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We have studied a two-dimensional �2D� triangular commensurate crystal of 4He with the exact T=0 K
path-integral ground-state �PIGS� Monte Carlo method. We have projected onto the true ground state two
qualitatively different wave functions, a Jastrow-Nosanow wave function and a translationally invariant
shadow wave function. The PIGS method passes this hard test of validity and applicability by obtaining the
convergence to the same properties, both the diagonal ones as well as the off-diagonal one-body density matrix
�1. Thus, the commensurate 2D 4He crystal at T=0 K is exactly solved, we find no Bose-Einstein condensation
�BEC�, and �1 shows a dominant exponential decay in the large distance range. The structure found in �1 is due
to virtual vacancy-interstitial pairs and this shows up in the momentum distribution. Our result indicates that
BEC in 2D solid 4He can only arise in the presence of some kind of disorder, either intrinsic or extrinsic.
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Quantum Monte Carlo methods have provided a very
powerful tool in exploring the physics of strongly interacting
many-body quantum systems. As far as the properties of
Bose fluids and solids are concerned, path-integral Monte
Carlo �PIMC� methods were proven to evaluate exact expec-
tation values on the thermal equilibrium state at finite
temperature;1 “exact” means that all systematic errors can be
arbitrarily reduced below the statistical errors and the only
required input is the interatomic potential. Also at zero tem-
perature, different techniques that are exact in principle are
available, such as the Green’s function Monte Carlo2

�GFMC�, the diffusion Monte Carlo3 �DMC�, the reptation
Monte Carlo,4 or the path-integral ground-state5 �PIGS�
methods. However, all such methods rely on variational
models for the ground-state wave function �WF� of the sys-
tem. These variational models play a relevant role in the
importance sampling employed by these methods; although,
in principle, the final results should not be affected by the
particular choice of the trial WF, in practice, the possibility
that some bias could survive, especially in systems with
complex broken symmetries like in the solid phase, has not
been ruled out. Thus, the exact nature of a commensurate
crystalline state at T=0 K, if it has Bose-Einstein condensa-
tion �BEC� or not, is not known. In this Rapid Communica-
tion, we give the exact solution for the commensurate crys-
talline state of 4He in two dimensions. In fact, we will show
the robustness of the results given by the PIGS method with
respect to the choice of the variational WF. We find the same
physical properties of the system, within the statistical noise,
starting from two radically different WFs. One, a
Jastrow-Nosanow6 WF �JNWF�, has built in the crystal lat-
tice via Gaussian localization factors, is not Bose symmetric,
and has no BEC. The other, a shadow7 WF �SWF�, is trans-
lationally invariant, with crystalline order arising as sponta-
neous broken symmetry, and it has BEC.8–10 We have chosen
to study this model in two dimensions for different reasons.
The reduced dimensionality allows us to study correlations
up to much larger distances than in three dimensions, even
more than 20 lattice parameters. Fluctuations are expected to
be stronger in two dimensions so this is a more stringent test
for convergence given the different symmetry properties of

the starting variational WFs. Finally, the two-dimensional
�2D� system is a model that is relevant for adsorbed 4He
atoms on a planar substrate like graphite.

With the present study, we address the important question
of the supersolid state of matter.11–16 PIMC computations
give strong evidence that in a three-dimensional �3D� com-
mensurate solid 4He �number of atoms equal to the number
of lattice sites�, there is no superfluid response and no
BEC.17,18 The PIMC computations are at finite temperature
and the lowest T is of the order of 0.1 K, which is above the
experimental transition temperature of crystals of good
quality.12 By computing the density matrix �1�r� ,r��� of crys-
talline 4He at T=0 K, we find that there is no BEC in a 2D
crystal. Preliminary results indicate that this is true also in
three dimensions.

In dealing with low temperature properties, 4He atoms are
described as structureless zero-spin bosons, interacting
through a realistic two-body potential, which we assume to
be the HFDHE2 Aziz potential.19 The aim of the PIGS
method is to improve a variationally optimized trial WF by
constructing a path in the Hilbert space of the system that
connects the given WF to the true ground state of the system;
within this “path,” the correct correlations among the par-
ticles arise through the “imaginary time evolution operator”

e−�Ĥ, where Ĥ is the Hamiltonian operator. With � being a
trial WF with nonzero overlap with the exact ground state

�0, this �0 is obtained as the �→� limit of ��=e−�Ĥ� suit-
ably normalized. This �� can be analytically written by dis-
cretizing the path in imaginary time and exploiting the fac-

torization property e−��1+�2�Ĥ=e−�1Ĥe−�2Ĥ. In this way, ��

turns out to be expressed in terms of convolution integrals

that involve the “imaginary time propagator” �R�e−��Ĥ�R�� for
a ��, which can be small enough such that very accurate
approximants are known.1,20 This maps the quantum system
into a classical system of open polymers.5 An appealing fea-
ture peculiar to the PIGS method is that, in ��, the variational
ansatz acts only as a starting point, while the full path in

imaginary time is governed by e−�Ĥ, which depends only on

Ĥ.
As a trial WF, we used both a JNWF and a SWF. The
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JNWF is written as the product of two-body correlations and
of Gaussian one-body terms, which localize the particles
around the assumed lattice positions.6 In the SWF, beyond
the explicit two-body factors, additional correlations are in-
troduced via auxiliary �shadow� variables, which are inte-
grated out.7 Nowadays, SWF gives the best variational de-
scription of solid and liquid 4He.21 In both cases, the
variational parameters have been chosen to minimize the ex-
pectation value of the Hamiltonian operator. In what follows,
we will refer to PIGS when we deal with the projection of
the JNWF, and to the shadow path-integral ground state22

�SPIGS� when we project the SWF.
Because of the Bose statistics obeyed by the atoms, one

has, in principle, to account for permutations in the propaga-

tor �R�e−��Ĥ�R��.1,5 Permutation moves are necessary when
the JNWF, which is not Bose symmetric, is used. On the
other hand, permutation moves are not necessary whenever
the trial WF in �� is already Bose symmetric, as the SWF.
However, also for SPIGS, adding permutation moves turns
out to be useful in improving the efficiency and the ergodic-
ity of the sampling, mainly in reaching the large-distance
range of �1. In our algorithm, we have introduced two dif-
ferent permutation samplings: cycles of interparticle ex-
changes and swap moves. The first, which may involve an
arbitrary number of particles, are described in detail in Ref.
23. In a PIGS or SPIGS calculation of �1�r� ,r���, the effi-
ciency can be further improved by introducing particular
two-particle permutation cycles always involving one of the
two positions r� and r��: the swap moves.18 These moves im-
prove very much the efficiency of the computation of �1 and
their acceptation rate is remarkably high: in the present 2D
system, by using a staging24 method to sample the free �ki-
netic� part of the imaginary time propagator, we have found
an acceptation rate for this swap move that is nearly 15% in
the liquid phase and in the solid phase at densities close to
melting.

The 2D 4He system phase diagram is known from accu-
rate finite temperature PIMC simulations;25 at zero tempera-
ture, both DMC26 and GFMC27 were used to investigate its
properties mainly for the liquid phase. We have performed
SPIGS and PIGS simulations of a 2D 4He commensurate
triangular crystal at �=0.0765 Å−2, slightly above the melt-
ing density. In order to control the reliability of our results,
we have tested their dependence on both the “projection
time” � and the “time step” ��. For a fixed value of �
=0.075 K−1, we have done calculations with ��=1 /40, 1 /80,
1 /160, and 1 /320 K−1 and we have used the pair-product
approximation1 for the imaginary time propagator. Reducing
�� below 1 /40 K−1 affects only marginally the results; for
example, by using 1 /320 K−1, the obtained energy is only
1% lower than the one with 1 /40 K−1. So we have adopted
in most of the computations ��=1 /40 K−1 as a reasonable
compromise between accuracy and computational effort.
These tests provide also a robust check of the ergodicity of
the sampling algorithm since a lower value of �� for a given
� means a bigger number of small time projections �convo-
lution integrals� so that one is dealing with polymers of in-
creasing length. We have then increased � until convergence
in the results has been achieved.

Diagonal properties, such as energy, have been computed
in a box that hosts N=120 particles with periodic boundary
conditions. In Fig. 1, we give the energy per particle as a
function of � both for SPIGS and PIGS: at �=0.075 K−1, the
SPIGS result is already converged to the value E /N
=1.309�0.002 K, while with the PIGS, one reaches conver-
gence at �=1.575 K−1, where the energy takes the value
E /N=1.311�0.002 K. The potential energy values are, re-
spectively, −11.053�0.004 K and −11.048�0.006 K. From
Fig. 1, it is evident that the true ground-state value is reached
much more quickly �i.e., with a lower number of small-time
projections� with SPIGS. The overlap between the trial WF
and the true ground state plays a crucial role in the conver-
gence: a large overlap ensures that �� is a good approxima-
tion even for not too large �. It was shown28 that ���0 ����2
= �e−	�N, where 	 corresponds to the area of the region be-
tween E��� /N and its convergence value 
0. From our re-
sults, e−	 turns out to be 99.8% for the SWF and 97.9% for
the JNWF. From the peaks in the static structure factor, we
have extracted the Debye-Waller factor; we have found that
both SPIGS and PIGS converge to the same value e−2W

=0.214�0.002 �Fig. 1� and, as in the energy case, SPIGS
shows a faster convergence.

In order to study whether the 2D commensurate solid 4He
has BEC, we have computed the one-body density matrix
�1�r� ,r���. A nonzero limit of �1 for �r�−r���→� implies BEC,
and the Fourier transformation of �1 gives the momentum
distribution nk�. We have computed �1 in a 2D commensurate
crystal at �=0.0765 Å−2 in a simulation box with N=240
particles �this allows us to explore distances up to about
39 Å�. In our calculations, we have sampled �1�r� ,r��� in two
different ways. In the first one, we force r�−r�� to lie on a
nearest-neighbor direction, while in the second, r� and r�� are
allowed to explore the full plane; we have found perfectly
consistent results. In Fig. 2, we show the convergence of �1
computed along the nearest-neighbor direction with SPIGS
and PIGS for increasing projection time. The �1 given by
SWF has a nonzero limit at large distance, i.e., there is BEC
as in three dimensions.9 When projecting from SWF, the
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FIG. 1. Energy per particle E /N and Debye-Waller factor e−2W

as functions of the projection time � obtained from PIGS and
SPIGS for a commensurate 2D 4He crystal with N=120 particles at
�=0.0765 Å−2. Error bars are smaller than the used symbols. The
dotted lines indicate the convergence values 
0=1.308�0.002 K
and e−2W=0.214�0.002; solid lines are exponential fits to guide the
eye.
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large distance plateau decreases for increasing � until, at �
=0.775 K−1, it disappears up to the distance allowed by the
simulation box. At convergence, �1 displays an exponential
decay, with a correlation length ��2.75 Å, with a superim-
posed small modulation reflecting the crystal symmetry. The
�1 given by the JNWF is essentially a Gaussian. Under pro-
jection, exchanges among the atoms greatly extended the
range of �1. Convergence to the same result for �
=0.775 K−1 means that we have obtained the exact result for
�1 and that no BEC is present in the system. Similar conclu-
sions are reached also from the computation of �1 in the
whole plane. In Fig. 3�a�, we show �1 obtained both with
SPIGS �x−x��0 range� and PIGS �x−x�
0 range� with the
projection time �=0.775 K−1. Again, the results are indistin-
guishable within the statistical error. We have looked also for
finite size effects by considering a system at the same density
but with different particle numbers �N=180, 240, and 480�
and we have found no appreciable differences. With PIGS,
we have studied �1 up to a distance of about 60 Å, finding
the same exponential decay.

We conclude that a 2D commensurate 4He crystal has no
BEC or, more precisely, the condensate fraction, if any, is
below 10−8. We notice that exchange processes are rather
significant in the system, so that the range of �1 is signifi-
cantly larger than the size of the unit cell. This manifests
itself in the momentum distribution �Fig. 3�b�� as a deviation
�nk� of nk� from the Gaussian corresponding to the kinetic
energy. There is an excess of particles at low momenta up to
k=1.2 Å−1, whereas there is a deficit in the k-space region at
around k=1.6 Å−1. The positions of the bumps of �1 over the
exponential decay suggest that the extension of �1 beyond
the unit cell can be interpreted as a signal of the appearence
of vacancy-interstitial pairs �VIPs�: their position with re-
spect to the origin �r�=r��� corresponds to interstitial posi-
tions, whereas the distance between the positions of two
neighboring bumps is equal to the lattice parameter. In the

case of the SWF, these VIPs are unbound, allowing for a
finite BEC,9 whereas these pairs are bound in the exact �0.
This might be due to the presence of some long range corre-
lations in �0, possibly caused by the zero-point motion of
transverse phonons, which are absent in the SWF. Since the
ground-state WF reflects the zero-point motion of any exci-
tation in the system,29 it is tempting to suggest that the evi-
dence of VIPs in �1 is the manifestation of a different kind of
excitation in the quantum solid beyond the phonon excita-
tions.

In the inset of Fig. 2, we show �1 computed along the
nearest-neighbor direction at T=0 K in the 3D commensu-
rate 4He hcp crystal near the melting density in a box with
N=540 atoms: by increasing the projection time, we find that
the �1 computed with SPIGS and with PIGS coincide within
the statistical noise up to about 20 Å, which is the largest
distance studied with the PIMC method.30 At larger dis-
tances, SPIGS and PIGS disagree, but we need to verify the
convergence of both methods by using a larger value of �;
this is a major numerical task due to the very large number of
degrees of freedom.

Experimentally, it is established that defects and 3He im-
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FIG. 2. One-body density matrix �1�r�−r��� computed along the
nearest-neighbor direction in a 2D commensurate 4He crystal at the
density �=0.0765 Å−2 for different � values. Notice the completely
different behavior for the two initial WFs and the convergence to
the same �1. The inset shows, with the same notation, preliminary
results in a 3D commensurate hcp 4He crystal at �=0.0293 Å−3.
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FIG. 3. �Color online� �a� One-body density matrix �1�r�−r���
computed in a 2D commensurate 4He crystal with 224 particles at
the density �=0.0765 Å−2; in the x−x��0 �x−x�
0� range, the
SPIGS �PIGS� results are displayed. �b� Deviation of the momen-
tum distribution �nk� from the Gaussian distribution nk�

= 2��2

m�T� exp�− �2�k��2
2m�T� �, obtained by Fourier transforming the difference

between the SPIGS �1 and the Gaussian distribution corresponding
to the kinetic energy �T�.
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purities have an important role on the nonclassical rotational
inertia �NCRI� of 4He crystal, and dislocations are suspected
to have a relevant role,12 at least in the case of good quality
crystals. It is an open question what happens in a solid with
less and less defects: Will any NCRI effect go away? Our
result suggests that it should go away unless some disorder is
present even in the ground state as an intrinsic property of
�0. A key question is therefore to establish whether zero-
point defects are present in the ground state of a quantum
solid. We believe that the presence of zero-point defects in
solid 4He is still an open question.31 Since a SWF, which has
BEC, is the exact ground state of a suitable Hamiltonian, the
interesting question is for which class of interatomic poten-
tials does the commensurate crystal have BEC and superso-
lidity?

The convergence in the results obtained starting from
radically different WFs supplies strong evidence for the ab-

sence of any variational bias in the PIGS method; thus, an
exact solution for 2D solid 4He at T=0 K has been obtained
and we find that BEC does not occur. Moreover, even if not
shown in this Rapid Communication, the PIGS method has
passed another strong test of validity and applicability: we
have studied diagonal properties, such as the static structure
factor and the radial distribution function, in the solid phase
of 4He and obtained their convergence by projecting a simple
Jastrow WF, which has just minimal information on the short
range correlations and displays no crystalline order at the
considered density.
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