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We show that the long-distance charge-density oscillations in a metal induced by a weakly coupled spin-1 / 2
magnetic impurity exhibiting the Kondo effect are given, at zero temperature, by a universal function F�r /�K�,
where r is the distance from the impurity and �K is the Kondo screening cloud size ��vF / �kBTK�, where vF is
the Fermi velocity and TK is the Kondo temperature. F is given by a Fourier-like transform of the T matrix.
Analytic expressions for F�r /�K� are derived in both limits r��K and r��K and F is calculated for all r /�K

using numerical methods.
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The interaction of a single magnetic impurity with the
conduction electrons in a metal is often described by the
Kondo model,

H = �
k��

��k���k��
†

�k�� + J �
k�,k����

�k��
† 	� ��

2
�k��� · S� . �1�

In general, we also include a potential scattering term in the
Hamiltonian: H→H+V�k�,k����k��

†
�k���. This model exhibits a

remarkable crossover from weak- to strong-coupling behav-
ior as the energy scale is lowered through the Kondo tem-
perature, kBTK�D exp�−1 /
0�, where D is an ultraviolet
cutoff scale �such as a bandwidth� and 
0 is the dimension-
less bare coupling constant �=J�, where � is the density of
states per spin�. For a review, see, for example, Chap. 4 of
Ref. 1. The renormalized Kondo coupling, 
�E�, becomes of
O�1� at E�kBTK. While physics at energy scales E�kBTK is
given by weak-coupling perturbation theory, at E�kBTK the
physics is governed by the strong-coupling fixed point cor-
responding to a screened impurity and a � /2 phase shift for
the low-energy quasiparticles.

The length dependence of Kondo physics is much less
well understood. It is generally expected that physical quan-
tities exhibit a crossover at a length scale �K��vF / �kBTK�
�where vF is the Fermi velocity�, which is typically in the
range of 0.1–1 m. �We henceforth set � and kB to 1.� For a
review, see Sec. 9.6 of Ref. 1. See Refs. 2–4 for original
work on the subject. However, such a crossover at this long
length scale has never been observed experimentally and has
sometimes been questioned theoretically. One way of observ-
ing this length scale is through the density oscillations
around a magnetic impurity.2,3,5,6 It was pointed out in Ref. 2
that these should only approach the standard Friedel form at
distances r��K, with a form at shorter distances controlled
by the T matrix. However, experimental data so far do not
seem to support this expectation,3 yielding much shorter
characteristic lengths. �See also Refs. 6 and 7.� One purpose
here is to present a more complete theoretical treatment of
these density oscillations, since scanning tunneling micros-
copy �STM� of magnetic ions on metallic surfaces provides a
new experimental technique by which they might now be

measured. Alternative approaches to observing this funda-
mental length scale involve experiments on mesoscopic
structures with dimensions of O��K�.8

We focus on the case of an S= 1 / 2 impurity and a spheri-
cally symmetric dispersion relation �normally ��k��=k2 /2m
−�F�. We consider this model in dimension D=1, 2, or 3.

There are two reasons why one might be skeptical that the
length scale �K would show up in the charge density. One is
the idea of “spin-charge” separation in D=1. The Hamil-
tonian of Eq. �1� in any dimension can be mapped into a
one-dimensional �1D� model by expanding in spherical har-
monics and using the fact that only the s-wave harmonic
interacts with the impurity in the case of a �-function inter-
action. The low-energy degrees of freedom of noninteracting
1D electrons can be separated into decoupled spin and
charge excitations using bosonization. It is possible to write
the Kondo interaction in terms of the spin degrees of free-
dom only, hence one might expect the charge density to be
unaffected by the Kondo interaction. The fallacy in this ar-
gument is that the charge density at location r in the 1D
model contains a term �L�

† �r��R��r�exp�−2ikFr�+H.c., where
R and L label right and left movers. Standard bosonization
methods imply that this term involves both spin and charge
bosons: sin�	2��c+2kFr�cos�	2��s�r��. This is unlike the
term �L�

† �r��L��r�, which only involves the charge boson.
Another reason why one might expect no interesting Frie-

del oscillations follows from consideration of the particle-
hole �p-h� symmetric case. This symmetry is exact, for ex-
ample, in a nearest-neighbor tight-binding model at 1 / 2
filling with the Kondo coupling occurring at the origin only
and no potential scattering. Then it can easily be proven that

� j�

† � j��=1 for all sites j. However, a realistic model always
breaks particle-hole symmetry. This can be achieved by tak-
ing a non-p-h symmetric dispersion relation, for instance
moving the density away from 1 / 2 filling in the tight-
binding model. Alternatively, potential scattering can be in-
cluded in the model. Then, p-h symmetry is broken even if
the dispersion relation does not break it.

We find for the density oscillations at zero temperature
and r�1 /kF,
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��r� − �0 →
CD

rD �cos�2kFr − �D/2 + 2�P�F�r/�K�

− cos�2kFr − �D/2�� . �2�

Here F�r /�K� is a universal scaling function that is the same
for all D, �P is the phase shift at the Fermi surface produced
by the potential scattering, C3=1 / �4�2�, C2=1 / �2�2�, and
C1=1 / �2��. In general, there are nonzero oscillations but
they vanish exactly in the p-h symmetry case for D=1,
where �P=0, kF=� /2, and r is restricted to integer values,
corresponding to a tight-binding model at 1 / 2 filling. In the
limit of zero Kondo coupling, F=1 and we recover the stan-
dard formula for Friedel oscillations produced by a potential
scatterer �in the s-wave channel only�. For a small bare
Kondo coupling, 
0�1, F�r /�K� is close to 1 at r��K so
that the oscillations are just determined by the potential scat-
tering, �cos�2kFr−�D /2+2�P�−cos�2kFr−�D /2�, vanish-
ing if �P is also zero. However, at r��K, we find that
F�r /�K�→−1, which is equivalent to �P→�P+� /2. We re-
cover again the potential scattering result, but now the phase
shift picks up an additional contribution of � /2 from the
Kondo scattering.

To derive these results, following Ref. 2, it is convenient
to relate the scaling function, F�r /�K�, to the T matrix, T���,
which has already been well-studied by a number of methods
and is a universal scaling function of � /TK. This can be done
using the standard formula for the �retarded� electron Green’s
function,

G�r�,r��,�� = G0�r� − r��,�� + G0�r�,��T���G0�− r��,�� , �3�

where G0 is the Green’s function for the noninteracting case
�with J=V=0�. This result is a direct consequence of the
assumed �-function form of the Kondo �and potential scat-
tering� interaction. The density is obtained from the retarded
Green’s function by

��r� = −
2

�
�

−�

0

d� Im G�r�,r�,�� . �4�

�The factor of 2 arises from summing over spin.� The exact
noninteracting Green’s function is

G0 =
− ikF

vFk̃
 − ik̃

2�r
��D−1�/2

exp�ik̃r� �D = 1,3�

=− �kF/��vF��K0�− ik̃r� �D = 2� , �5�

where k̃�	kF
2 +2kF� /vF and K0�z� is the modified Bessel

function. This gives the asymptotic behavior at r�1 /kF, �
�D,

G0
2�r,�� → −

1

vF
2 − ikF

2�r
�D−1

exp�2ikFr + 2i�r/vF� . �6�

�This asymptotic behavior holds for general dispersion rela-
tions.� The T matrix in D dimensions can be written at �
�D :T���= t�� /TK ,�P� / �2��D�, where t is a universal di-
mensionless function of � /TK, and �D, the density of states
per spin at the Fermi energy, has the value �D=kF

D−1 / �cDvF�,

with c3=2�2, c2=2�, and c1=�. Note that G0TG0 is propor-
tional to the difference between the s-wave Green’s function
with and without the Kondo and potential scattering interac-
tions, since the other spherical harmonics are unaffected by
the interactions and cancel in G−G0. The effect of the
s-wave potential scattering at long distances is just to multi-
ply the s-wave Green’s function by the phase e2i�P, thus giv-
ing

t��/TK,�P� = e2i�P�tK��/TK� + i� − i , �7�

where tK�� /TK� is the part of the t matrix coming from the
Kondo scattering. Combining Eqs. �3�–�7� gives

��r� − �0 → �cD/��2vF�2�r�D−1��Im��− i�D−1e2ikFr

� �
−�

0

d�e2i�r/vF��tK��/TK� + i�e2i�P − i�� .

�8�

Essentially this formula �for D=3 only� was derived in Ref.
2 except that our treatment of p-h symmetry breaking is
quite different. Furthermore, we apply more complete
knowledge of the T matrix. We expect this formula to be
valid whenever �K, r�1 /kF, regardless of the ratio r /�K. The
function tK�� /TK� is determined from the p-h symmetric
Kondo interaction and so it obeys t

K
*�� /TK�=−tK�−� /TK�.

Furthermore, t�� /TK� is analytic in the upper half complex �
plane since it is obtained from the retarded Green’s function.
It then follows that �−�

0 d� exp�2i�r /vF�tK�� /TK� is purely
real. A rescaling of the integration variable implies that we
may write

�
−�

0

d�e2i�r/vFtK��/TK� � �vF/�2r���F�rTK/vF� − 1� , �9�

where the universal scaling function F is purely real. Thus

��r� − �0 → �cD/�2�2�2��D−1rD��

�Im��− i�D−1e2ikFr�F�r/�K�e2i�P − 1�� , �10�

giving the result announced in Eq. �2�. While this derivation
assumed that the Kondo interaction is a spatial � function
leading to the simple result, Eq. �3�, we expect our
asymptotic formula for ��r� to be much more generally true,
at length scales large compared to the range of the Kondo
interaction.

A perturbative calculation of the T matrix9 gives

tK��� = − �3i�2/8��
0
2 + 
0

3 ln�D/��2 + ¯ � , �11�

where D is of order the ultraviolet cutoff. The quantity
in brackets can be recognized as the first two terms
in the expansion of the square of the running coupling

2���. For ��TK, 
���→1 / ln��� � /TK�, so one
expects tK→−3�2i / �8 ln2��� � /TK��. Substituting the
perturbative expansion into Eq. �9� gives
F�r /�K�=1− �3�2 /8��
0

2+2
0
3 ln�r /a�+ ¯ �, where a is a

short-distance cutoff of order vF /D. Again, we recognize the
first terms in the expansion of 
2�r�, implying the short-
distance behavior,
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F�r/�K� → 1 − 3�2/�8 ln2��K/r�� �r � �K� . �12�

It is an interesting fact that F�r /�K� is apparently given by
renormalization-group improved perturbation theory for r
��K. This is quite unlike the situation for a related quantity,
the Knight shift.4 This is again given by a scaling function,
��r�= �1 /TK�f�r /�K� at zero temperature. However, in this
case the term of O�
0

3� has a coefficient that diverges as the
temperature T→0, even at a fixed small r. This means that
the Knight shift at short distances �r��K� is not given by
renormalization-group improved perturbation theory, unlike
the Friedel oscillations. Instead, the Knight shift exhibits a
nonperturbative behavior, even at short distances. A conjec-
ture was made for this nontrivial short distance behavior in
Ref. 4. The fact that F�r /�K� is perturbative at small r /�K
seems to follow from the fact that T�� /TK� is perturbative at
large � /TK together with Eq. �9�, which presumably implies
that the short-distance behavior of F is given by the high-
frequency behavior of T�� /TK�. The general question of
which quantities are perturbative or nonperturbative at short
distances in the Kondo model �and other quantum impurity
models� remains open.

Perturbation theory for the Friedel oscillations breaks
down at r of O��K� but at r��K we may use Nozières’
local Fermi liquid theory. This gives the T matrix:
tK→−i�2+ i� /TB−3�2 /4TB

2 + ¯ �. Here TB corresponds to a
particular definition of the Kondo temperature. �See, for ex-
ample, Chap. 4 of Ref. 1.� It is related to the Wilson defini-
tion, called simply TK in Ref. 1 by TB=2TK / ��w� with the
Wilson number w�0.4128. Substituting in Eq. �9� gives

F�r/�K� → − 1 + �w�K/�4r� − 3��w�2�K
2 /�32r2�

+ ¯ �r � �K� , �13�

where we have defined �K precisely in terms of the Wilson
definition of TK :�K�vF /TK. Nozières’ perturbation theory
can be turned into a full perturbation theory10 by taking into

account more irrelevant operators in the vicinity of the low-
energy fixed point, which give higher-order terms in Eq.
�13�.

In order to strengthen our analytical results, we have per-
formed extensive numerical renormalization-group �NRG�
calculations.11,12 In Wilson’s NRG technique—after a loga-
rithmic discretization of the conduction electron band—one
maps the original Kondo Hamiltonian to a semi-infinite
chain with the impurity at the end. As a direct consequence
of the logarithmic discretization, the hopping amplitude
along the chain falls off exponentially. This separation of
energy scales allows us to diagonalize the chain Hamiltonian
iteratively in order to approximate the ground state and the
excitation spectrum of the full chain. If one is interested in
spatial correlations, however, some care is needed. The cor-
nerstone of the model, the logarithmic discretization, causes
not only the exponential falloff of the hopping amplitude, but
also a very poor spatial resolution away from the impurity.
To tackle that problem, we introduce Wannier states centered
both around the impurity and the point of interest r thus
reducing the problem to a two impurity type calculation.
Such an approach was demonstrated to work recently by
evaluating the spin-spin correlation function around a Kondo
impurity; see Ref. 13. To get the amplitude of the charge
oscillations, one needs the explicit value of kF, which we
obtained by calibrating the NRG code with a pure potential
scattering model.

We show results for different Kondo couplings in
Fig. 1. ��r�−�0�sin�2kFr� in agreement with Eq. �2� for
�P=0, the expected p-h symmetric result, since we use a flat
symmetric band with no potential scattering. In the inset
of Fig. 1, we show NRG results for F�r /�K� showing
good agreement with the asymptotic predictions of Eqs.
�12� and �13� and fair agreement with the prediction
of the “one spinon approximation”2,14 tK=−2i / �1− i� /TB�,
F�u�=1+4uae2uaEi�−ua�, a=TB /TK=2 / ��w��1.542. �Ei is
the exponential-integral function.� This is a challenging NRG

FIG. 1. �Color online� NRG
results on charge oscillations
around a Kondo impurity coupled
to 1D conduction electrons with
particle-hole symmetry. Note that
the oscillations vanish at kFr /�
�N. As shown in the inset, the
properly rescaled envelope func-
tion of the oscillations �extracted
as �−�0 at the local maxima� for
different Kondo couplings col-
lapses nicely into one universal
curve except for the points where
r�kF

−1. In the inset, we show the
analytical results for the asymptot-
ics as well: Note the good agree-
ment between the analytical re-
sults and the numerics.

FRIEDEL OSCILLATIONS AND THE KONDO SCREENING… PHYSICAL REVIEW B 77, 180404�R� �2008�

RAPID COMMUNICATIONS

180404-3



calculation since universal behavior is only expected to oc-
cur for �K, r�kF

−1 �i.e., at distances beyond several periods of
the density oscillation and at weak coupling�. On the other
hand, the numerical error increases at large r. The nonuni-
versal, coupling-dependent part of the charge-density oscil-
lations is much more extended in space than that of the spin-
spin correlator computed in Ref. 13. That is the main source
of the scattering of data points in the inset of Fig. 1. It is
interesting to note from the figure that F�0, corresponding
to the midpoint of the crossover from weak to strong cou-
pling, occurs at r��0.12�0.02��K. Thus an experimental
detection of the Kondo screening cloud via the density oscil-
lations would “only” need to measure out to distances of
order �K /10 to see at least half of the crossover. In STM
experiments, the most readily accessible measure of the
Kondo temperature is the half-width of Im T���,
T1/2�2TK.12 Once this number is determined experimentally,
the midpoint of the crossover of the Friedel oscillations is
predicted to occur at r�vF / �5T1/2�. At finite temperature,
Friedel oscillations decay exponentially with a thermal cor-
relation length �T�2�vF /T, so it is necessary to be at suffi-
ciently low T that �K��T to measure the Kondo screening
cloud. Direct electron-electron interactions, ignored in the
Kondo model, can also lead to decay of the Friedel oscilla-
tions with a decay length related to the inelastic-scattering
length. However, Fermi liquid theory �typically believed to
be valid in D=2 or 3� implies that this length also diverges
as T→0.

The Kondo screening cloud does not show up in the
energy-resolved density of states, −�2 /��Im G�r� ,r� ,��, mea-
sured in STM and given by Eq. �3�. This has a trivial r
dependence 1 /rD−1 at r�1 /kF. At fixed r, the Kondo scale
only enters through the � dependence. Only after doing the
� integral to get the total electron density does the Kondo
scale appear in the r dependence.

Previous attempts3 to fit experimental data on density os-
cillations around Cu and Mn impurities in Al to formulas like
Eq. �2� have yielded characteristic lengths that are much
smaller than �K as determined from the experimentally mea-
sured Kondo temperature. We think these issues deserve re-
visiting, using STM. Im T, measured from the energy-

resolved density of states �at a fixed location near the
impurity�, has a peak with a width identified as TK. This
identification is not completely obvious since it is typically
not feasible to raise the temperature past TK �due to diffusion
of the impurity� nor to apply magnetic fields corresponding
to Zeeman energies of O�TK�. It follows from Eq. �4� that
there should be a change in the envelope of the density os-
cillations at the corresponding length scale vF /TK. An accu-
rate measurement of ��r�, if it agrees with our results, would
both resolve an open fundamental question in Kondo physics
and firmly establish that these systems really do exhibit the
Kondo effect. We emphasize that the large size of the Kondo
cloud makes it very hard to observe. At such large distances
that F�r /�K� has changed significantly from its short distance
asymptote of 1, the 1 /rD factor in Eq. �2� makes the oscilla-
tions very small. Clearly the situation is improved in two-
dimensional systems.

In conclusion, we have shown that the Friedel oscillations
around a Kondo impurity exhibit a universal behavior char-
acterized by the length scale �K. We have determined the
corresponding universal scaling function analytically in both
limits r��K and r��K and numerically at intermediate r /�K.
It exhibits renormalization-group improved weak-coupling
behavior at short distances, quite unlike the Knight shift,
raising intriguing general questions about which quantities
are perturbative and which are not in this limit, for this and
other models. The envelope of the oscillations, given in Eq.
�2�, exhibits a crossover from short to long distances corre-
sponding to an increase of the s-wave phase shift by � /2.
However, at intermediate distances, the result does not cor-
respond to simple potential scattering for any value of the
phase shift. We have determined precisely the distance at
which the crossover occurs in terms of the measure of the
Kondo temperature accessible to STM experiments.

We thank L. Ding, Y. Pennec, and A. Zawadowski for
helpful discussions. This research is supported in part by
NSERC and CIfAR �I.A.�, by the János Bolyai Foundation,
the Alexander von Humboldt Foundation, and Hungarian
Grants OTKA through projects K73361 and T048782 �L.B.�,
and by the ESF program INSTANS �H.S.�.

1 A. C. Hewson, The Kondo Problem to Heavy Fermions �Cam-
bridge University Press, Cambridge, UK, 1993�.

2 F. Mezei and G. Grüner, Phys. Rev. Lett. 29, 1465 �1972�.
3 G. Grüner and F. Zawadowski, Rep. Prog. Phys. 37, 1497

�1974�.
4 V. Barzykin and I. Affleck, Phys. Rev. B 57, 432 �1998�.
5 G. Grüner and C. Hargitai, Phys. Rev. Lett. 26, 772 �1972�.
6 D. Šokčević, V. Zlatić, and B. Horvatić, Phys. Rev. B 39, 603

�1989�.

7 G. Bergmann, Phys. Rev. B 77, 104401 �2008�.
8 I. Affleck and P. Simon, Phys. Rev. Lett. 86, 2854 �2001�.
9 J. Kondo, Prog. Theor. Phys. 32, 37 �1964�.

10 F. Lesage and H. Saleur, Nucl. Phys. B 546, 585 �1999�.
11 K. G. Wilson, Rev. Mod. Phys. 47, 773 �1975�.
12 For a review, see R. Bulla, T. A. Costi, and Th. Pruschke, Rev.

Mod. Phys. 80, 395 �2008�.
13 L. Borda, Phys. Rev. B 75, 041307�R� �2007�.
14 F. Lesage and H. Saleur, J. Phys. A 30, L457 �1997�.

AFFLECK, BORDA, AND SALEUR PHYSICAL REVIEW B 77, 180404�R� �2008�

RAPID COMMUNICATIONS

180404-4


