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We study the effect of magnetic Mn ions on the two-band superconductor MgB2, and compute both the total
and spin-resolved scanning tunneling spectrum in the vicinity of the magnetic impurity. We show that when the
internal structure of the Mn ion’s d-shell is taken into account, multiple Shiba states appear in the spectrum.
The presence of these multiplets could alter significantly the overall interpretation of local tunneling spectra for
a wide range of superconducting hosts and magnetic impurities.
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I. INTRODUCTION

The interaction between a single magnetic impurity and
the superconducting host reveals fundamental properties of
both the magnetic ion and the host material. This interaction
was first studied theoretically, within the framework of BCS
superconductivity. During the late sixties, Shiba1 showed that
a magnetic impurity pulls down from the continuum states a
pair of bound states inside the superconducting gap. Indirect
indication for the presence of finite spectral weight inside the
gap of an impure superconductor could be inferred from glo-
bal probes of the density of states. However, direct evidence
for the existence of the so-called Shiba states requires an
accurate measurement of the local density of states near the
impurity. Such a measurement became available only re-
cently by using high vacuum, low temperature scanning tun-
neling spectroscopy �STS�. Yazdani et al.2 imaged the local
density of states around Mn and Gd impurities deposited
onto Nb single crystals. They found clear evidence for local-
ized states in the vicinity of the magnetic impurities, in quali-
tative agreement with Shiba’s original findings, and also with
their own model calculation based on a non-self-consistent
solution to Bogoliubov–de Gennes equations. Quantitative
discrepancies, however, are also clearly present, especially
when comparing the width and spatial dependence of the
resonances to theoretical expectations. The presence of mag-
netic impurity induced bound states in a superconductor was
turned around and used, both theoretically3–5 and
experimentally,6 as an investigative tool to probe the unusual
ground state of the cuprate superconductors.

Although there exist some precious numerical renormal-
ization group and Monte Carlo results for quantum dots at-
tached to superconducting electrodes,7,8 most of the theoret-
ical studies carried out so far for magnetic impurities in a
superconductor follow Shiba’s original work, and use pre-
dominantly a classical spin model to describe the magnetic
impurity and assume a single spin one-half electron channel
that couples to the magnetic impurity. Furthermore, the cou-
pling is assumed to be in the s-wave channel, and spin-orbit
coupling is generally ignored. This set of approximations
worked beautifully for most of the experiments performed so

far and provided simple, elegant, and intuitive results. How-
ever, recent advances in the resolution, stability, and process-
ing of scanning tunneling imaging opened the door for visu-
alizing structures that go beyond the class of Shiba-like
models. Indeed, magnetic impurities have a more compli-
cated internal structure:9 The magnetic moments are usually
due to low-lying and crystal-field split d or f levels with
multiple occupancy. The aim of this paper is to demonstrate
that �i� the internal structure of the Mn impurity has a major
impact on the structure of the Shiba states, and �ii� these
features should be readily observable with the current reso-
lution of STS measurements. In particular, multiple channels
of charge carriers couple to the magnetic impurity through
channel-dependent coupling. The combination of these in-
gredients generally leads to the appearance of multiple pairs
of Shiba states. We compute the spatial and spin structure of
the scanning tunneling microscopy �STM� spectra around the
magnetic impurity and show that these states appear as dis-
tinct resonances inside the superconducting gap, and can be
most clearly resolved in spin-resolved STM spectra.

In the following, we illustrate our results on the specific
case of Mn-doped MgB2, but we wish to emphasize that
much of our discussions carry over to other systems as
well,10 and that our conclusions are rather general. There are
several reasons to choose the Mn-MgB2 system. Despite the
relatively recent discovery of its essentially conventional su-
perconducting phase, MgB2 has been thoroughly character-
ized both experimentally and theoretically,11 and therefore
provides an ideal testing ground for our theoretical frame-
work. Several materials parameters of MgB2 are also in a
convenient range for our investigation. First, in order to ob-
serve a Shiba state by scanning tunneling spectroscopy, one
needs a relatively large gap. MgB2 is a perfect candidate in
this respect since it is a conventional superconductor that has
an unusually high critical temperature,12 Tc=39 K. Second,
MgB2 has a hexagonal AlB2-type structure and a highly an-
isotropic band structure.13,14 As we shall see below, this leads
to a clear separation of the multiple Shiba states. The pres-
ence of two gaps in MgB2 has been well established by now
through a variety of spectroscopic probes.15–18 It is therefore
an interesting question how the presence of these two gaps
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influences the structure of Shiba states. Although a series of
experimental19,20 and theoretical21,22 investigations have
been recently completed for MgB2 doped with nonmagnetic
as well as magnetic impurities, no experimental or theoreti-
cal study has been completed for the local electronic struc-
ture of a single magnetic impurity in this compound. This
paper now provides a detailed theoretical discussion of the
single magnetic impurity problem in MgB2 and other super-
conductors where the multiple degrees of freedom of the
conduction electrons and the impurity could lead to experi-
mentally observable consequences.

Finally, there is another advantage for studying Shiba
states in MgB2. The strong coupling, short coherence length,
and the consequently robust condensate allow us to investi-
gate the effect of a single magnetic impurity on a supercon-
ductor in the regime where the order parameter remains spa-
tially constant. Here, the results of Flatté and Reynolds4 are
quite valuable: According to their calculations, for a super-
conductor with coherence length �kF=10, the relative spatial
fluctuations in the local order parameter remain below 5%,
even at the impurity site. This result is valid for the entire
range of interest 0�g�1 for the dimensionless coupling g
�between the magnetic impurity and the superconducting
quasiparticles, see below�. As shown in the following sec-
tions of this paper, the spatially constant order parameter
provides considerable simplifications in our calculations, and
this model allows us to make experimentally testable predic-
tions for the presence of the multiple Shiba states in MgB2.

II. HAMILTONIAN

A. Band structure calculation

As mentioned above, MgB2 crystallizes in the hexagonal
AlB2-type structure13 in which the B− ions constitute graphi-
telike sheets in the form of honeycomb lattices separated by
hexagonal layers of Mg ions. Band structure calculations14

indicate that Mg is substantially ionized, and the bands at the
Fermi level derive mainly from boron p orbitals. Four of the
six p bands cross the Fermi energy, and the Fermi surface
consists of quasi-two-dimensional cylindrical sheets, due to
B-px,y orbitals, and a three-dimensional tubular network
�mostly originating from B-pz orbitals�. It is believed that
both structures participate in the formation of the supercon-
ducting state, although the gap is very different on the tubu-
lar network and on the cylindrical sheets.

Let us first discuss the tight-binding Hamiltonian we use
and the corresponding band structure. In spite of its simplic-
ity, this tight-binding description is rather robust, as can be
checked by a direct comparison to the results of more sophis-
ticated ab initio band structure and density of states �DOS�
calculations.14 In the rest of the paper, we shall use the fol-
lowing simple Hamiltonian to describe the normal state of
MgB2,

H0 = �
r,r�

�
�,��,�

�tr,r�
�,�� − ��r,r��

�,�����r,�,�
† �r�,��,� + H.c.� ,

�1�

where � sets the Fermi energy and �r,�,� is the annihilation
operator of an electron of spin � on p-orbital � ��
= px , py , pz� of the B ion at position r,

r = R + d . �2�

The vector R in this expression points to the center of the
unit cell, and d gives the position of the B ion within the unit
cell. Note that there are two atoms per unit cell, which shall
be labeled by the index �=1,2 in what follows. The hopping

matrix elements tr,r�
�,�� in Eq. �1� connect only neighboring

sites, but their value depends on the relative orientation of
the p orbitals. Quasiparticle energies are measured from the
Fermi energy �.

The Hamiltonian above can be easily diagonalized in Fou-
rier space. The field operators �r,�,� can be expanded as

�r,�,� =
1

��
�
k,b

eikReb;�,��k�ck,b,�, �3�

where � is the number of unit cells and ck,b,� is the annihi-
lation operator of an electron in band b �b=1, . . . ,6� with
momentum k, spin �, and energy 	k,b. The band energies and
the wave function amplitudes eb;�,� are determined by the
eigenvalue equation

�
��,��

H�,�;��,���k�eb;��,�� = 	k,beb;�,�, �4�

where H�,�;��,���k� is essentially the Fourier transform of the
hopping matrix, detailed in Appendix A. In our tight-binding
model, we have six bands: Four of them derive from pxy
orbitals while the remaining two from pz orbitals. The band
structure obtained is presented in Fig. 1. Notice that both pz
�
 bands� cross the Fermi surface but only two of the px,y
bands �� bands� cross it.

In the presence of superconducting order, one must
modify the Hamiltonian above and add the pairing terms
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FIG. 1. Band structure for MgB2, along the symmetry lines,
computed in the framework of tight-binding model described in
Appendix A. There are six bands: four from px,y orbitals �solid
lines� and two from pz �dashed lines�. Both pz bands and only two
px,y band cross the Fermi level, which corresponds to zero energy,
EF=0.
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H0 → H0 = �
b,k,�

	k,bck,b,�
† ck,b,� + �

b,k
�b�c−k,b,↓

† ck,b,↑
† + H.c.� .

�5�

Here, the summation goes over those four bands that cross
the Fermi energy �b=1. . .4�. We assume further that the su-
perconducting gaps take only two different values: in the px,y
bands, �xy �7.5 meV, while for the pz bands, it is �z
�2.5 meV. In our work, we shall neglect furthermore the
position dependence of the gaps around the magnetic impu-
rity. This approximation is justified by the short coherence
length in MgB2, as already explained in Sec. I.

B. Interaction with a magnetic impurity

To carry out a quantitative analysis of the magnetic impu-
rity problem, we first need to establish how magnetic spins
couple to the conduction band. The interaction part of the
Hamiltonian depends on the specific location and electronic
structure of the magnetic impurity considered. In what fol-
lows, we provide a detailed analysis for Mn impurities,
which have already been doped into MgB2, although similar
considerations hold for other types and positions of magnetic
impurities. Mn ions presumably substitute the Mg atoms, and
most likely take an Mn2+ configuration with a half-filled d
shell and a spin S�5 /2.23 As shown in Fig. 2, the fivefold
degeneracy of the d states is lifted by the local hexagonal
crystal field into three multiplets that we can label by the

original angular momentum quantum numbers � of the d
states, ���. Each of these states is occupied by a single elec-
tron and hybridizes through a hybridization V�, with a spe-
cific local combination of p states, ��, that we construct
next.

The Mn ion is in the middle of a cage of 12 B ions, which
we shall label by the indices i=1, . . . ,12. To start with, let us
first construct the local hopping Hamiltonian between the
Mn d orbitals and the p orbitals of a neighboring B ion “i” at
position ri. Let us now take a reference frame with the Mn in
the origin and the z axis pointing along the direction ni of
this neighboring ion. In this reference frame, with a good

approximation, only the L̃z=0 state of the five Mn d states

hybridizes with the L̃z=0 state of the B p orbital. Corre-
spondingly, the hybridization between the impurity and this
neighbor can be approximated as

Vi = V�ri,�
†� di,�

� + H.c., �6�

where di,�
� is the annihilation operator for a local Mn d or-

bital at the origin oriented along the direction ni. Similarly,
�ri,�i,�

� is the annihilation operator for the p state at the B site
oriented along the same direction. These operators are re-
lated to the operators occurring the H0 by simple rotations,

�ri,�
� = �

=x,y,z
�ri,,�ni

 �7�

and

di,�
� = �

�

����i�e−i�̃i�d�,�, �8�

where d�,� refers to states with a quantization axis perpen-
dicular to the B planes, �̃i=�i−�1, and

����� =	
−

1

2
�3

2
sin2 �

− i
1

2
�3

2
sin 2�

1

4
�1 + 3 cos 2��

− i
1

2
�3

2
sin 2�

−
1

2
�3

2
sin2 �


 . �9�

Summing over all neighboring atoms and expressing all
operators �ri,,� in terms of the band operators ck,b,�, we
then obtain the following hybridization Hamiltonian,

HV = �
b,�,�

Vb
�����b,�,�

† d�,� + d�,�
† �b,�,�� , �10�

where the operator �b,�,� creates an electron with the same
local d-state symmetry as ��� in band b, and can be ex-
pressed as
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FIG. 2. �Color online� �a� Local environment of an Mn ion in
MgB2. The Mn ion is located in a hexagonal cage made of B ions
represented by large dots. �b� Level structure and crystal-field split-
ting of the Mn2+ core states. Two levels ��= �2 and �= �1� are
twofold degenerate and the level �=0 is nondegenerate.
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�b,�,� =
1

��
�
k

f̃�,b�k�ck,b,�, �11�

f̃�,b�k� = �
i,�

��
�

A�,b
��i�ei�̃i�ni

�eb;�,�i
�k�eikRi, �12�

and Vb
���=VA�,b. In these expressions, the normalization fac-

tor A�,b has been determined numerically and is defined by

the condition that f̃�,b�k� be normalized at the Fermi surface

1

Sb
�

Sb

d2k f̃�,b�k� f̃��,b
� �k� = ��,��. �13�

Symmetry further implies that states belonging to the same
irreducible representation have the same hybridization: Vb

���

=Vb
�−��.
The above hybridization Hamiltonian generates an effec-

tive exchange interaction between the Mn spin and the con-
duction electrons in the B bands, since it generates charge
fluctuations to the Mn1+ and Mn3+ states. Second order per-
turbation theory in the hybridization leads to the effective
exchange Hamiltonian:

Hint = �
b,b�,�,�,

1

2
J�

bb��b,�
† �� · S�b�,, �14�

where � denotes the Pauli matrices, S is the Mn spin, and the
exchange couplings are given by

J�
bb� �

Vb
���Vb�

���

�E
=

V2

�E
A�,bA�,b�, �15�

with �E, the characteristic energy of charge fluctuations.
Note that the symmetry index � is conserved in Eq. �14�,
thus there are five independent orbital channels of the con-
duction electrons that couple to the impurity spin. This is
simple to understand on physical grounds: the half-filled d
shell has no orbital structure. Therefore, a conduction elec-
tron that arrives in an orbital state � must be scattered back
to the same orbital channel. However, electrons can be scat-
tered between different conduction bands, and it is only their
orbital label that is conserved over the scattering process.
Therefore, in the absence of superconductivity, the channel
labels play no special role, and the S=5 /2 spin of the Mn ion
would be exactly screened, resulting in a Fermi liquid state.9

By construction, the exchange couplings above satisfy

J�
bb�=�J�

bbJ�
b�b�, and furthermore, they are equal in channels

�� by symmetry. From Eq. �15�, it also follows that all the
results depend only on a single dimensionless coupling pro-
portional to V2 /�E. We define this coupling as

g �
1

5�
�,b

�bJ�
bb, �16�

with �b the density of states at the Fermi energy in band b
for one spin direction. Furthermore, in the rest of this paper,

we shall only consider the classical limit S→�, with Jm
bb�S

=finite. In this limit, the impurity has no dynamics and we
can solve the problem exactly.

To close this subsection, let us introduce Nambu spinors
�k,b= �k,b

�� � �Ref. 24� and

�k,b �	
ck,b,↑

ck,b,↓

− c−k,b,↓
†

c−k,b,↑
†


 . �17�

The introduction of these spinors shall simplify our calcula-
tion considerably in the following sections. We can rewrite
the Hamiltonian in terms of these in a compact form,

H = �
k,b

�k,b
† �	̂k,b�z + �̂b�x��k,b

+ �
k,k�,b,b�,�

1

2
J�

bb� f̃�,b
� �k��k,b

† � · S�k�,b� f̃�,b��k�� ,

�18�

where the �i’s denote Pauli matrices acting in the pseudospin
�charge� index of the Nambu spinor. In the course of the
derivation, we made use of time reversal symmetry that im-

plies f̃−�,b�−k�= �−1�� f̃�,b
� �k�, and doubled the Hilbert space

so that the components of the Nambu spinors in Eq. �18�
must be considered as independent variables.

III. GREEN’S FUNCTION FORMALISM

In this section, we shall discuss how the above Hamil-
tonian can be treated within the Green’s function formalism.
In the classical limit, the interaction with the impurity in Eq.
�18� reduces to a spin-dependent potential scattering and, as
we show below in detail, the problem can be solved exactly.

In the noninteracting case, J�
bb�=0, the Green’s function is

given by:

Gb
�0��k,�� =

1

i� − 	̂k,b�z − �̂�x
, �19�

and it is a 16�16 matrix, diagonal in the band indices. In

this expression, 	̂k,b and �̂ are also diagonal in band indices.
In the presence of impurity scattering, we can treat the

scattering perturbatively and use multiple scattering theory to
sum up the series to all orders. The diagrammatic expansion
of the Green’s function is represented in Fig. 3. In the first
order of perturbation theory, the self-energy is given by

= + ...
b´b

+ +
b b´bb´b

FIG. 3. Diagrammatic expansion for the Green’s function when
multiple scattering on the impurity site is considered. The solid line
represents the full Green’s function, and the thick line represents the
noninteracting part of the Green’s function. Each cross represents a
scattering on an impurity site, and the dotted line stands for the
impurity scattering potential. b and b� stand for band indices.
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��1��k,k�,�� = �
�

f̃�
� �k�

1

2
J��� · S� f̃��k�� �20�

and is independent of the energy �. Here, we deliberately
separated the form factors from the rest of the expression.
The next order contribution gives

�bb�
�2� �k,k�,�� = �

�,��,b�,q

Ĉbb�
� �k,q��� · S�

�Gb�
�0��q,���� · S�Ĉb�b�

� �q,k�� , �21�

where we introduced the notation Ĉbb�
� �k ,q�

=1 /2 f̃�,b
� �k�J�

bb� f̃�,b��q�. After summing over the momentum
�as explained in Appendix B� and using the orthogonality of

the form factor f̃ at the Fermi surface, we end up with the
following expression:

�bb�
�2�

�k,k�,�� = �
�

f̃�,b
� �k��1

2
Ĵ�SF̂���

1

2
Ĵ�S�

bb�
f̃�,b��k�� ,

�22�

where F̂��� denotes the matrix

Fbb���� = �bb��b�
−D

D

d	
1

� − 	�z − �b�x , �23�

with D a high-energy cutoff that can be removed in the end
of the calculation.

Higher order terms can be handled in a similar way. The
final expression for Green’s function is simply

Gbb��k,k�,�� = �k,k��bb�Gb
�0��k,��

+ Gb
�0��k,���

�

1

�
f̃�,b

� �k��T̂�����bb�

� f̃�,b��k��Gb�
�0��k�,�� . �24�

By the orthogonality relation �Eq. �13��, the quantum number

� is conserved. Therefore, the T matrix T̂��� can be computed
independently for each channel � and is given by the follow-
ing expression:

T̂���� = Ĵ�S · �/2�1 − F̂���Ĵ�S · �/2�−1, �25�

where F̂��� denotes the diagonal matrix F̂���= F̂bb��bb�.

Note that F̂��� is diagonal in the spin labels. Therefore, even
order terms in the T matrix are spin independent. These
terms can therefore be referred to as the “charge scattering
channel.” Odd order terms, on the other hand, give spin-
dependent contributions and can be referred to as a “spin
channel.” The even �charge� channel can be directly resolved
using STM technique, while for experimental observation of
the odd �spin� channel contributions, spin-resolved STM is
needed.

Impurity bound states and resonances can be identified
from the pole structure of the T matrices: True bound states

correspond to zeroes of the determinants detT̂�
−1���� on the

real axis, and must satisfy �����b for all bands. Zeroes in

the vicinity of the real axis, on the other hand, correspond to
resonances. We found that each channel generates a bound
state, but two of them are doubly degenerate by symmetry
��→−��.

It is, in general, impossible to find the poles of the T̂
matrix analytically, and numerical calculations are needed.
However, it is generally accepted that, at least phenomeno-
logically, superconductivity in MgB2 can be explained using
a two-band model. With this simple assumption, the posi-
tions of the resonances are given by the following equation:

�1 − g�
11�1��E���1 − g�

22�2��E�� = �g�
12�2�1��E��2��E� ,

�26�

where g�
bb��
S��b�bJ�

bb� /2 denotes the dimensionless cou-
plings in channel � and

�b��� = ��b + �

�b − �
�1/2

.

In the present case, these equations further simplify due to
the relation g�

11g�
22= �g�

12�2 to

g�
11�1��E� + g�

22�2��E� = 1. �27�

In the limiting case of J�
12=0, Eq. �26� would give rise to two

pairs of Shiba states1 for each channel �, corresponding to
two independent bands. Exchange coupling between the two
bands, however, removes half of these resonances. Similarly,
in the realistic situation, we thus obtain five pairs of Shiba
states corresponding to the five channels, but two pairs of

them are twofold degenerate because of the symmetry J�
bb�

=J−�
bb�.

IV. DENSITY OF STATES

Our main purpose is to compute the local tunneling den-
sity of states �LDOS� and the spin-resolved density of states
near a magnetic impurity for various geometries. To obtain a
quantitative estimate for the STM spectra, we performed a
lengthy but straightforward tight-binding calculation to de-

termine numerically the form factors f̃�,b�k�, the exchange
couplings, and the electronic wave functions above in vari-
ous geometries.

The differential conductivity dI /dV measured by STM is
proportional with the local density of states, which can be
calculated as the imaginary part of the retarded position de-
pendent local Green’s function:

�c,��r,�� = −
1

2

Im Tr�G�r,p�,��

1 + �z

2
� ,

G�r,p�,�� =
1

�
�

k,k�,b,b�

e−i�k−k��Reb,��
� eb,��Gb,b��k,k�,�� .

�28�

Similar to the charge density of states, we can also define the
spin density of states as
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�s,��r,�� = −
1

2

Im Tr�G�r,p�,���n

1 + �z

2
� , �29�

where n is a unit vector pointing in the direction along which
we measure the spin density of states.

The equations above refer to the case where the impurity
is embedded in the bulk. However, both �c,� and �s,� can be
computed easily from the analog of Eq. �24� for other bound-
ary conditions too once the wave functions appearing in Eq.
�3� are known. In the following subsections, we first compute
the LDOS for an impurity in the bulk. Then we study the
effect of a semi-infinite half-plane with the Mn impurity
above and below the first B layer.

A. Impurity in the bulk

As a first step, we identify the positions of the resonances

for each channel separately from the poles of the T̂ matrix. In
Fig. 4, we show the positions of the bound states and reso-
nances obtained as a function of the dimensionless coupling
g. The corresponding normalized pz LDOS at the B sites next
to the Mn impurity is presented in Fig. 5 for different values
of g. Due to hexagonal symmetry, all B sites around the
magnetic impurity have the same LDOS. For small values of
g, the bands are slightly interacting and only the most
strongly coupled �= �1 channels give rise to well resolved
resonances in the gap for g�0.4. Increasing the coupling g,
the bands are more strongly interacting and the resonances
corresponding to the �=0 channel move inside the gap too.
This is accompanied, on one hand, by a transfer of weight
between resonances and second by a shift in position of each
resonance. We also observed small features at energies �
=7.5 meV, i.e., at the energy corresponding to ��, due to the
coupling between the bands �not shown in this figure�.

Figure 5 also shows the density of states at the next–
nearest-neighbor sites. The wave functions of the Shiba
states and thus the amplitudes of the corresponding reso-

nances in the spectrum depend a lot on the tunneling posi-
tion: The weight and the amplitude of the resonances de-
crease considerably while their position remains unchanged.
This suppression reflects the local structure of Shiba states.
At the same time, the coherence peaks near the supercon-
ducting gap edge gain some spectral weight, but they are still
quite reduced compared to the bulk. Further away from the
impurity site, the superconducting coherence peaks are com-
pletely restored and the bound states have negligible ampli-
tudes. For generic values of the exchange coupling, usually
two well-separated pairs of resonances can be observed, cor-
responding to the �= �1 and �=0 channels. The exchange
couplings in channels �= �2 are much smaller than those in
channels �= �1 and �=0, and therefore, the corresponding
bound states are merged with the superconducting coherence
peak.

The Shiba states are also strongly spin polarized, as is
obvious from the spin polarization in the local density of
states shown in Fig. 6. This fact has an important conse-
quence from the point of view of the observability of these
bound states. As always, a sharp local spectroscopic feature
could be difficult to detect if it is overshadowed by the in-
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tense continuous background of the superconductor. How-
ever, the background continuum in a superconductor is not,
generally speaking, spin polarized. Thus, even if a Shiba
peak happens to be close to one of the otherwise dominant
BCS coherence peaks, a spin-polarized STM can distinguish
the Shiba states from the continuum,25 since the asymmetric
part of the spin-polarized spectrum has sharp peaks at the
resonances but is predicted to be featureless otherwise.
Therefore, spin-polarized STM is clearly an ideal tool to
identify the multiple Shiba states.

B. Impurity in the vicinity of a surface

As we mentioned already, the effect of a surface can be
taken into account by simply modifying the wave functions
that appear in the expansion of the operators �r,�,�,

�r,�,� = �
k�,kz,b

�k�,kz,b
�r�ck�,kz,b,�. �30�

Here, k� is the in-plane momentum and kz is the momentum
perpendicular to the surface. Note that the surface breaks
translational symmetry along the ẑ direction, and therefore,
only kz�0 values are permitted. The wave functions above
must satisfy the appropriate boundary conditions and can be
expressed within our tight-binding formalism as

�k�,kz,b
�r� = eb;�,��k�,kz�eik�·R��2 sin�kzZ� , �31�

with Z=0 corresponding to the first layer in the vacuum.
Our calculations for an impurity in the bulk can easily be

extended to this case as well with minor modifications. If the
magnetic impurity is well inside the bulk, we recover the
results discussed in the previous subsection. In Fig. 7 �upper
panel�, we represent the LDOS at nearest-neighbor B atoms
for the case when the Mn impurity is below the top B layer.
The amplitudes of the resonances are slightly reduced in this
case compared to the bulk system, and also, the positions are
modified due to the local density of states that is slightly
modified in the vicinity of the surface. Moving away from
the impurity, the weights of the resonances start to decrease

and the superconducting coherence peaks are gradually re-
covered. In this configuration, at sites more than two lattice
constants away from the impurity site, the superconducting
coherence peak is already completely recovered.

For spin-resolved scanning tunneling spectroscopy, the
tunneling current can be separated into an unpolarized part
I0, which depends only on the LDOS, and a spin-polarized
contribution Ip given by the projection of the local magneti-
zation density at the tunneling site onto the magnetization
direction of the tip. The spin-polarized contribution to the
local differential conductivity is therefore proportional to the
magnetization density dIp /dV� PT cos ��s�ri ,�=eV�, where
PT denotes the polarization of the tip, and � is the angle
between the magnetization axes of the tip and the impurity
spin.

In Fig. 8, we present the local spin polarization at site A
for g=0.491. For the same reasons as before, only the con-
tribution of the pz orbital is shown. The relative orientation
of the impurity spin and the tip can also be fixed by a small
external magnetic field in these experiments. However, the
angle � is not arbitrary even in the absence of an external
field, since in the vicinity of a ferromagnetic STM tip a mag-
netic impurity would be presumably aligned with the mag-
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netization of the tip due to stray fields. The most important
feature we observe is a transfer of weight from states in the
gap to states in the continuum due to the interband coupling
through the magnetic impurity. The inset presents the total
spin-polarized tunneling density of states for the same cou-
pling g, for a complete polarization of the tip PT=1, and a
perfect alignment �=0.

V. CONCLUSIONS

We presented a detailed theoretical investigation of the
effect of a single Mn magnetic impurity on the superconduct-
ing properties of MgB2. Our description is based on a micro-
scopic model, which assumes nearest-neighbor hopping from
the localized orbital of the Mn to the neighboring B orbitals.
We have shown that a magnetic impurity generally induces
multiple Shiba states in the electronic structure of MgB2. In
particular, for Mn, we found five pairs of Shiba states in the
gap, two of which were twofold degenerate. We have taken
into account realistic band structure and the effect of surface
states on the local spectrum. Our calculation of both conven-
tional and spin-resolved STM25 spectra near the impurity site
showed that these states can be clearly resolved by both
methods. Similar multiple Shiba states should appear in other
superconductors due to the internal structure of the magnetic
impurity.

It is intriguing to speculate what these local probes will
eventually see in an actual experiment. Clearly, despite de-
cades of pioneering investigation, local spectroscopy of spin
impurity states in a superconductor still has the potential of
revealing new features that have not yet been documented.
For example, our calculations assume classical spin degrees
of freedom, whereas the experimental measurements could
reveal—besides a classical behavior—effects of screening of
a quantum spin by the superconductor, leading to either a full
screening or a reduction of the effective spin carried by the
impurity. The quantitative discussion of such effects goes
beyond the scope of the present paper. Nevertheless, our cal-
culations will provide an important benchmark for compari-
son to experiments, a benchmark that includes the presence
of multiple channels of scattering.

The results we obtained in this paper are relevant and
relatively easy to generalize for other compounds. For ex-
ample, recent STM measurements have focused on Ti impu-
rities in another multiband superconductor Sr2RuO4. While
these experimental results are preliminary as the magnetiza-
tion state of Ti is not clear, and there are several differences
between MgB2 and Sr2RuO4, it is clear that our framework
provides a suitable platform for studying Sr2RuO4 as well.
As we mentioned above, MgB2 crystallizes in the hexagonal
AlB2-type structure,13 and the band structure of MgB2 is also
somewhat peculiar. Nevertheless, as shown in the seminal
paper of Nozières and Blandin,9 although the form of the
exchange Hamiltonian depends a lot on the specific material
and point group considered, in most cases, similar to Mn-
doped MgB2, several channels of conduction electrons
couple to the local impurity degrees of freedom and result in
multiple Shiba states. Therefore, the appearance of multiple
Shiba states is a rather general phenomenon.

An interesting result of our analysis is that, although it
may be difficult to resolve a Shiba state close to the coher-
ence peak with conventional STM methods, the antisym-
metrical part of a spin-resolved STM clearly separates these
states in the STM spectrum. The weight of a given pair of
Shiba states may, however, be very sensitive to the particular
atomic state into which electrons tunnel from the STM tip,
and depends also on the precise position of the tip.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN

In this Appendix, we present the basic results obtained
from the tight-binding analysis of the bulk system. The ma-
trix elements of the Hamiltonian given in Eq. �4� are given
by

Hx,1;x,1�k� = �xy − 2txy cos�kz
c

a
� ,

Hx,1;x,2�k� = t� + �3

4
t� +

1

4
t��exp�− i

3

2
ky�2 cos

�3

2
kx,

Hx,1;y,2�k� = −
�3

4
�t� − t��exp�− i

3

2
ky�2i sin

�3

2
kx,

Hy,1;y,2�k� = t� + �3

4
t� +

1

4
t��exp�− i

3

2
ky�2 cos

�3

2
kx,

Hz,1;z,1�k� = �z − 2tz cos�kz
c

a
� ,

Hz,1;z,2�k� = t�1 + exp�− i��3

2
kx +

3

2
ky��� . �A1�

All the other matrix components of the Hamiltonian matrix
can be written in terms of those given in Eq. �A1� as follows:
Hy,1;y,1�k�=Hx,2;x,2�k�=Hy,2;y,2�k�=Hx,1;x,1�k�, Hy,1;x,2�k�
=Hx,1;y,2�k�, Hz,2;z,2�k�=Hz,1;z,1�k�. All the other elements are
equal to zero. This matrix is Hermitian, Hji=Hij

� for i� j. The
best fit to other calculated band structure14 is obtained for the
following set of parameters: �xy =−8.6 eV, �z=−1.5 eV, t
=2.0 eV, tz=2.5 eV, t� =4.5 eV, t�=1.8 eV, and txy
=0.1 eV. In our calculation, t and tz are the hopping integral
corresponding to the pz orbitals: t is the in-plane hopping
between the nearest neighbors �
 bonding� and tz is the out
of plane hopping �� bonding�. The parameters t� and t� de-
note � and 
-like hopping integrals for the in-plane px,y or-
bitals. Finally, the out-of-plane hopping integral is given by
txy. This parameter is very small, so there is practically no
dispersion along the �-A line.

The corresponding density of states has been calculated in
the framework of the Green’s function formalism as ����=
− 1


�kIm Gb�k ,��, where Gb�k ,�� is the Green’s function
corresponding to every band b. The resulting DOS is pre-
sented in Fig. 9. The values for the DOS at the Fermi surface
for the bands that cross the Fermi surface are �x
=0.081 states /eV, �y =0.13 states /eV, and �z1=�z2
=0.75 states /eV, in reasonable agreement with more sophis-
ticated band structure calculations.14

APPENDIX B: AVERAGE OVER THE FERMI SURFACE

Throughout our analysis, we have to evaluate averages
over the Fermi surface. For a given band we have to calcu-
late

1

Sb
�

Sb

��k�d2k , �B1�

where Sb represents the Fermi surface area for band b and
��k� is a momentum dependent function. The Fermi surface
was obtained in our calculation by numerically solving the
equation 	k,b=0. To evaluate Eq. �B1�, we replace the inte-
gration over the Fermi surface with an integration over an
energy shell of thickness d	. First, the area of the Fermi
surface can be calculated as

Sb = �
Sb

d2k =
1

d	
�

shell
d3k��	k,b� . �B2�

In a similar way, the average of any momentum–dependent
function can be evaluated as

�
Sb

��k�d2k =
1

d	
�

shell
d3k��	k,b���k� . �B3�

Our quantity is therefore given by the expression:

1

Sb
�

Sb

��k�d2k =

�
shell

d3k��	k,b���k�

�
shell

d3k��	k,b�
. �B4�

In the numerical calculations, we used a 100�100�100 dis-
cretization of the first Brillouin zone. For each site in the
discretized lattice, we calculated the energy values corre-
sponding to band b. We then tested if one of these 106 cells
overlapped with the shell of thickness d	. If it did, we gen-
erated a mesh of 15�15�15 within this cell to compute the
cell’s contribution to Eq. �B4�.

In our calculations, the number of points around the Fermi
surface was larger than 106 within an energy shell of 10 meV.
This was used to evaluate the average of the form factors and
their Fourier transforms at the Fermi surface with a precision
of �10−3.

APPENDIX C: MOMENTUM SUMMATION

In this section, we explain the method that we used to
evaluate the momentum summation in the first Brillouin
zone. During the calculations, we have to evaluate the ex-
pression of the form:

1

V
�
k

��k�Gb
�0��k,�� , �C1�

where ��k� is a momentum dependent function �usually the
form factor or a combination including form factors and
other momentum–dependent functions� and Gb

�0��k ,�� is the
free Green’s function. The free Green’s function depends on
momentum only through the energy of the given band 	k,b.
We approximated therefore the summation as

1

V
�
k

��k�Gb
�0��k,�� �C2�
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→�b�
−�

�

d	Gb
�0��	,��

1

Sb
�

Sb

d2k��k� , �C3�

with �b the density at the Fermi surface in band b. The
integration of the Green’s function over the energy can be
done analytically and the result is simply

Fb��� = �b�
−�

�

d	
1

� − 	�z − �b�x . �C4�

For �����b, the function Fb��� has only real parts and sim-
plifies to Fb���=−
�b��+�b�x� / ��b

2−�2�−1/2, while for
�����b, it is purely imaginary. The other term which repre-
sents an average over the Fermi surface was calculated nu-
merically as explained in Appendix B.
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