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In this paper, we numerically investigate the phase slips in two-dimensional �2D� superconducting strips
using the string method, which has been presented as an efficient tool for the study of thermally activated rare
events. In the framework of Ginzburg–Landau �GL� theory, we calculate the most probable transition pathway
for thermally activated phase slips that are responsible for spontaneous current dissipation. Along the most
probable pathway, the saddle point of the GL free-energy functional can be located, from which the energy
barrier is also determined. We find there exists a critical width wc for narrow strips. Below wc, the strip behaves
as a one-dimensional superconducting wire for which the phase slips are described by the Langer–
Ambegaokar–McCumber–Halperin theory �Phys. Rev. 164, 498 �1967�; Phys. Rev. B 1, 1054 �1970��. Above
wc, however, the 2D character of the strip is recovered, and the phase slips are dominated by vortices crossing
the strip. In this 2D regime, our numerical results based on the GL theory are compared to the analytical results
of the London theory. While there is good agreement for large strip widths, deviation is noticed for small
widths �still �wc� because of the closeness of vortex core to the strip edges.
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I. INTRODUCTION

It has been known for decades that, in one-dimensional
�1D� superconducting systems, i.e., wires, thermally acti-
vated phase slips are responsible for the dissipation of super-
current at temperatures below the critical temperature Tc.

1–3

The Langer–Ambegaokar–McCumber–Halperin �LAMH�
theory2,3 provides a theoretical framework for quantitative
studies of the resistance of superconducting wires below Tc.

4

In two-dimensional �2D� superconducting thin films that are
wide enough, the current dissipation is due to the flow of free
vortices induced by the thermally activated �and/or current
assisted� unbinding of vortex-antivortex pairs �VAPs�, quan-
titatively described by the resistance theory based on the
Kosterlitz–Thouless transition.5–11 The above 1D and 2D
cases have been extensively investigated both theoretically
and experimentally.1–11 However, the case of quasi-2D nar-
row superconducting strips has received relatively less
attention.12–18 The investigation on this intermediate dimen-
sion is important as well considering its relevance to some
superconducting detecting devices, e.g., superconducting
single-photon detectors12–17 and superconducting submilli-
meter detectors.18 In particular, the mechanism of current
dissipation in narrow strips remains an issue.12–18 Interpreta-
tions of experimental data for these systems involve two dis-
tinct mechanisms. While in Refs. 14 and 15, the strips are
treated as 2D films in which the current dissipation is attrib-
uted to the thermally activated unbinding of VAPs, the com-
petition between 1D phase-slip strips and 2D vortices has
been modeled in Refs. 16 and 17 for quasi-2D superconduct-
ors. In this paper, we show that, for narrow superconducting
strips, typically of a small width w�10�,15–17 where � is the
temperature-dependent correlation length, the current dissi-
pation is mostly caused by �discrete� phase slips, each ac-
complished by a single thermally activated vortex crossing
the strip.

Compared to the 1D case, the complexity of 2D supercon-
ductors arises from the existence of topological defects, i.e.,

vortices. A simplified description based on the London
theory has been used to obtain certain analytical solutions, in
which the vortex is treated as a point particle by neglecting
the core structure within a radius ��.19 When applied to
problems of current distribution and magnetic moment in
stable and metastable states, the London theory can always
yield a good agreement with the more complete Ginzburg–
Landau �GL� theory. In the problem of thermally activated
barrier crossing, however, the core energy has to be explic-
itly taken into account, especially for narrow strips carrying
a strong current. Therefore, a full treatment based on the GL
theory is necessitated plus an efficient numerical tool to deal
with the GL free-energy functional. Mathematically, in a 2D
GL description of narrow strips, it would be very difficult to
obtain any analytical solution for the saddle point of free-
energy functional and the corresponding free-energy barrier.

Recently, the string method20–22 has been presented for
the numerical evaluation of thermally activated rare events.
This method first locates the most probable transition path-
way connecting two stable and/or metastable states in con-
figuration space. This is done by evolving strings, which are
smooth curves with intrinsic parametrization in configuration
space, toward the minimal energy path �MEP�. We have
demonstrated the string method to be an efficient numerical
tool for evaluating the thermally activated phase slips in 1D
superconducting wires.23,24 The purpose of this paper is to
investigate the thermally activated phase slips in quasi-2D
narrow superconducting strips using the string method.

The paper is organized as follows. To make the problem
under investigation clear, some basic considerations and as-
sumptions are presented in Sec. II. The theoretical model is
presented in Sec. III followed by the numerical results in
Sec. IV. The paper is concluded in Sec. V with a brief sum-
mary of the main results.

II. BASIC CONSIDERATIONS AND ASSUMPTIONS

In the absence of external magnetic field, the current dis-
sipation in 2D superconducting films is due to the thermally
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activated �and/or current assisted� flow of free vortices,
which are either generated in the bulk �from unbounded
VAPs� or nucleated at the edges, with the corresponding gen-
eration rates �defined as the number of free vortices gener-
ated per unit time� given by �b=�be−�Fb/kBT and �e
=�ee

−�Fe/kBT, respectively. Here, �b�e� denotes the prefactor
and �Fb�e� denotes the energy barrier for the bulk �edge�
contribution, kB is the Boltzmann constant, and T is the tem-
perature. Physically, the entropic effect is included in the
prefactor, for which we have �b�A /�2 and �e� l /� based
on the consideration of translational symmetry, where A and
l are the sample area and length �along the current direction�.
As for the energy barriers, we have �Fb�2�Fe.

25 A compe-
tition arises from the above relations: the bulk contribution is
enhanced by the prefactor but suppressed by the energy bar-
rier while the edge contribution displays the opposite trend.
For wide films, the sample area is large enough to make �b
dominate in the generation of free vortices. For narrow
strips, however, the edge contribution �e becomes dominant
because of the lower energy barrier.25 It is rather involved to
determine the characteristic dimension for the crossover
from �wide� films to �narrow� strips because many physical
parameters are involved, including the sample size, tempera-
ture, external current, and a few material properties. In this
paper, we simply assume that the strips are narrow enough
for us to ignore the contribution of free vortices generated
from unbounded VAPs in the bulk. We focus on narrow
strips of width w�10�, for which numerical calculations
show that the current dissipation is caused by phase slips of
2D character, each realized through a single thermally acti-
vated vortex crossing the strip.

Free vortices crossing the strip are controlled by two time
scales. The first is associated with the thermally activated
barrier crossing, 	1=1 /�e. The second is associated with a
free vortex crossing the strip, 	2=w /v, where v is the aver-
age velocity of vortex movement and w the strip width.26,27

If 	1
	2, then phase slips occur as well-separated discrete
events. On the contrary, if 	2
	1, then the numerous coex-
isting vortices �with the average number approximated by
NF�	2 /	1
1� lead to a continuous sequence of phase slips.
For wide films, the latter is always assumed.5–11 In order to
take into account the intervortex screening effects, the renor-
malization group technique is used in developing the resis-
tance theory based on the Kosterlitz–Thouless transition.
However, for the narrow strips considered in this paper, the
assumption of 	2
	1 is no longer justified. In fact, from 	1
=1 /�e�e�Fe/kBT and 	2�w, we expect 	1
	2 if �Fe
kBT
and the strip is sufficiently narrow. Therefore, it is extremely
improbable for several vortices to coexist in a narrow strip.
For this reason, hereafter, we ignore the intervortex screen-
ing effect and consider only discrete phase slips, each real-
ized through a single vortex crossing the strip.

The voltage-current �V− I� characteristic is always an im-
portant issue, irrespective of system dimension. Because of
the discrete nature of phase slips, the resistance expression
for narrow strips has to be distinguished from that for wide
films8,11 but forms a good analog to the LAMH expression
for 1D wires in which the current dissipation is caused by
current-biased barrier crossing. A natural result of the LAMH
theory is the linearity of V− I characteristic for weak

currents.2 �This linearity has a very simple origin. The dif-
ference in free energy between neighboring states is propor-
tional to the current. Therefore, to the leading order, the dif-
ference in transition rate between upward and downward
transitions is also proportional to the current. The voltage is
linearly related to this rate difference.� We note that the lin-
ear V− I characteristic has been reported for narrow strips in
some literatures.15–17

In this paper, we will focus on the narrow strips of width
w�10� and investigate the thermally activated phase slips
responsible for current dissipation. The typical width consid-
ered here is actually close to the characteristic dimension for
the crossover from 2D strip to 1D wire. Physically, there
exists a critical width below which the strip is effectively 1D
and so the 2D-like phase slips realized through vortex mo-
tion across the strip can no longer be activated. However, the
1D-like phase slips described by the LAMH theory may al-
ways contribute to the current dissipation in a narrow strip.
Therefore, above the critical width, a competition appears
between the 1D-like phase slips �with no vortex involved�
and the 2D-like phase slips involving vortices, and the domi-
nant contribution is to be determined by comparing their
respective energy barriers.

III. PHASE-SLIP FLUCTUATIONS IN NARROW
SUPERCONDUCTING STRIPS

A. Superconducting strips

Figure 1 shows a superconducting strip carrying a current.
The strip is parallel to the xy plane and the current flows
along the x direction. The origin of the coordinate system is
set at the center of strip. The length, width, and thickness of
the strip are denoted by l, w, and d, respectively. For thin
strips, the thickness d is much smaller than the temperature-
dependent London penetration length �, and the supercon-
ducting behavior in the xy plane is characterized by an ef-
fective penetration length �=2�2 /d that can be much larger
than the temperature-dependent correlation length �, even for
type I superconductors.28 In this paper, the strip width w is
assumed to be much smaller than �, and hence the self-
induced magnetic field can be neglected. In the absence of
applied magnetic field, the 2D GL free-energy functional is
of the form

F��x,y�� = d� dxdy�K

2
	�	2 −

�

2
		2 +

�

4
		4
 , �1�

where K=�2 /m, � is the Planck constant and m is the effec-
tive mass of a Cooper pair, �=�0�Tc−T�, and �0 and � are

FIG. 1. A schematic illustration of a superconducting strip and
the coordinate system. The length, width, and thickness of the strip
are l, w, and d. The current flows along the x direction.
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both phenomenological material parameters. The time evolu-
tion of  is governed by the time-dependent GL equation
with a white noise,

�
�

�t
= −

1

d

�F��
�� + � = K�2 + � − �		2 + � , �2�

where � is the damping coefficient, the asterisk denotes the
complex conjugate, and ��x ,y , t� is a white noise satisfying
the autocorrelation functions,

���x,y,t���x�,y�,t��� = 0,

���x,y,t����x�,y�,t��� = 4d−1�kBT��x − x����y − y����t − t�� .

This noise generates a random motion of �x ,y� in the con-
figuration space and stabilizes an equilibrium distribution
with the probability density proportional to e−F��/kBT.

For computational purpose, we use the dimensionless
form

F̄�̄�x̄, ȳ�� =� dx̄dȳ�1

2
	�̄̄	2 −

1

2
	̄	2 +

1

4
	̄	4
 �3�

for the free-energy functional. Here, the overbar denotes the
dimensionless quantities, obtained with F scaled by G�T�
=d�2�2 /�,  by � /�, and x and y by the temperature-
dependent correlation length �=K /�. Here, �2 /4�
=Hc

2�T� /8� is the bulk condensation energy density, with
Hc�T� being the bulk critical field. The corresponding dimen-
sionless time-dependent GL equation is of the form

�̄

� t̄
= −

�F̄�̄�

�̄�
+ �̄ = �̄2̄ + �1 − 	̄	2�̄ + �̄ , �4�

in which the time is scaled by 	�T�=� /�, i.e., t̄= t /	�T�, and

the dimensionless noise �̄ satisfies the autocorrelation func-
tions

��̄�x̄, ȳ, t̄��̄�x̄�, ȳ�, t̄��� = 0,

��̄�x̄, ȳ, t̄��̄��x̄�, ȳ�, t̄���

= 4�kBT/G�T����x̄ − x̄����ȳ − ȳ����t̄ − t̄�� .

Throughout the remainder of this paper, we will mostly use
the dimensionless quantities with the overbar dropped. We
want to point out that all the temperature effects have been
absorbed into the units �e.g., G�T�,� /�, and �� in defining
the dimensionless quantities.

B. Metastable states, saddle points, and phase slips

The metastable current-carrying states are the local
minima of the GL free-energy functional, which can be ob-
tained from the stationary GL equation

�2 + �1 − 		2� = 0. �5�

It is convenient to take �x ,y�= f�x ,y�ei��x,y�, in which f and
� represent the magnitude and phase of the complex order
parameter. Then, Eq. �5� becomes

�f − f � � · �� + �1 − f2�f = 0 �6a�

and

2 � � · �f + f�� = 0, �6b�

which should be supplemented by appropriate boundary con-
ditions. The periodical boundary condition �−l /2,y�
=�l /2,y� is imposed along the x direction, and the
superconductor-insulator boundary condition is applied at the
two edges y= �w /2, i.e., y�x , �w /2�=0 �with the sub-
script y denoting the partial derivative with respect to y�.
Under these boundary conditions, the metastable states are of
uniform magnitude, i.e., �f =0, and the solutions of Eqs. �6a�
and �6b� are of the form

n�x,y� = fneiknx, �7�

where kn=2n� / l is the wave vector along the x direction,
fn=1−kn

2 is the constant magnitude, and n is an integer
usually called the winding number. The �dimensionless�
current density �along x� in the state of n is jn= fn

2kn
= �1−kn

2�kn. For n to be metastable, 	kn	 must not exceed the
critical wave vector kc=1 /3, which corresponds to the criti-
cal current density jc=4 /27.

Between two neighboring metastable states n and n−1,
there is a saddle point of the GL free-energy functional,
s�x ,y�, which is also a solution of the stationary GL equa-
tion �5�. Physically, this saddle point corresponds to the most
probable thermally activated fluctuation which can carry the
system from n to n−1 and vice versa. The free-energy bar-
rier �F is given by �F=Fs−Fn �or �F=Fs−Fn−1� for the
transition n→n−1 �or n−1→n�, with Fn �or Fn−1� and Fs
denoting the free energies of n �or n−1� and s,
respectively. According to the free-energy expression
Fn=−�1−kn

2�2wl /4, a smaller winding number �correspond-
ing to a weaker current� yields a lower free energy. There-
fore, the transition n→n−1 �for positive n� with a phase
change by −2� �over the system length l� is much more
probable than the transition n−1→n with a phase change
by 2� since the free-energy barrier �F=Fs−Fn is smaller.
Because of this current-biased barrier crossing, the thermally
activated phase slips result in a spontaneous process in which
the free energy is lowered and the current is reduced. Based
on this observation and also for the convenience of presen-
tation, our discussions below will be focused on the current-
reducing transition n→n−1; the extension to the transition
n−1→n is straightforward.

Physically, there exist two distinct kinds of phase slips
corresponding to two distinct kinds of saddle points. Phase
slips of the first kind are numerically obtained when the strip
acts as a 1D wire, with the order parameter uniformly dis-
tributed along the y direction across the strip. The corre-
sponding saddle point will be called the phase-slip-strip
�PSS� solution16 and denoted by s

PSS. The 1D character of
phase slips of the first kind means that the PSS solution s

PSS

and the corresponding free-energy barrier �FPSS are quanti-
tatively described by the LAMH theory. With the strip acting
as a wire, the free-energy barrier �FPSS is proportional to the
strip width w. The numerical evidence will be shown in Sec.
IV.
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Phase slips of the second kind are more complicated be-
cause they involve vortices and thus 2D variations of the
order parameter. A typical phase slip of the second kind will
be shown in Sec. IV. The corresponding saddle point will be
called the phase-slip-vortex �PSV� solution and denoted by
s

PSV. In the approximate description based on the London
theory, the internal structure of the vortex core is neglected
and the PSV solution is just represented by a position of the
vortex center that yields the maximum free energy �see Ap-
pendix A for details�. One advantage of this description is
that analytical expressions can be obtained for the saddle
point from the position of vortex center to the value of free-
energy barrier. However, in the framework of GL theory,
analytical solution for s

PSV is no longer available, and hence
a numerical approach becomes imperative. The string
method has already been demonstrated to be an efficient nu-
merical tool for the evaluation of thermally activated phase
slips in 1D superconducting wires.23,24 In this paper, we will
extend this numerical approach to investigate the PSV solu-
tion s

PSV and the corresponding free-energy barrier �FPSV in
quasi-2D narrow superconducting strips.

IV. NUMERICAL RESULTS

A. Phase slips via single vortex crossing the strip

Now, we present the numerical details for the evaluation
of saddle points that intervene neighboring metastable states
and result in phase slips. Without losing generality, we start
from the transition 3→2 for a system of length l=200 and
width w=16. The string method �outlined in Appendix B� is
implemented as follows. Any configuration �x ,y� is repre-
sented by a column vector of 2N�M entries �where 2 comes
from the complex nature of �, with the 2D space
�−l /2, l /2�� �−w /2,w /2� discretized by a uniform mesh of
N�M =800�64 points. Spatial derivatives in the potential
gradient −�F�� /�� are evaluated using the central finite
difference. Discretized by K=101 points in the configuration
space of �x ,y�, the string is evolved toward its stationary
state which gives the MEP corresponding to the most prob-
able transition pathway. During the string evolution, a rep-
arametrization by arc length is applied every ten steps. The
saddle point �either PSS or PSV� is a point that yields the
maximum free energy along the MEP. Once the stationary
MEP is obtained, the climbing image technique can be com-
bined with the string method to locate the saddle point
accurately.22,29 To check the uniqueness of the MEP, different
initial strings have been tried. The simplest initial string is
constructed by a linear interpolation between the metastable
states 3 and 2 �expressed in Eq. �7�� and leads to the PSS
MEP �i.e., the MEP along which the saddle point is found to
be the PSS solution�. Mathematically, a linear interpolation
between 3 and 2 involves only 1D variation of  along the
x direction and so does the saddle point s

PSS obtained from
such an initial string. In order to obtain the PSV MEP �i.e.,
the MEP along which the PSV solution occurs at the saddle
point�, a small perturbation to the above initial string has to
be used to introduce some variation along the y direction as
well.

Figure 2�a� shows the free-energy variation along the PSV

MEP from 3 to 2. The free-energy barrier along this MEP
is evaluated to be �FPSV=F�s

PSV�−F3=5.13. The PSS MEP
is also obtained but not depicted here, and the corresponding
free-energy barrier is found to be �FPSS=F�s

PSS�−F3
=10.9 �in agreement with the prediction of the LAMH
theory�, much higher than �FPSV=5.13. Displayed in Fig.
2�b� is a sequence of states along the PSV MEP from 3 to
2, showing that a vortex �with clockwise current circula-
tion� is first nucleated at the lower edge �y=−w /2�, then
moves across the strip, and is finally annihilated at the upper
edge �y= +w /2�. �Because of the mirror symmetry of system
with respect to y=0, there exists another PSV MEP that in-
volves an antivortex �with counterclockwise current circula-
tion� crossing the strip from the upper to the lower edge. This
MEP leads to the same free-energy barrier and has been ob-
served by using a slightly modified initial string.� In particu-
lar, state II in Fig. 2�b� is the stationary PSV solution �i.e.,
the saddle point�, in which the position of vortex center is

FIG. 2. �Color online� �a� Free energy �solid line� and the two of
its ingredients, i.e., condensation energy �dashed line� and kinetic
energy �dotted line�, evaluated along the PSV MEP from 3 to 2,
each plotted as a function of the arc length s in the �x ,y�-function
space, for l=200 and w=16. The 3 state is taken as the reference
point at which s=0. The arc length measured along the MEP is
normalized by that from 3 to 2, hence s runs from 0 to 1. In each
set of the data, the corresponding value at 3 has been subtracted to
let the curve start from zero. �b� Distributions of order parameter
magnitude �left� and current density �right� for a sequence of states
labeled along the curve of free energy in �a�. In the left panel, the
gray scale varies from black for 		=0 to white for 		=1, and the
arrows denote the direction of vortex motion across the strip. Only
the segments of noticeable spatial variations are shown for clear
illustration.
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found to be ym�−3.85, very close to ym=−3.90 predicted by
the London theory �according to Eq. �A4��. To understand
how the phase slip occurs in 2D space, we turn to the phase
distribution ��x ,y� of the complex order parameter. Figure 3
shows the contour plot of ��x ,y� for the PSV solution �state
II in Fig. 2�b��, from which the existence of a vortex is
clearly observed. This vortex gives rise to a constant differ-
ence of 2� between the phase variations below and above
the vortex core. As a consequence, the phase change accu-
mulated along the +x direction will decrease by 2� once the
vortex traverses the strip along the +y direction.

Figure 2�a� also shows the variations of the condensation
energy and kinetic energy along the PSV MEP. The variation
of the condensation energy shows three platforms. The plat-
form “A-B” in the middle is of height �1.56, corresponding
to the MEP segment between states I and III. This platform is
produced by the extra condensation energy used in forming a
vortex. In particular, “A” and “B” correspond to states I and
III, respectively, which are associated with the emergence
and disappearance of the vortex. Additional calculations
show this extra condensation energy to be only weakly de-
pendent on the external current. However, the kinetic energy
barrier ��3.58 in Fig. 2�a�� is very sensitive to the external
current. Our calculations show that the kinetic energy barrier
reaches the maximum value at zero current and decreases
with the increasing current. When the current is large
enough, the kinetic energy exhibits no barrier but a mono-
tonic decrease along the PSV MEP. That is, the kinetic en-
ergy alone actually prefers a vortex to emerge and cross the
strip. This is, of course, counterbalanced by the condensation
energy barrier associated with the vortex formation. �Other-
wise, the metastability of the current-carrying states would
be lost.� The total free-energy barrier approaches zero when
the critical current density jc is reached. This results in fre-
quent phase slips induced by the numerous vortices easily
nucleated at the edges. Our numerical study is not applicable
to this extreme regime where phase slips are no longer rare
events.

B. Comparison between the Ginzburg–Landau results
and the London results

Figures 4�a� and 4�b� show the free-energy barrier �FPSV

as a function of strip width w, evaluated for current densities
j=0.02jc and 0.162jc, which are realized in numerical calcu-
lations by using a large length l=256� and initial winding

numbers n=1 �for j=0.02jc� and n=8 �for j=0.162jc�. Two
sets of data are presented in Fig. 4 for the PSV solution. The
squares represent the numerical results obtained from the GL
theory by using the string method, while the solid lines rep-
resent the predictions of the London theory, expressed by Eq.
�A3�. Excellent agreement has been achieved for large strip
width. However, difference between the two data sets be-
comes clearly visible as the strip width is reduced. This is
expected since in a narrow strip the vortex is too close to the
edge to allow a satisfactory description by the London
theory. In Fig. 4, there is only one adjustable parameter used
to optimize the agreement between the London results and
the GL results. This is the vortex core energy Ec which ap-
pears in Eqs. �A2� and �A3�. To optimize the fitting in Fig. 4,
two slightly different core energy values are used:
Ec�1.27 for j=0.02jc and Ec�1.22 for j=0.162jc. These
values are considered to be in reasonable agreement with the
condensation energy barrier associated with the formation of
a vortex, found to be 1.56 along the PSV MEP shown in Fig.
2. It is also noted that the above fitting values for the core
energy are much higher than the usual rough estimation
���2dHc

2 /8�� /G�0.785 �Refs. 9 and 10� but a bit lower
than the value �1.42 deduced from the London theory in the
strong current limit �see Appendix A�.

C. Crossover from two-dimensional strip
to one-dimensional wire

Physically, it is expected that, as the strip width is gradu-
ally reduced, it will reach a critical width wc below which

FIG. 3. Contour plot of the phase distribution ��x ,y� �in the unit
of 2�� for the PSV solution �state II in Fig. 2�b��.

FIG. 4. �Color online� �a� Free-energy barrier plotted as a func-
tion of strip width w, evaluated for current densities j=0.02jc

�black� and 0.162jc �red�. The squares represent �FPSV for the PSV
solution obtained from the GL theory by employing the string
method, while the solid lines represent �FPSV expressed by Eq.
�A3�, derived from the London theory. The dashed lines represent
the free-energy barrier �FPSS�w for the PSS solution, calculated
according to the LAMH theory. �b� An enlarged view of �a� for
small strip width. A critical width wc is noted to separate the 2D
PSV regime above wc from the 1D PSS regime below wc.
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phase slips can no longer be realized through vortices cross-
ing the strip. Rather, the strip acts effectively as a wire since
order parameter variations across the strip are prohibited. In
Ref. 30, a minimum strip width has been numerically evalu-
ated for the existence of vortices: wc�4.4. We have numeri-
cally verified this criterion for thermally activated phase slips
using the GL theory. In Fig. 4, the critical width wc is found
to be between 4.3 and 4.5. It is our numerical finding that
below the critical width, although order parameter variations
along the y direction are still allowed in computation, only
those phase slips that occur through the 1D PSS solution are
obtained. �That is, by evolving a string toward the stationary
MEP, any order parameter variation along the y direction
would be gradually removed and a PSS MEP is always
reached in the end.� Above wc, however, phase slips may
occur through either the 1D PSS or the 2D PSV solution. The
dominant contribution is made through the saddle point of
lower free energy. To compare the variation of �FPSS with
that of �FPSV, we start from the analytical expression de-
rived from the London theory �Eq. �A3��, which shows the
free-energy barrier �FPSV to increase logarithmically with
the width w at most: the logarithmic dependence is attained
for zero current only, while for finite currents the increase is
slower. In fact, �FPSV approaches a saturation value as
� /2wk→0, where k is the wave vector �see Eq. �A3��. This
tendency is seen clearly in Fig. 4�a�: the curve for the larger
current density shows a much slower rise with w. On the
other hand, the 1D nature of the PSS solution leads to a
linear increase in �FPSS with w, much faster than that of
�FPSV. It is therefore inevitable that, for wide strips,
�FPSS��FPSV, and hence phase slips are dominated by vor-
tices crossing the strip, which are activated with a lower
barrier. In particular, Fig. 4�b� shows that �FPSS surpasses
�FPSV starting from w=wc, below which the PSS solution is
the only channel for phase slips to occur. Note that around
the critical width wc�4.4, accurate results can only be ob-
tained from the GL theory because the vortex core is very
close to the strip edge and thus the London theory is not
reliable. It is also interesting to note that in Fig. 4�b�, within
numerical error, we have �FPSS=�FPSV at the critical width
wc, below which the PSV solution ceases to exist.

In summary, the critical strip width wc�4.4 separates the
1D PSS regime and the 2D PSV regime for thermally acti-
vated phase slips. We note that in Refs. 16 and 17, it is
argued that the PSS solution is responsible for the formation
of resistive state in their samples, typically of width
w�10 ��wc� in a wide temperature range below Tc.

D. Boundary conditions

The numerical results presented above are obtained by
using superconductor-insulator boundary condition at the
strip edges y= �w /2. If the superconductor-metal boundary
condition is employed,31,32 the current-carrying metastable
states no longer possess uniform distribution of order param-
eter along the y direction across the strip because of the
suppressed superconductivity near the edges, and conse-
quently numerical evaluation of these states becomes neces-
sary. Even the stationary PSS solutions will show some

variation of order parameter along the y direction, and hence
their quantitative description goes beyond the 1D LAMH
theory. As for the PSV solutions, the London theory is made
less accurate by the near-edge variation of order parameter,
especially for narrow strips. We want to point out that, for
the superconductor-metal boundary condition, the string
method has also been employed to numerically calculate the
metastable states, PSS solutions �with 2D variations of the
order parameter� and PSV solutions, and the corresponding
free-energy barriers. Although the numerical results are not
presented here, they are found to be in qualitative agreement
with the results under the superconductor-insulator boundary
condition. Physically, under the superconductor-metal
boundary condition, the strip is effectively narrowed by the
suppressed order parameter near the geometrical edges. This
leads to a larger critical width separating the PSS and PSV
regimes, but the physical picture for the crossover from 2D
to 1D behavior remains unchanged.

V. CONCLUSION

In the framework of GL theory, we have numerically cal-
culated the saddle points and the corresponding free-energy
barriers for thermally activated phase slips in narrow super-
conducting strips by using the string method. The numerical
results show the existence of a critical width. Below the criti-
cal width, the strip behaves as a 1D wire with phase slips
carried by the PSS solutions. Above the critical width, the
strip shows the 2D character, with phase slips realized
through the PSV solutions that involve vortex motion across
the strip. Therefore, our numerical study based on the GL
theory provides a unified description for phase slips in nar-
row systems ranging from 1D wires to 2D strips. For wide
strips, good agreement has been obtained with the predic-
tions of the London theory, while for narrow strips, our nu-
merical results represent improvement over the theoretical
results.
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APPENDIX A: ANALYTICAL RESULTS FROM THE
LONDON THEORY

This is a brief review for the phase-slip-vortex solution
and the corresponding energy barrier described by the Lon-
don theory. For consistency, we use the same dimensionless
quantities defined in Sec. III A. As shown in Fig. 1, we con-
sider the current flowing in the +x direction with a vortex
moving in the +y direction. �An extension to an antivortex
moving in the −y direction is straight forward based on sym-
metry operation.� For a 2D strip of a finite width w and an
infinite length, if no current is applied, then the self-energy
of a vortex at position y �with −w /2�y�w /2� can be writ-
ten as
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F�y� = � ln�2w

�
cos

�y

w
� + Ec. �A1�

In the right-hand side of this equation, the first term repre-
sents the energy arising from the interaction among the vor-
tex and a series of image vortices, and the second term is the
positive vortex core energy which is sometimes ignored.19,33

The core energy is included because the condensation energy
is underestimated while the kinetic energy �of circulating
current within the vortex core of radius �1� is overestimated
by ignoring the core structure characterized by the
suppressed order parameter. Equation �A1� diverges at
y= �w /2 and is considered not valid within a distance �1
from the edges. This is expected because the size of vortex
core has not been taken into account in Eq. �A1�

In the presence of external current, with the additional
current-vortex interaction, the energy becomes33

F�y� = � ln�2w

�
cos

�y

w
� − 2�k�y + w/2� + Ec, �A2�

where k is the wave vector in the +x direction. The energy
barrier for a single vortex crossing the strip can be found by
locating the maximum of F�y�,

�FPSV = ��ln
2w

�1 + �2wk/��2
−

2wk

�
tan−1� �

2wk�
 + Ec,

�A3�

which occurs at

ym =
w

�
tan−1� �

2wk
� −

w

2
, �A4�

corresponding to the position of vortex center in the PSV
solution.

The core energy Ec is usually treated as an adjustable
parameter. To have an estimate of Ec, we take k=kc=1 /3,
which is the critical wave vector for vanishing metastability,
and then require �FPSV=0. This yields Ec�1.42. In this es-
timation, the distance of the vortex from the lower edge

y=−w /2, 	ym+w /2	=1 /2kc�0.866, is already so small that
the London theory is no longer considered accurate. How-
ever, we still find this estimate to be very close to our fitting
values �Ec�1.27 and 1.22; see Sec. IV B� used in matching
the GL results for �FPSV.

APPENDIX B: STRING METHOD

To outline the string method,20–22 we consider a system
governed by the overdamped Langevin equation,

�q̇i = − �iV�q� + �i�t� , �B1�

where � is the damping coefficient, q denotes the generalized
coordinates �qi�, q̇i��qi /�t, �i�� /�qi, and �i�t� is a white
noise satisfying ��i�t�� j�t���=2�kBT�ij��t− t��. Metastable
and stable states are located in configuration space as the
minima of the potential V�q�. Let qA and qB represent the
two minima of V�q�. In terms of the topography of V�q�, the
most probable fluctuation that can carry the system from qA
to qB �or qB to qA� corresponds to the lowest intervening
saddle point between these two minima. The minimal energy
path �MEP� is defined as a smooth curve q̃�s� in configura-
tion space. With intrinsic parametrization such as arc length
s, the MEP connects qA and qB and satisfies

��V���q̃� = 0, �B2�

where ��V�� denotes the component of �V locally normal to
the path q̃�s�. Physically, the MEP is the most probable path-
way for thermally activated transitions from qA to qB and
vice versa. To numerically locate the MEP in configuration
space, a string q�s� connecting qA and qB is parametrized by
arc length s and evolved according to

q̇ = − ��V���q� . �B3�

A reparametrization has to be applied once in a while to
enforce accurate parametrization by s. The stationary solu-
tion of Eq. �B3� satisfies Eq. �B2� by which the MEP is
defined. Once the MEP is determined, the saddle point and
the corresponding energy barrier can be obtained by locating
the point of maximum potential along the MEP.
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