple and universal and can be easily used to analyze measurements. We illustrate the
procedure on two recent experiments.
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I. INTRODUCTION

Nanotechnologies raise fundamental questions about the
way macroscopic physical laws are modified at the nanos-
cale. For instance, our description of phase transitions has to
be modified to describe nano-objects: since the pioneering
experiments by Takagi,1 it is known that the melting tem-
perature of a crystal is size dependent. Nanocrystals �NCs�
often melt at temperatures lower than the bulk melting point
T0, and the smaller the size, the larger the melting point
shift.2 This holds for most freestanding or supported NCs,
which are in contact with their vapor. However, when NCs
are embedded in another material, the melting point can be
elevated. In addition, for all systems, hysteresis can be ob-
served, illustrating the phenomenon of metastability:3,4

melted NCs can be cooled down to temperatures at which the
solid is the most stable phase, but nucleation of the solid is
hindered by the energy cost of creating a liquid-solid inter-
face. On the other hand, freestanding or supported NCs can-
not be usually superheated because, in general, the liquid
phase completely wets the solid, and melting starts from the
outer surface. In embedded NCs, this mechanism can be sup-
pressed if wetting is only partial, opening the way to the
study of superheating. Melting will occur by heterogeneous
nucleation at the NC/matrix wall.

Unfortunately, analysis of the size dependence of the
melting point often ignores the nucleation process or at least
neglects it for simplicity. The experimental melting tempera-
ture is rather compared to the theoretical values at which the
solid becomes metastable or unstable �see, for instance, Refs.
5–12�, although the actual nucleation temperature strictly lies
in between these bounds.

The rate of heterogeneous nucleation on a plane surface
was calculated with classical nucleation theory �CNT�.13 In
the present paper, we show that, in NCs, the interface curva-
ture strongly affects the usual result. A key parameter is the
contact angle of the liquid-solid interface on the matrix,
which results from the balance of interfacial tensions. Deal-

ing with arbitrary contact angles and using nondimensional
quantities allows us to give a universal formulation, which is
easily applicable to any particular system. We hope that this
will provide a useful tool for the analysis of future experi-
ments. We begin with a summary of previous studies on
melting of NCs �Sec. II�. Then, we introduce the model �Sec.
III� and compare it to experiments �Sec. IV�. Finally, in Sec.
V, we discuss the underlying approximations.

II. PREVIOUS STUDIES

Experimentally, free or supported NCs are often seen to
melt below T0.2 Takagi1 investigated the effect in layers of
metal NCs, taking for the NC radii the thicknesses of the
layers. Since then, numerous studies have more systemati-
cally measured the size dependence of the melting tempera-
ture.

Several models have been proposed to account for the
melting point depression. They rely on different assumptions
that are not always well understood. A clear review giving
the historical references can be found in Ref. 14. Pavlov15

proposed that melting occurs at the triple point equilibrium
of the small particle, that is, the equilibrium between solid
and liquid spheres of equal mass in contact with the vapor.
His formula �Eq. �4� of Ref. 15� involving saturation and
sublimation pressures can be rewritten to give the melting
point Tm

TP of a solid sphere of radius R �Eq. �44� of Ref. 16�,

�Tm
TP = Tm

TP − T0 = −
2T0

LR
��SV − �LV� �S

�L
�2/3� , �1�

where L is the latent heat per unit volume of the solid, �i is
the density of phase i, and �ij is the surface tension between
phases i and j, where i and j take the values L for liquid, S
for solid, and V for vapor, respectively.

However, Pavlov’s triple point analysis is relevant to the
case of a set of liquid and solid spheres of equal mass, with
no net mass exchange through the vapor.17 In an experiment,
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one may rather observe the melting of one isolated crystal. If
the liquid completely wets the solid, a spherical shell will
grow at the crystal surface, and the solid will not be in con-
tact with the vapor. Rie18 considered a solid sphere in equi-
librium with a surrounding bulk liquid phase and obtained

�Tm
Rie = Tm

Rie − T0 = −
2T0

LR
�LS. �2�

Reiss and Wilson17 explained that the melting of one solid
sphere would occur at its equilibrium temperature with a
liquid sphere of the same radius so that

�Tm
RW = Tm

RW − T0 = −
2T0

LR
��SV − �LV

�S

�L
� . �3�

If �LS+�LV=�SV,17 and if we neglect the density change
upon melting ��L=�S�, Eqs. �1�–�3� are identical.

However, it was later realized that the above temperatures
correspond to an unstable equilibrium.19,20 For a given
sphere, an energy barrier exists between the fully solid and
the fully liquid phases. This barrier vanishes at T0�, which
appears as an absolute limit of stability above which the
solid cannot exist.19,20 If �LS+�LV=�SV and �L=�S, T0� is
given by Eq. �2�.19,20 On the other hand, no such stability
limit is found for the liquid: freezing will occur through ho-
mogeneous nucleation,3,4 explaining the large supercooling
that can be obtained with molten NCs. Another interesting
quantity arises: the temperature T0� at which the Gibbs’ free
energies of a frozen and a melted NC are equal,20

�T0� = T0� − T0 = −
3T0

LR
��SV − �LV� , �4�

where �L=�S has been assumed. In this picture, at T0�, the
system can jump between both phases with an equal rate in
both directions.20 Melting will therefore occur by nucleation
at a temperature Tm such that T0��Tm�T0�. Although a cal-
culation of Tm is possible,19 it appears to have been over-
looked in many analysis of experiments: instead, one of the
boundaries, T0� or T0�, is often used to fit the data on melting
temperature as a function of radius.

In the case of NCs embedded in a matrix, an analogous T0�
can be defined by replacing the vapor �V� by the matrix �M�
in Eq. �4�. The liquid does not necessarily wet the solid com-
pletely, especially for embedded NCs. If �LS+�LM��SM and
�LS+�SM��LM, there is a contact angle of the liquid on the
matrix �c=arccos���SM−�LM� /�LS� so that �T0� can be re-
written as

�T0� = T0� − T0 = −
3T0

LR
�LS cos �c �5�

As we shall see, within this model, there is no absolute limit
at which the solid becomes unstable: melting will occur by
nucleation above T0�.

The limiting case R→ +� corresponds to heterogeneous
nucleation on a plane surface.13 However, the theory needs to
be modified when the size of the critical nucleus becomes
non-negligible compared to R. Cantor and Doherty21 seem to
be the first to have considered the effect of the substrate
curvature, but they included only a first order correction,

which fails at small R. A partial wetting model was proposed
by Cleveland et al.22 for freestanding NCs. They considered
the microcanonical ensemble and a geometry of two inter-
penetrating spheres but did not allow the LS interface to
adopt a curvature different from the SV one. More recently,
Xu et al.23 proposed a nucleation model for embedded NCs
to interpret their experimental finding of a large hysteresis of
melting and freezing of Ge in amorphous silica �a-SiO2�.
Because the hysteresis is symmetric around T0, they deduced
from Eq. �5� that �c=	 /2 and �LM	�SM and performed the
calculation of the nucleation temperatures for this particular
case. �c=	 /2 is a coincidence due to the specific properties
of the system studied. It may vary for other materials, and we
shall discuss an example later. This is what motivates our
generalization of the theory of Xu et al. to the case of an
arbitrary �c.

III. NUCLEATION IN THE CASE OF AN ARBITRARY
WETTING ANGLE

We use CNT to calculate the energy barrier for heteroge-
neous nucleation in a spherical inclusion of radius R at a
temperature T=T0+�T, with an arbitrary contact angle �c.
We first consider melting at T�T0�. The liquid phase will
appear as a lenticular nuclei of volume VL �Fig. 1�. The con-
tact angle of the liquid on the matrix being fixed at �c, the
nuclei is fully characterized by the azimuthal angle � of its
circular boundary. Let SLS and SLM be the areas of the inter-
faces between the two phases and between the liquid and the
matrix, respectively; the other notations are given in Fig. 1.
Trigonometry gives the following relations:

rLS��� = R sin � , �6�

hLM��� = R �1 − cos �� , �7�

hLS��� = R �1 − cos��c − ���
sin �

sin��c − ��
, �8�

S ML

hLS hLM

rLS

θc

R

θ

FIG. 1. Sketch of a liquid nucleus �L� in the metastable solid
phase �S� for a cluster embedded in a matrix �M�.
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VL��� =
	

6
hLM��� �3rLS���2 + hLM���2�

+
	

6
hLS��� �3rLS���2 + hLS���2� , �9�

SLS��� = 	 �rLS���2 + hLS���2� , �10�

SLM��� = 	 �rLS���2 + hLM���2� . �11�

In the following, we neglect the density difference between
liquid and solid ��S=�L=��, and we consider that the inclu-
sion remains a sphere of radius R throughout the nucleation
process. We also take the external pressure to be constant at
P0. One has then to consider the Gibbs free energy change,
which writes

�G��� = G��� − G�� = 0� = �
L�T,P0� − 
S�T,P0�� �VL���

+ �LS SLS��� + ��LM − �SM� SLM��� , �12�

where the difference in chemical potential between the two
phases is taken at a pressure equal to the external pressure.20

Finally, linearizing this difference gives

�G��� = − L
�T

T0
VL��� + �LS SLS��� + ��LM − �SM� SLM��� .

�13�

For each value of the pair ��c ,�T�, �G��� exhibits a maxi-
mum, which corresponds to the energy barrier for nucleation
of the liquid in the solid, Eb

S→L��c ,�T�. The case of freezing
at T�T0� can be treated by a simple symmetry:
Eb

L→S��c ,�T�=Eb
S→L�	−�c ,−�T�. There is a correspon-

dence between the melting of a superheated NC and the
freezing of a supercooled nanodroplet. This holds only inas-
much the density difference between liquid and solid has
been neglected. In the following, we will simply write Eb for
the energy barrier, the direction of the phase change being
implicitly given by the comparison between T and T0�.

It is useful to introduce the following quantities:

�Tmax =
3T0�LS

LR
, �14�

E1 = 	R2�LS, �15�

E2 = Eb��c,�T0�� , �16�

E3 =
	

3
�2 + cos �c��1 − cos �c�2�LSRc

2, �17�

Rc =
2�LS

L

T0


�T

. �18�

�Tmax is the maximum melting point shift that can be ob-
tained for a given inclusion: �T0�=−�Tmax for �c=0 and
�T0�=�Tmax for �c=	 �see Eq. �5��. E1 is an appropriate
energy scale for the problem: it is the surface energy of a
disk of radius R between L and S. E2 is the energy barrier

separating L and S phases at T0� �see below�. E3 is the energy
barrier for heterogeneous nucleation on a plane surface.13 Rc
is the critical radius for homogeneous nucleation.4 These
definitions allow us to form several reduced quantities,

� =
�T

�Tmax
, �19�


i =
Eb

Ei
with i � �1,2,3� . �20�

The 
i thus defined are functions of �, �c, and � only. Eb is
reached for

�b = arccos� 3� + 2 cos �c


4 + 9�2 + 12� cos �c
� . �21�

The expression of Eb itself is complicated and will not be
displayed here, but it is easily obtained from Eq. �13�.

We now give a series of figures to illustrate the model.
Figure 2 shows a contour plot of the reduced energy barrier
for heterogeneous nucleation, 
1, in the �c-� plane. As the
scaling energy E1 is the same for each point of this plane,
this allows a direct comparison of the barrier heights. The
barrier vanishes only on two particular lines: ��c=0 ,�
�−2 /3�, corresponding to the limit of stability of a solid
completely wet by its liquid �see Sec. II�, and ��c=	 ,�
�2 /3�, corresponding to the symmetric case of the limit of
stability of a liquid completely wet by its solid. For �c
strictly between 0 and 	, in the present model, Eb never
reaches 0: there is no limit of stability; yet, nucleation will
occur when Eb becomes small enough �see Sec. IV�.

Figure 3 shows the maximum value of 
1 for each �c,
reached at T0�, that is along the line �=−cos �c �dashed red
line in Fig. 2�. The barrier is highest for �c=	 /2, where it
reaches E1, and lowest at �c=0 or 	, where it reaches
16E1 /27, reproducing the previous result for �c=0.19,20

To emphasize the variation of Eb with � at a fixed �c, Fig.
4 shows a contour plot of the reduced barrier 
2 in the �c-�
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FIG. 2. �Color online� Contour plot of the reduced energy bar-
rier 
1 in the �c-� plane. The solid curves show the contours from

1=0.9 �innermost contour� to 
1=0.1 �outermost contour�, every
0.1. Melting and freezing occur above and below the dashed red
line, respectively.
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plane. As expected, if �c�	 /2, Eb��� is steeper for the su-
perheated crystal than for the supercooled liquid, and the
situation is reversed for �c�	 /2.

It is also interesting to compare the present result to the
classical one for heterogeneous nucleation on a plane sur-
face, for which the energy barrier is E3 �Eq. �17��.13 We also
introduce Rc, which is the critical radius for homogeneous
nucleation �Eq. �18��.4 At a given temperature T
�max�T0 ,T0��, we can define �=R /Rc=3� /2 and 
3
=Eb /E3. The case of freezing at T�min�T0 ,T0�� is obtained
with the above mentioned symmetry and with �=R /Rc=
−3� /2. Figure 5 shows a contour plot of 
3 for melting in the
�-� plane. This graph shows that for any given temperature
above T0, the classical result for heterogeneous nucleation on
a plane surface is recovered for R�Rc, as expected. Note
that although 
3 vanishes at T0, Eb does not: this behavior
arises from the divergence of Rc and E3 at T0. Note also that
for �c→0, 
3 is only defined by taking the limit, being the
ratio of two vanishing quantities. One may use Fig. 5 to see
below which size of the inclusion it becomes necessary to
use the present model instead of the classical model for het-

erogeneous nucleation on a plane surface. The effect of con-
finement on melting or on freezing should be more easily
seen in a system with a low or high value of �c, respectively.

IV. COMPARISON WITH EXPERIMENTS

There are numerous studies of NCs embedded in a matrix.
Some of them exhibit melting of the NCs at a temperature
higher than the bulk. Most of these involve NCs in a crys-
talline matrix: the high melting temperature is attributed to
the existence of a coherent interface between the NC and the
matrix, stabilizing the NC by epitaxy.24 Because of the pos-
sible role played by epitaxy, the present model may not be
relevant to address the case of a crystalline matrix. On the
other hand, it is appropriate for the analysis of NCs embed-
ded in an amorphous matrix, a system which has recently
been prepared by ion implantation in a-SiO2.

Once the energy barrier is calculated, the nucleation rate
� is deduced from

� = Ns� exp�−
Eb

kBT
� , �22�

where Ns=4	R2�S
2/3 is the number of atoms in contact with

the matrix and � is an attempt frequency per atom, which is
taken to be 1011 s−1.23 Assuming a nucleation rate of �expt
=1 s−1 to be experimentally observable, one finds the nucle-
ation temperatures for freezing and melting of NCs by solv-
ing

Eb = kB�T0 + �T�ln� Ns�

�expt
� . �23�

Note that other choices are possible for the prefactor of the
exponential in Eq. �22�.3,4 Nevertheless, it affects only
slightly the nucleation temperatures because of their logarith-
mic dependence on the prefactor.

An experiment measures the nucleation temperatures for
melting Tm and for freezing Tf. From these two values and
the known values of T0, L, and R, we can deduce the two
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FIG. 3. Maximum of the reduced energy barrier 
1 as a function
of the contact angle �c.
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FIG. 4. �Color online� Contour plot of the reduced energy bar-
rier 
2 in the �c-� plane. The solid curves show the contours from

2=0.9 �innermost contour� to 
2=0.1 �outermost contour�, every
0.1. Melting and freezing occur above and below the dashed red
line �where 
2=1�, respectively.
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FIG. 5. �Color online� Contour plot of the reduced energy bar-
rier 
3 for melting in the �c-� plane. The solid curves show the
contours from 
3=0.1 �bottom� to 
3=0.9 �top�, every 0.1. 
3 is not
defined in the bottom right corner under the dashed red line.
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unknowns of the present model, �LS and �c. We use the fol-
lowing procedure. Tm gives the corresponding energy barrier
Eb

expt �Eq. �23��. We start with an arbitrary value of �LS,
which defines a corresponding scaling temperature �Tmax
�Eq. �14�� and energy E1 �Eq. �15��. Then, we adjust �c to
give the correct 
1=Eb

expt /E1 at �m= �Tm−T0� /�Tmax. The
pair ��LS,�c� can now be used to predict Tf. Finally, �LS is
varied until the predicted Tf equals the experimental one. To
the retained �LS now corresponds a value of �c that repro-
duces at the same time the experimental Tm and Tf. Now, the
model is able to predict, without any additional parameter,
Tm and Tf for inclusions with other radii.

Xu et al.23 studied Ge in a-SiO2 by electron diffraction.
They observed a large melting point hysteresis nearly sym-
metric around T0. From the symmetry, they propose that
�LM	�SM, and they develop a particular case of the present
nucleation model ��c=	 /2�. In their experiment, the melting
and freezing transitions are around 100 K wide; this broad-
ening is mainly due to the polydispersity of NCs �average
R=2.5 nm, rms deviation of 1.3 nm�. Taking the midpoints
gives Tm	1400 K and Tf	930 K. With �c=	 /2, they
found that �LS=260 mJ m−2 best reproduces their results.23

However, they used an outdated value for L. This was later
corrected, leading to �LS=285 mJ m−2.25 The predicted val-
ues of Tm and Tf are then 1411 and 955 K, respectively. For
Ge, T0=1211.4 K, ML /�S=36.94 kJ mol−1, �S
=5323 kg m−3, and M =72.61 g mol−1.26 If we simulta-
neously solve for �LS and �c, following the above described
procedure, we can exactly reproduce the experimental Tm
and Tf with �LS=288 mJ m−2 and �c=86.6°. However, given
the width of the transitions and the experimental uncertainty
on temperature measurements ��15 K�,23 the accuracy is not
sufficient to distinguish �c from 	 /2. To illustrate the minute
dependence of the results on the choice of the prefactor in
Eq. �22�, we have tried a different value of �: using a typical
optical phonon frequency �=1013 s−1 �2 orders of magnitude
larger than the initial choice� leads to �LS=303 mJ m−2 and
�c=86.9°, that is, a change of 5% and 0.3%, respectively.

We have looked for other experimental results on which
to test the present model. Recently, Tagliente et al.27 studied
indium �In� NCs in a-SiO2 and found a thermal hysteresis
loop. Again, because of polydispersity, the transitions are
around 25 K wide. Taking the midpoints give Tm	433 K
and Tf	315 K. A detailed analysis of their x-ray data al-
lowed them to give the dependence of the melting tempera-
ture on the NC size �see Fig. 6�. They fit their data with a
modified version of Eq. �4�,

Tm�R� = �1 +
�E

�SL
�T0 −

3T0

RL
��SM − �LM

�S

�L
� , �24�

where �E is the change in strain energy density on melting.7

First of all, let us recall that this is an oversimplification: the
last term in Eq. �24� corresponds to T0�, which is the lower
limit for melting point depression, and not to the nucleation
temperature. They obtain a best fit of Tm�1 /R� �Fig. 6� with
�E T0 / ��SL�=40 K and a slope −�3T0 /L���SM
−�LM��S /�L��=−150.5 K nm. For In, T0=429.75 K,
ML /�S=3.281 kJ mol−1, �S=7310 kg m−3, and M

=114.82 g mol−1.26 In this picture, �E�0 is needed to ex-
plain the fact that the largest NCs can be superheated. In
principle, �E could be estimated from the theory of elasticity
and from the x-ray measurement of the lattice constant of the
NC; unfortunately, only its relative temperature variation is
analyzed,27 casting doubt even on its sign. Moreover, if we
take �L=�S, we find �SM−�LM=24.4 mJ m−2. This is a rather
low value; if we compare to those obtained from undercool-
ing experiments on droplets28,29 ��LS=30.8 or 30.6 mJ m−2�
or from liquid correlation lengths30 ��LS=31�2 mJ m−2�,
we expect partial wetting of the matrix. The present model
should then be preferably used. For the transition tempera-
tures, we use the midpoints given above. As for the radius,
we take the one that corresponds to Tm	433 K in Fig. 6:
R=4 nm. The above described procedure �with �=1011 s−1�
gives �c=52° and �LS=31.6 mJ m−2, which is in excellent
agreement with published values.28–30 With these numbers,
we can now compute Tm for other radii: the experimental
data are well reproduced, without any additional parameter
�see Fig. 6�. As a further check, we have tried to describe the
data with nucleation theory in the case of complete wetting
��c=0�. The absolute values of Tm and Tf cannot be repro-
duced without introducing elastic effects ��E in Eq. �24��.
Yet, we have tried to fit Tm−Tf: to reproduce the experimen-
tal value for R=4 nm requires �LS=35.5 mJ m−2, but then
the average slope of Tm�1 /R� is 32% too large �−198 K nm�.
This excludes a simple explanation by a constant shift due to
an elastic effect and confirms that our model with partial
wetting reproduces the measurements better.

V. DISCUSSION

The two examples discussed above show that the present
model is able to give a satisfactory account of the data. It
makes, however, some approximations that are worth dis-
cussing.

Macroscopic thermodynamics has been used to describe
microscopic systems. In particular, the volume and surface
contributions to the energy have been separated, although the

420

430

440

450

0.15 0.2 0.25 0.3 0.35

T m
(K

)

1/R (nm-1)

FIG. 6. Nucleation temperature for melting of In NCs in a-SiO2

as a function of their inverse radius. The solid circles are experi-
mental data �Ref. 27�, the dashed line is a fit with Eq. �24�, and the
solid curve shows the prediction of the present model, with �LS

=31.6 mJ m−2 and �c=52°.
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interface between the two phases may not have a negligible
thickness compared to that of the phases that are assumed
homogeneous. Similar criticisms have often been discussed
in the context of nucleation theory.3,4

In a similar way, the present treatment neglects the inter-
action between interfaces. In the case of complete wetting of
the solid-vapor interface by the liquid, some models have
included this interaction. They write the surface energy
change per unit area when creating a liquid layer of thickness
z as ��LS+�LV−�SV��1−exp�−z /���, where � is the micro-
scopic interaction range. This ensures continuity between the
state with and without liquid. This theory has been developed
in the context of surface melting.31 The flat surface of a bulk
solid is seen to melt over a few atomic layers at temperatures
below melting, and the liquid thickness diverges at T0. In this
frame, melting of NCs starts from the outside, leading to
coexistence between a solid core and a liquid shell in some
temperature range, before the NCs suddenly melts totally.32

However, this theory requires an additional parameter, �,
which is usually fitted to reproduce the data on NC melting.
In addition, it is not clear how to extend this approach to the
case of partial wetting.

An issue more specific to inclusions is the role of elastic-
ity. It has been neglected here, but may be important, be-
cause of the volume change upon melting and because the
embedded material and the matrix have different thermal ex-
pansion coefficients. In principle, elasticity can be included
in the analysis,7,25,33 but information is needed on the stress
state of the system. It depends on materials, fabrication pro-
cess, and thermal treatment.34 In addition, in the case of an
arbitrary contact angle, the spherical symmetry is lost, and
the analysis becomes more involved.

Of course, these limitations could be overcome by per-
forming microscopic simulations with appropriate interaction
potentials.2 However, such simulations require accurate in-
formation that is system specific. We believe that the present
treatment within CNT provides a simple and universal tool to
reproduce the main features of the experiments.

VI. CONCLUSION

We have proposed a model for freezing and melting of
spherical inclusions in a host matrix. We have described a
procedure that allows us to deduce the model parameters
�surface tension �LS and contact angle �c of the liquid-solid
interface� from the measured melting and freezing tempera-
tures. Xu et al.23 studied the particular case of Ge NCs in
a-SiO2, for which �c		 /2. We have already found another
experiment27 �on In NCs in a-SiO2�, which is well described
by the model, including the observed dependence of the
melting temperature on NC radius. The use of nondimen-
sional quantities makes the use of this model for any particu-
lar system straightforward. We hope that it will provide a
sound basis for the interpretation of future work on NCs in
an amorphous matrix and that it will supersede the use of
formulas that give only bounds on the nucleation tempera-
ture. Investigation of different materials and narrower distri-
butions of NC radii, with different average values, would be
of particular interest.
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