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We solve the problem of the transmission and reflection of phonons and rotons at the interface between
superfluid helium and a solid for all angles of incidence and in both directions. A consistent solution of the
problem is presented, which allows us to rigorously describe the simultaneous creation of phonons and R− and
R+ rotons in helium by either a phonon from the solid or a helium quasiparticle incident on the interface. The
interaction of all He II quasiparticles with the interface, as well as their transmission, reflection, and conversion
into each other, is described in a unified way. The angles of propagation and the probabilities of creating
quasiparticles are obtained for all of the cases. The Andreev reflection of helium phonons and rotons is
predicted. Energy flows through the interface due to phonons and R− and R+ rotons are derived. The small
contribution of the R− rotons is due to the small probability of an R− roton being created by a phonon in the
solid, and vice versa. This explains the failure to directly create beams of R− rotons before the experiments of
Tucker and Wyatt in 1999 �Science 283, 1150 �1999��. Experiments for creating R− rotons by beams of
high-energy phonons are suggested.
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I. INTRODUCTION

Many physical properties of continuous media at low tem-
peratures can be described in terms of quasiparticles. The
quasiparticles of superfluid helium are called phonons, R−

rotons, and R+ rotons. They have a nonmonotonic dispersion
curve and the R− rotons have a negative group velocity, i.e.,
their momentum is directed opposite to the group velocity;
see Fig. 1. The phonons and rotons are observed in many
experiments, such as in neutron scattering in helium1 and in
direct experiments2,3 wherein beams of superfluid helium
quasiparticles are created by a heated solid. The quasiparti-
cles propagate in helium and interact and reflect from differ-
ent surfaces. Also, they quantum evaporate helium atoms
from the free surface. These have been investigated both
experimentally and theoretically �see, for example, Refs.
4–8�. Interestingly, R− rotons had not been detected in direct
experiments until 1999, when they were finally created by a
specially constructed source.3 They were observed by quan-
tum evaporation. All of the earlier attempts to create R−, with
ordinary solid heaters, were unsuccessful.

The problem of the interaction of rotons in superfluid he-
lium with interfaces �their reflection, transmission, and mode
change� was first considered in Ref. 9. However, the method
used there did not take into account the simultaneous cre-
ation of phonons and R+ and R− rotons by a phonon in the
solid incident on the interface, and it could not distinguish
between the R+ and R− rotons. Later, in Ref. 10, it was shown
that R− rotons cannot be created at the interface with a solid
by a phonon from the solid, provided we can neglect the
possibility of the creation of the other quasiparticles in the
same process at the interface. In the current work, a consis-
tent solution is introduced, which allows us to rigorously
solve the problem of the simultaneous creation of phonons
and rotons. Also, it describes the interaction of all He II qua-
siparticles with the interface �their transmission, reflection,
and conversion into each other� in a unified way. These are

the fundamental elementary processes that determine the
heat exchange between He II and a solid, and the associated
phenomena, such as the Kapitza temperature jump �see, for
example, Ref. 11�. We investigate all of these phenomena.
The probability of the creation of each quasiparticle at the
interface is derived for all cases. The failures of attempts to
detect R− rotons before experiments3 is explained, and pre-
dictions are made for experiments on the interaction of
phonons and rotons with a solid and the creation of R− rotons
at the interface by high energy phonons �h-phonons�.

We describe superfluid helium with its distinctive disper-
sion relation ��k�, with the maxon maximum and roton
minimum, within the framework of the theory developed in
Ref. 10. The quantum fluid is considered as a continuous
medium at all length scales. This model is based on the fact
that the thermal de Broglie wavelength of a particle of a
quantum fluid exceeds the average interatomic separation.
Then, the variables of the continuous medium can only be
assigned values at each mathematical point of space in a
probabilistic sense.

FIG. 1. The solid line is ��k� from Eq. �1� for s=230.7 m /s,
kg=1.9828 Å−1, and �=−0.9667; the dashed line is the measured
dispersion curve of superfluid helium �Ref. 1� at the saturated vapor
pressure.
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The idea to describe superfluid helium as a continuous
medium at microscopic scales has been successfully used for
decades. Atkins12 used it in the 1950s to describe the mobil-
ity of electrons and ions in He II, when he introduced
bubbles and snowballs of microscopic size. Lately, the vor-
tices in superfluid helium with cores of sizes on the scale of
interatomic distances are being extensively studied; see, for
example, Ref. 13 and the references cited therein. Some
recent simulations on the dynamics of atoms in helium
nanodroplets14,15 also affirm that He II is described well as a
continuous medium at microscopic scales.

As showed in Ref. 10, application of the methods of the
theory of continuous medium at microscopic scales requires
the relationships between the variables of the continuous me-
dium to become nonlocal. In Ref. 16, the nonlocal hydrody-
namics was introduced to describe small oscillations in su-
perfluid helium, and in Refs. 17 and 18, it was used to
describe ripplon-roton hybridization and the dispersion rela-
tion of ripplons. The nonlocality allows one to analyze a
continuous medium with an arbitrary dispersion relation.
This possibility was discussed in Ref. 19. However, the the-
oretical justification of this approach remained on the intui-
tive level until the work in Ref. 10.

In this paper, by following Ref. 10, the quasiparticles are
described as wave packets propagating in the superfluid. The
long wavelength excitations are phonons, while the short
wavelength ones are rotons. R− rotons correspond to the de-
scending part of the dispersion curve and have a negative
group velocity, i.e., they propagate in the direction opposite
their momentum. This simple model allows us to use the
methods of the theory of continuous medium and avoid the
difficulties that appear in other phenomenological models,
such as those in Refs. 17 and 18.

So, with the help of boundary conditions for the continu-
ous media at the interface, we find the probabilities of the
creation of all the quasiparticles when any of them is inci-
dent on the interface. These are the energy reflection and
transmission coefficients for the corresponding wave pack-
ets. The method allows us to obtain the analytical expres-
sions for the probabilities as functions of angle and fre-
quency.

In Sec. II, we formulate the problem and obtain the gen-
eral solution of the nonlocal equations of the quantum fluid
in half-space. We consider a parametrized dispersion relation
that is a good approximation of the measured dispersion
curve of superfluid helium. The solution is sought in the
form that generalizes the solution for a monotonic dispersion
of a general form obtained in Ref. 20. The consequences of
using the boundary conditions are discussed. These include
multiple critical angles, backward refraction, and retroreflec-
tion �or Andreev reflection21� of phonons and rotons �see also
Ref. 18�.

In Sec. III, the boundary conditions are used to derive
both the amplitude and energy reflection and transmission
coefficients for any incident wave for arbitrary incidence
angles. The preliminary results for rotons at normal inci-
dence were discussed in the authors’ report at a conference.22

In Sec. IV, the energy flows through the interface due to
phonons and R− and R+ rotons are calculated as functions of
temperature. The contribution of the R− rotons to the energy

flows in both directions is shown to be small. This means
that R− rotons are hardly created by a solid heater and are
poorly detected by a solid bolometer. This explains why R−

rotons could not be detected in direct experiments until the
work in Ref. 3. There, they were created by a source made
up of two heaters facing each other, which allowed mode
changes, and detection was achieved by quantum evapora-
tion.

The results obtained in this work can be used in other
fields of physics. In particular, they are important for classi-
cal acoustics, wherein the problem of wave transmission
through an interface has been solved only for the case
wherein the dispersion relations of both adjacent media are
strictly linear �see, for example, Ref. 23�, let alone nonmono-
tonic. This problem concerning real media, with nonlinear
dispersion, was of interest in the middle of the past century24

and is still relevant today.25,26

II. DERIVATION OF EQUATIONS AND THEIR SOLUTION

A. Problem formulation

Let us consider two continuous media separated by a
sharp interface z=0. In the region z�0, there is an ordinary
continuous medium with sound velocity ssol and equilibrium
density �sol. For the solid, we only take into account longi-
tudinal waves.

Transverse waves can be treated in the same framework
of the theory of continuous media without any difficulty.
However, the calculations become much more cumbersome,
while on the whole, the situation does not change. Due to the
very small impedance of the solid-helium interface �see Sec.
II D and below�, the reflection coefficients hardly change at
all. For the transmitted waves, additional critical angles ap-
pear, corresponding to the sound velocity of the transverse
waves. Also, it should be noted that taking into account both
the longitudinal and transverse waves in the solid allows one
to consider the contribution of Rayleigh waves, which con-
tribute to the transmission coefficients of He II quasiparticles
into the solid at fixed incidence angles. For phonons with
linear dispersion, this problem was solved in Ref. 27. The
problem for the helium-solid interface may be the subject of
our next paper.

The region z�0 is filled with the quantum fluid with an
equilibrium density �0 and a dispersion relation ��k�, such
that

�2�k� = s2k2�1 + 2�
k2

kg
2 +

k4

kg
4� . �1�

Here, s is the sound velocity at zero frequency, kg is
the wave vector that determines the scale of the curve, and
� determines the form of the curve. For a range of param-
eters, this relation is a good approximation of the measured
nonmonotonic dispersion relation of superfluid helium �see
Fig. 1�. For ��−1, there are real k, such that �2�k��0,
which is nonphysical, and for ��−�3 /2, the curve is mono-
tonic. For �� �−1,−�3 /2�, the curve has the roton mini-
mum at k=krot and the maxon maximum at k=kmax, as it
should. We adopt the following set of values: s=230.7 m /s,
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kg=1.9828 Å−1, and �=−0.9667. Then, the dispersion curve
has the following parameters: the coordinates of roton
minimum krot=0.9670kg=1.913 Å−1 and �rot=	��krot� /kB
=8.712 K �kB is the Boltzmann constant�; the maxon maxi-
mum is �max=	��kmax� /kB=13.8 K. These values are the
experimentally measured parameters of the superfluid helium
dispersion curve at the saturated vapor pressure.1

We describe this quantum fluid by nonlocal hydrodynam-
ics, as developed in Ref. 10. Accordingly, the quantum fluid,
as well as the ordinary fluid on the other side of the interface,
obeys the linearized equations of continuous media:

��

�t
= − �0 � v,

�v

�t
= −

1

�0
� P , �2�

where v is the hydrodynamic velocity and � and P are the
deviations of density and pressure from the respective equi-
librium values �for brevity, below, we refer to them as just
density and pressure�. The difference is that the pressure and
density in the quantum fluid are related through the follow-
ing nonlocal relation:

��r� = �
z��0

d3r�h�	r − r�	�P�r�� , �3�

in which the integration domain is the region filled by the
quantum fluid.28

The suggested model describes well the interface between
superfluid helium and a solid because for solids, the relation-
ships are local. In the frequency range of the dispersion
curve of He II, the dispersion laws of most solids, such as the
heater materials of copper or gold, are very close to linear
and they can be described as ordinary continuous media.

Equations �3� and �2� lead to the integrodifferential equa-
tion for pressure:

�P�r,t� = �
z��0

d3r�h�	r − r�	�P̈�r�,t� , �4�

which is set for x ,y , t� �−
 ,
� ,z� �0, +
�. In the infinite
medium, when the integration and definition domains are
infinite, the Fourier transform of Eq. �4� gives us the rela-
tionship between the Fourier transform of the kernel h�r� and
the dispersion relation of the fluid ��k� �Ref. 10�:

h�k� =
k2

�2�k�
. �5�

For dispersion relation �1�, we obtain the following from the
Fourier transform of Eq. �5�:

h�r� =
kg

4

4�s2r

1

k+
2 − k−

2 �eik+r − e−ik−r� , �6�

where k+ and �−k−� are the poles of h�k� in the upper half-
plane C+:

k� = kg��1 − � � i�1 + ��/�2, k+ = k−
� � C+. �7�

Here, the asterisk denotes the complex conjugate and C+ is
the upper complex half-plane. Due to the last condition, the
kernel �Eq. �6��, despite the complex notation, is real.

There is no convolution product in Eq. �4�, either in the
sense of one- or two-sided Fourier transform or Laplace
transform, because the lower limit by z� is finite while the
kernel is symmetrical, h�r�=h�r�.

We consider the problem of waves transferring through
the interface. As the relations in Eq. �2� are local and coin-
cide with the notation used in the equations of an ordinary
ideal continuous medium, the two boundary conditions on
the interface �local� are obtained from their integral forms in
the usual way by using the theory of continuous medium:

P�x,y,z = − 0,t� = P�x,y,z = + 0,t� ,

Vz�x,y,z = − 0,t� = Vz�x,y,z = + 0,t� . �8�

By applying the solutions of the equations of continuous
media on both sides of the interface, the boundary conditions
in Eq. �8� give us the solution in the whole space and thus
provide us with all the coefficients of reflection and trans-
mission. The solution in the solid is well known, and the
solution in the quantum fluid is derived in Sec. II B.

B. Solution of Equation (4) in half-space

The equation that determines the relationship between k
and 
:

�2�k� = 
2, �9�

with �2�k� from Eq. �1� is sixth order with respect to k. Its
six roots are functions of 
 and are denoted k� for �
=1, . . . ,6. We note that if we used more terms in the poly-
nomial �2�k�, then the higher order equation for k would
give six real roots and the other roots would be imaginary.

In the problem of waves transferring through the inter-
face, the two boundary conditions in Eq. �8� can be satisfied
for all x, y, and t only if all of the waves present on both
sides of the interface have the same frequency 
 and trans-
verse component of wave vector k�. A single monochromatic
wave is not a solution of Eq. �4�. Therefore, as there are in
total six roots of Eq. �9�, we search for the solution as a sum
of six monochromatic waves, with the same frequency 
 and
transverse component of wave vector k� �the y axis is chosen
along k��, i.e., with the following form:

P�r,t� = 

�=1

6

A� exp�i�k�r − 
t�� . �10�

Here, the vectors k� are

k� = k�zez + k�ey , �11�

k�
2 = k�z

2 + k�
2. �12�

The transverse component k� is real for physical reasons, but
k� and k�z can be either real or complex because we have to
ensure the boundedness of our solution only in the half-space
z�0.

After substitution of Eq. �10� into Eq. �4�, we obtain the
system of equations for the amplitudes A� and the equations
for k�z as functions of 
 and k�. The system for A� is
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�=1

6

A��k�z − k+z�−1 = 0,



�=1

6

A��k�z + k−z�−1 = 0, �13�

where

k�z
2 = k�

2 − k�
2, k+z = k−z

� � C+. �14�

The equations for k�z are reduced to the following form:

�2�k�
2 = k�z

2 + k�
2� = 
2 for � = 1, . . . ,6. �15�

The system of two homogeneous equations for the ampli-
tudes A� �Eq. �13�� ensures that no �nontrivial� solutions ex-
ist with less than three nonzero amplitudes A�, i.e., there are
no eigensolutions of Eq. �4� in the half-space consisting of
less than three monochromatic waves. This is the conse-
quence of the nonlocality, which changes Eq. �4� in the pres-
ence of the interface. In infinite space, on the contrary, the
domain of integration is the whole space, and the equation is
solved by the Fourier transform, and its solution is a super-
position of plane waves with dispersion �1�.

A solution of Eq. �4�, with the smallest possible number
of waves being 3, is constructed in form �10�, with three
terms out of six, by picking a subset of any three different
roots �k� ,k� ,k�� out of the set of six �k���=1,. . .,6. Then, it can
be rewritten with the help of Eq. �13� in the form that con-
tains a single amplitude:

P�k�,k�,k���r,t� = P���
�0� � �k�z − k+z��k�z + k−z�

�k�z − k�z��k�z − k�z�
eik�zz

+
�k�z − k+z��k�z + k−z�
�k�z − k�z��k�z − k�z�

eik�zz

+ � �k�z − k+z��k�z + k−z�
�k�z − k�z��k�z − k�z�

eik�zz�ei�k�y−
t�,�
�16�

where P���
�0� is chosen so that P�k�,k�,k���r=0, t=0�= P���

�0� .
The velocity is obtained from Eqs. �16� and �2�:

v�k�,k�,k���r,t� =
P���

�0�

�0
�k�




�k�z − k+z��k�z + k−z�
�k�z − k�z��k�z − k�z�

eik�zz

+
k�




�k�z − k+z��k�z + k−z�
�k�z − k�z��k�z − k�z�

eik�zz

+ �k�




�k�z − k+z��k�z + k−z�
�k�z − k�z��k�z − k�z�

eik�zz�ei�k�y−
t�.�
�17�

As the two conditions in Eq. �13� restrict the number of
free amplitudes in Eq. �10� from 6 to 4, any four linear-
independent solutions of form �16� constitute the basis set of
solutions of Eq. �4� for given 
 and k�, and any solution
consisting of four, five, or six monochromatic waves can be
represented as their linear combination.

C. Roots of dispersion equation: In and out solutions

The roots of Eq. �9� with �2�k� from Eq. �1� with respect
to k2 are ki

2=kg
2�i for i=1,2 ,3, where �i are the three dimen-

sionless roots of the following cubic equation:

�3 + 2��2 + � − �2 = 0. �18�

Here, �=
 / �skg� is the dimensionless frequency; �i�� ,�� are
some elaborate complex-valued functions.

The most interesting frequency range is �� ��rot ,�max�,
where �rot��� and �max��� are the dimensionless frequencies
that correspond to the roton minimum and maxon maximum,
respectively. For such frequencies, there are three types of
running waves in the quantum fluid, corresponding to
phonons and R− and R+ rotons. The branches are numbered
in this case in ascending order of the absolute values of their
wave vectors ki: 0�k1�kmax�k2�krot�k3, so that i=1 cor-
responds to phonons, i=2 to R− rotons, and i=3 to R+ rotons.

We now consider the problem of quasiparticle transfer
through the interface. The quasiparticles are treated as wave
packets that propagate in the two media. Therefore, when we
build the solutions in the quantum fluid, we have to take into
account that wave packets, as well as quasiparticles, propa-
gate with their group velocities d� /dk.29 So, a wave packet
of the quantum fluid composed of waves with wave vectors
close to k0, with its length k0�kmax �so that it is a phonon
wave packet� and the zth component k0z�0, propagates
away from the interface; however, a wave packet composed
of waves with wave vectors close to wave vector with length
k0� �kmax,krot� �so it is an R− roton packet� and the zth com-
ponent k0z�0 propagates toward the interface.

Let us construct the solution in the quantum fluid Pout �the
“out solution”� that is realized when a wave in the solid is
incident on the interface. This solution should contain only
such waves that constitute wave packets traveling away from
the interface �i.e., waves with positive group velocity� or
waves that are damped at z→ +
. Picking three out of six
vectors k� is the same as picking their normal components
k�z, because they all have the same k�. The six normal com-
ponents k�z, which are obtained as solutions of Eq. �15�, are
grouped into three pairs of roots ��ki

2−k�
2 for i=1,2 ,3. For

each pair with the same i, either both roots are real, which
occurs for small enough angles k��ki, or both roots are
imaginary for k��ki. In the first case, one root corresponds
to a wave traveling toward the interface and the other corre-
sponds to a wave traveling away from it. In the second case,
one root gives a damped wave in z�0, while the other gives
an exponentially unbounded wave. So, Pout contains no more
than three waves �and no less because there are no such
solutions� and therefore has the form of Eq. �16� �see Fig. 2�.
The squared normal components of the three constituent
waves are

kiz
2 = ki

2 − k�
2 for i = 1,2,3. �19�

We define the signs of roots kiz for Pout to be made up of
waves with the normal components of wave vectors equal to
k1z, k2z, and k3z. Then, taking into account the negative group
velocity of R− rotons,29 for the signs of real kiz, we obtain
k1z ,k3z�0 and k2z�0. If k��ki for some i, the correspond-
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ing wave, 
exp�ikizz�, is bounded in z�0 for Im kiz�0.
Then, in the general case, we have

0 � k1z � �− k2z� � k3z if k� � �0,k1� ,

0 � �− k2z� � k3z, k1z � C+ if k� � �k1,k2� ,

0 � k3z, k1z,k2z � C+ if k� � �k2,k3� . �20�

Then, the out solution has the form of Eq. �16�, with the
three wave vectors picked from the set of six with normal
components k1z, k2z, and k3z:

Pout = P�k�,k�,k���k�z = k1z,k�z = k2z,k�z = k3z� . �21�

In order to solve the problem of a wave transferring
through the interface from superfluid helium into the solid,
we also need solutions containing waves that are traveling
toward the interface �i.e., wave packets comprised of these
waves should be traveling toward the interface�. We define
them in the way that is illustrated in Fig. 2. The solution Pin

�1�

is constructed of waves with zth components of wave vectors
−k1z, k2z, and k3z, with the amplitudes related through Eq.
�13�. Solution Pin

�2� is constructed of waves with k1z, −k2z, and
k3z. The last solution, Pin

�3� contains waves with k1z, k2z, and
−k3z. Then, the three sorts of in solutions, which correspond
to the three types of the incident waves, can be written in the
following form:

Pin
�i� = 	Pout	kiz→�−kiz�

for i = 1,2,3. �22�

The Pin
�i� solution corresponds to the incident wave of type i.

So, a linear combination of Pout and Pin
�2� consists of one R−

roton wave �i=2� that corresponds to the R− roton wave
packet incident on the interface and all three waves that cor-
respond to the reflected phonon and R− and R+ roton wave
packets. The amplitudes of the phonon and R+ roton waves
are the sums of the amplitudes of those waves present in both
Pout and Pin

�2�. This is the solution in z�0 realized when an
R− roton is incident on the interface. The four solutions in
Eqs. �21� and �22� are linearly independent due to their struc-
ture and can be used as the basis set of solutions, as men-
tioned at the end of Sec. II B.

For �� ��rot ,�max�, the roots kiz are fully defined by Eqs.
�19� and �20�. For �� �0,�rot�, the roots �2,3 are complex and

�2=�3
�; then, k2z and k3z are defined so that the roton waves,


exp�ik2z,3zz�, are damped, so k2z=−k3z
� �C+. In the limit

�→0, the phonon waves have an almost linear dispersion,
k1�
 /s, and it can be shown that k2z→k+z and k3z→−k−z.
Therefore, the amplitudes of all roton waves that contain
multipliers �k2z−k+z� and �k3z+k−z� go to zero �see Eq. �16��,
and the general solution tends to the ordinary superposition
of incident and reflected phonon waves, with wavelengths
much greater than the scale of nonlocality, 	k�	−1. This lim-
iting case can also be obtained by passing to the long wave
limit, h�r�→��r� /s2, in Eq. �4�, thus making it a local wave
equation.

Equation �4� was solved earlier in Ref. 20 for the case of
an arbitrary but monotonic dispersion relation. The Wiener
and Hopf method was used there. The application to this type
of problem was suggested in Ref. 28 and developed in Ref.
30. It is much more general and seems to be more rigorous
than the method used here, although less straightforward.
The solution of Ref. 20 can be generalized to the nonmono-
tonic case and can be shown to exactly yield solutions �21�
and �22� for the dispersion relation �1�.

In Ref. 17, the problem analogous to Eq. �4� was consid-
ered in order to investigate the hybridization of rotons and
ripplons. There, the problem in the half-space was replaced
by the one in the infinite medium with a symmetrical ex-
trapolation of the solutions with respect to variable z. How-
ever, in contrast to the usual differential �local� equations, for
an integral equation such as Eq. �4�, the solution cannot be
symmetrically extrapolated to z�0. Indeed, if we formally
consider the solution of Eq. �4� in z�0, it would be unam-
biguously defined by the solution in z�0 �from Eq. �16��
through the integral of Eq. �4�. Direct substitution shows that
the full solution is not an even function. This might be the
reason that the method17 gave wrong results near the surface
wave threshold and was then rejected; in the next paper by
the authors,18 another approach was used for that problem.

D. Multiple critical angles and the Andreev reflection

Even before applying the boundary conditions in Eq. �8�
and finding the solution in the whole space, we can use the
fact that two linear boundary conditions for the variables of
continuous media are satisfied on the interface and derive a
number of important consequences. First of all, we see that
the solution is always constructed in such a way that there
are in total four outgoing �i.e., reflected and transmitted�
waves: one in the solid and three in the quantum fluid. This
is because the four conditions on the wave amplitudes, two
from Eq. �8� and two from Eq. �13�, can all be satisfied only
when there are at least four outgoing waves. On the other
hand, they can be at most four either because in the formu-
lation of the problem there is only one incident wave or
because of the requirement that the solution is bounded when
some of kiz are complex.

Furthermore, the two boundary conditions in Eq. �8� im-
ply that all of the waves constituting the full solution have
the same frequency 
 and tangential component of wave
vector k�. When wave i is propagating at an angle �i to the
normal to the interface, k�=ki sin �i. Then, if one of the

FIG. 2. The basis set of solutions in the superfluid helium in
half-space and their sums, which correspond to the different inci-
dent excitations.
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waves is incident, the corresponding angle and k� are set and
all the other transmission and reflection angles are deter-
mined by the generalization of Snell’s law:

sin �sol

ssol
=

sin �1

s1
=

sin �2

s2
=

sin �3

s3
. �23�

Here, si=
 /ki�
� are the phase velocities of the correspond-
ing waves that depend on frequency; ksol=ksol zez+k�ey is the
wave vector of the wave in the solid and ssol=
 /ksol�
�
=const. The reflection angle for the wave of the same type as
the incident one is equal to the incidence angle.

From now on, we will consider ssol�s, as is the case
when superfluid helium is adjacent to a solid. Usually, even
the strong inequality holds. Then, we have

ssol � s1 � s2 � s3 � 0. �24�

If a wave from the solid is incident at �sol, it is reflected at
the same angle and the three waves are transferred into he-
lium at angles �i��sol. The R− roton wave, as opposed to the
others, due to its negative group velocity, propagates back-
ward in the tangential direction �i.e., in the direction
y→−
, see Fig. 3�.

Assume a wave i is incident from helium at �i. Then,
according to Eq. �23�, the transmitted wave in the solid has
sin �sol�1 for sin �i�si /ssol, and if the incidence angle is
greater than the critical value, ksol z is imaginary and the
wave in the solid is exponentially damped. Thus, we obtain
the three angles of full internal reflection:

sin �i
cr = si/ssol for i = 1,2,3. �25�

In the same way, there are three new critical angles defined
for i� j �so that si�sj�:

sin �ij
cr = si/sj � 1 for�i, j� = �2,1�,�3,2�,�3,1� . �26�

If a wave i is incident and �i��ij
cr, then wave j �with j� i�

has � j � ��i ,� /2� and kjz�R. For �i��ij
cr we have kjz

2 �0,
the jth wave is damped and the corresponding quasiparticle
is not created.

In an ordinary fluid, the group velocity of a wave packet
is the same as the sound velocity and is constant. When a
wave is incident on the interface, the reflected wave has the
same wave number and due to preservation of the transverse
component of the wave vector k�, the wave is reflected for-

ward. This qualitative picture is maintained in the majority of
all known physical systems. However, when the reflected
wave �or quasiparticle� is qualitatively different from the in-
cident, another possibility can be realized. So, when an elec-
tron of a normal metal is incident on the interface with a
superconductor, it can be retroreflected and converted into
the hole of a negative effective mass that travels back along
the same line as the incident electron. This effect was dis-
covered by Andreev �see Ref. 21� and is called the Andreev
reflection or retroreflection.

In our case, when a helium quasiparticle is incident on the
interface, three different quasiparticles are created in helium,
with corresponding probabilities. If, for example, an R− roton
is created on the interface, along with other quasiparticles,
when a phonon is incident, for the sake of brevity, we will
refer to this as “the phonon is reflected into R− roton.” While
phonons and R+ rotons behave like ordinary quasiparticles in
these processes, R− rotons propagate in the direction opposite
their wave vector due to the negative group velocity, as was
already mentioned above. Therefore, when a phonon or R+

roton is incident on the interface, the phonons and R+ rotons
are reflected forward, while R− rotons are reflected back-
ward, or retroreflected. In this way, the transverse compo-
nents of wave vectors k� are all equal. Likewise, when an R−

roton is incident, the phonon and R+ roton are retroreflected.
Thus, we have described the effect of the Andreev reflection
of helium phonons and rotons.

If a monochromatic beam of phonons and rotons is inci-
dent on the interface at some angle �, there will be up to
seven reflected beams �see Fig. 4�. We denote them as ij,
which means “the beam of quasiparticles of type j created on
the interface by the incident quasiparticles of type i.” Beams
11, 22, and 33 are reflected forward at the incidence angle �
and, therefore, constitute a single beam ii. Beams 13 and 31
are also reflected forward, while 12, 21, 32, and 23 are re-
flected backward. Due to the relations in Eq. �23�, beams 32
and 21 are reflected at angles greater than � and beams 12
and 23 are reflected at angles less than �.

The reflection angles depend on si, which are functions of
frequency. Therefore, with an incident beam that is non-
monochromatic, the reflected beams all become angularly
diffused,20 except for beam ii. However, the relations in Eq.
�24� hold at all frequencies, and therefore, the qualitative
picture is not modified. If we place a detector on the same

FIG. 3. When a phonon in the solid is incident on the interface,
three quasiparticles, a phonon, an R− roton, and an R+ roton, are
created in superfluid helium with the same 
 and k�. The created R−

roton propagates backward in the transverse direction �i.e.,
retrorefracted�.

FIG. 4. When a single beam of quasiparticles is incident on the
interface, a set of reflected beams is created. The beam marked ij
consists of quasiparticles of type j created by incident quasiparticles
of type i. Beams ii are specularly reflected, while all others propa-
gate in different directions. Beams 12, 21, 23, and 32 are
retroreflected.
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side from the normal as the source at greater angles, it should
register the R− rotons of beam 32 and phonons of beam 21,
which were retroreflected. Likewise, the detector at smaller
angles should register the R− rotons of beam 12 and R+ ro-
tons of beam 23. Such an experiment could be carried out in
order to qualitatively verify the current theory.

A successful experiment would very much depend on the
intensities of the beams to be detected and, therefore, on the
different creation probabilities for the quasiparticles at the
interface. The derivation of these probabilities is the subject
of Sec. III.

III. REFLECTION AND TRANSMISSION COEFFICIENTS

A. Phonon in the solid incident on the interface

When a phonon in the solid is incident on the interface, it
is reflected and three quasiparticles of different types are
created in helium, which travel away from the interface �see
Fig. 3�. The probability of quasiparticle creation is the frac-
tion of incident energy that is reflected or transmitted as the
corresponding wave packet. Amplitude reflection and trans-
mission coefficients can be derived in the approximation of
plane waves.30

In this approximation, we consider a plane wave with
frequency 
 and wave number, ksol�
�=
 /ssol, incident on
the interface at angle �sol to the normal. Then, the solution in
the solid is the sum of the incident and reflected waves The
solution in the quantum fluid is Pout from Eq. �21�, which
consists of three waves. All the waves have the same fre-
quency 
 and transverse component of the wave vector, k�

=ksol cos �sol. The pressure amplitude of each wave Pi is the
full coefficient multiplying the exponent exp�ikizz� in the out
solution. With the help of the boundary conditions in Eq. �8�,
the amplitudes of all the waves are expressed through the
amplitude of the incident wave. Then, after some transforma-
tions, the amplitude reflection coefficient, which is defined as
the ratio of pressure amplitudes in the reflected and incident
waves, can be expressed in the following form:

r→ =
fz − Z − i�̃

fz + Z − i�̃
. �27�

Here, the following notations are used. Z is a real generali-
zation of impedance:

Z = Zg cos �sol, Zg = Z0� , �28�

where Z0= ��0s� / ��solssol� is the ordinary impedance of the
interface at zero frequency; �=
 /skg is the dimensionless

frequency as introduced in Eq. �18�; �̃ is a dimensionless
constant:

�̃��� =
k+z − k−z

ikg
� R , �29�

which is real due to Eq. �14�;

fz = f3z/�kgf2z� , �30�

where

fnz = k1z
n �k2z − k3z� + k2z

n �k3z − k1z� + k3z
n �k1z − k2z�

for n = 2,3.

As ssol�si, the transmission angles for all the waves �i are
less then �sol, so kiz�R and fz is a dimensionless real func-
tion of � and k� /kg.

The full transmission coefficient is t→=1+r→; the partial
transmission coefficients ti

→ are defined as the ratios of the
pressure amplitudes of each of the three waves in helium, Pi,
to the pressure amplitude of the incident wave. They are
obtained in the same way as r→:

ti
→ = t→

�i

�kiz − kjz��kiz − kkz�
, �31�

where

�i = �kiz − k+z��kiz + k−z� ,

and the subscripts take values �i , j ,k�= �1,2 ,3�+perm �perm
is for permutations�. Henceforth, the subscripts �i , j ,k� in the
expressions of the kind of Eq. �31� take the same set of
values, unless stated otherwise.

All the amplitude coefficients are complex-valued func-
tions of frequency and incidence angle. Therefore, there are
always nontrivial phase shifts between the incident, reflected,
and transmitted waves.

The energy reflection and transmission coefficients are the
normal components of energy density flux, which are ex-
pressed as fractions of the incident energy flux, that are re-
flected or transmitted into helium. The energy density flux in
a wave packet in the quantum fluid, as shown in Ref. 29,
equals the average energy density multiplied by the group
velocity. It was shown in Ref. 30 that the average energy
density in a wave packet or plane wave in the quantum fluid
with velocity amplitude Vi is given by the same relation as in
the ordinary liquid, �0	Vi	2, and from Eq. �17�, Vi= Pi / ��0si�.
The group velocity of wave i can be obtained from Eq. �1�:

	ui	 =
s2

kg
4

ki



	�ki

2 − kj
2��ki

2 − kk
2�	 . �32�

Taking all of this into account and with the help of Eq. �31�,
after some transformations, we obtain the fractions of the
normal component of the incident wave packet’s energy flux
that are carried by waves of each type i=1,2 ,3 in helium.
Those are the partial energy transmission coefficients:

Di
→ =

4Z

�Z + fz�2 + �̃2

kiz

kg

�kiz + kjz��kiz + kkz�
�kiz − kjz��kiz − kkz�

. �33�

We note that Di
→�0 for all i=1,2 ,3. The full energy trans-

mission coefficient can be expressed in the following form:

D→ = 

i=1

3

Di
→ =

4Zfz

�Z + fz�2 + �̃2
. �34�

The energy reflection coefficient is R→= 	r→	2. Then, from
Eqs. �27� and �34�, after some algebraic transformations, we
can explicitly show that
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R→ + D→ = 1, �35�

and so, energy is conserved when waves go through the in-
terface. This also verifies that the coefficients Di

→ and R→ are
the probabilities of the creation of the corresponding quasi-
particles at the interface.

Superfluid helium has a very small density and sound ve-
locity, such that at the interface with a solid, the strong in-
equalities s�ssol and �0��sol hold. Then, taking into ac-
count Eq. �24�, we have a set of small parameters:

Z0 � 1, si/ssol � 1. �36�

It can be shown that due to the first condition of Eq. �36�, in
the sums of Eqs. �27�, �34�, and �33�, the quantity Z can be
neglected in comparison with the other terms. The second
condition of Eq. �36� implies that due to Eq. �23�, all the
transmission angles into the helium are very small, as is in-
deed well known for the interfaces between He II and solids.
Then, k�

2�ki
2 ,k�

2 and due to Eqs. �7� and �14�, we have k�z
�k�. In this approximation, we obtain fz� f � fz�� ,�sol

=0� and �̃����k+−k−� / ikg. Then, the dependence of Di
→

on the incidence angle, from Eq. �33�, is factorized out and is
reduced to the multiplier 
cos �sol:

Di
→��,�sol� �

4Zg cos �sol

f2 + �2 �� kiz

kg

�kiz + kjz��kiz + kkz�
�kiz − kjz��kiz − kkz�

��
�sol=0

.

�37�

The frequency dependence of the transmission factors at nor-
mal incidence, �sol=0, is shown in Fig. 5. The relative cre-
ation probabilities of phonons and R− and R+ rotons are de-
termined by the multipliers in parenthesis in Eq. �37�. They
can be rewritten in terms of ki while taking care of the signs:
k1z and k3z at �sol=0 are equal to k1 and k3, but k2z at �sol
=0 is equal to �−k2� �because of the negative group velocity
of R− rotons�. Then, for i=2, we obtain

D2
→ �

k2 − k1

k2 + k1

k3 − k2

k3 + k2
k2. �38�

Both the first and second multipliers here are less than unity.
In the analogous expressions for D1,3

→ , one of the two corre-
sponding multipliers is reversed. So, for the ratio D2

→ /D1,3
→ ,

the effect is squared and we obtain

D2
→ � D1,3

→ . �39�

Near the roton minimum, when �→�rot, the R− and R+ roton
branches merge Their group velocities tend to zero, and so
do their creation probabilities D2,3→0 �because they are pro-
portional to the energy density fluxes, which are proportional
to the group velocities�. In Eq. �38�, the multiplier �k3−k2�
comes from the group velocity. In the same way, D1,2

→ →0
near the maxon maximum �→�max, where the phonon and
R− roton branches merge. Thus, D2

→ becomes zero at both
ends of the frequency interval in which D2

→ is defined. Both
the strong inequality in Eq. �39� and the asymptotic behavior
of D2 at �→�rot ,�max �see Fig. 5� are the consequences of
the simple relations 0�k1z� �−k2z��k3z from Eq. �20�,
which reflect the qualitative behavior of the dispersion curve
for superfluid helium, as shown in Fig. 1.

The creation probability of R− rotons at the interface is
very small for all energies. It should also be noted that, at
low temperatures, the main contribution to the energy flow
through the interface is due to phonons of energies less than
the roton gap �i.e., with ���rot�, which are not yet taken into
account. Thus, we have a convincing explanation why R−

rotons were not detected in experiments that created beams
of quasiparticles in helium by a solid heater, as, for example,
in Ref. 2.

The expressions for Di
→ �Eqs. �33� and �37�� and D→ �Eq.

�34�� are written as functions of the incidence angle or k�.
What can be experimentally measured are the energy flows
as functions of transmission angles. If phonons are isotropi-
cally incident on the interface, then as the transmission angle
for each wave is defined by Eq. �23�, the quasiparticles of
each type are transmitted in a narrow cone with the cone
angle twice the �i

cr. Thus, the phonons are injected into the
helium in the widest cone and R+ rotons in the narrowest
cone. For the total transmission coefficient as a function of
transmission angle �, we obtain

D→��,�� = 

i=1

3

Di
→��,k�i = ki sin �� , �40�

where

Di
→��� = 0 for � � �i

cr,

and k�i are the transverse components of the wave vectors of
wave i transmitted at angle �.

B. Phonon or roton in the helium incident on the interface

Now, let us consider one of the quasiparticles of super-
fluid helium �phonon or roton� incident on the interface. In
terms of plane waves, a wave i of frequency 
 and wave
vector of length ki�
� is incident. The solution in the solid
consists of only one transmitted wave, and the solution in the
quantum fluid consists of one incident wave i and three re-
flected waves j=1,2 ,3; it can be represented as a sum of
solutions Pout and Pin

�i� from Eqs. �21� and �22� �see Fig. 2�.
The boundary conditions in Eq. �8� enable us to express all
the amplitudes through the amplitude of the incident wave
and, thus, to obtain the nine amplitude reflection coefficients

FIG. 5. Energy dependence of the transmission coefficients at
�=0, with energy in temperature units, for the parametrized disper-
sion curve �see Fig. 1� and Z0=0.01. The R− roton creation prob-
ability D2 is small.
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rij. The coefficient rij is the ratio of the pressure amplitudes
of the reflected wave j to the incident wave i for i , j
=1,2 ,3:

rii = −
�i

�i
�

f−2z
�i�

f2z

f−z
�i� + Z − i�̃

fz + Z − i�̃
, �41�

rij = 2
� j

�i
�

kiz�ki
2 − kk

2�
f2z

kkz/kg + Z − i�̃

fz + Z − i�̃
�ijk. �42�

Here, the subscripts take values �i , j ,k�= �1,2 ,3�+perm; �ijk
is the Levi–Civita symbol, which is equal to 1 if �i , j ,k�
= �1,2 ,3� , �2,3 ,1� , or�3,1 ,2� and to �−1� if �i , j ,k�
= �2,1 ,3� , �1,3 ,2� , or�3,2 ,1�; Z=−Zgksol z /ksol is the gener-
alization of definition �28� For incidence angles less than
critical, k�

2�ksol
2 and ksol z�0, and Z is given by Eq. �28�. For

greater incidence angles, the new notation must be used be-
cause cos � is not defined. Then, ksol z�C− for the wave to
be damped in z�0, and therefore, Z= i	Z	. The constructions
f−nz

�i� are

f−z
�i� = f−3z

�i� /�kgf−2z
�i� � ,

f−nz
�i� = 	fnz�k1z,k2z,k3z�	kiz→�−kiz�

for i = 1,2,3; n = 2,3.

�43�

The amplitude coefficient of transmission ti
← for the inci-

dent wave of type i is

ti
← =

�kiz + kjz��kiz + kkz�
�i

�

2kiz/kg

fz + Z − i�̃
. �44�

Then, the energy transmission coefficient Di
← for wave i

can be calculated as the fraction of the energy of the incident
wave packet that is transmitted into the solid. It is explicitly
shown that

Di
←��,k�� = Di

→��,k�� . �45�

This important relation ensures thermodynamic equilibrium
between the solid and helium at equal temperatures on both
sides of the interface. Due to Eq. �45�, from now on, we can
omit the arrows in the sub- and superscripts of Di and D.

The reflection coefficients for i= j are just Rii= 	rii	2 and
from Eq. �41�, we obtain

Rii = � �Z − i�̃�kgf−2z
�i� + f−3z

�i�

�Z − i�̃�kgf2z + f3z

�2

. �46�

For i� j, we have to take into account that energy flows for
all waves are proportional to group velocities �Eq. �32�, and
then from Eqs. �42� and �43�, we derive

Rij = Rji = 4kg
2	kizkjz�ki

2 − kk
2��kj

2 − kk
2�	� Z − i�̃ + kkz/kg

�Z − i�̃�kgf2z + f3z

�2

.

�47�

The quantity Rij is the probability of quasiparticle j of being
created at the interface when quasiparticle i is incident, so

the Rij can also be called “conversion coefficients.”
Their dependence on frequency at normal incidence is

shown in Fig. 6. We see, in particular, that at the roton mini-
mum, �→�rot, where the R− and R+ roton branches merge,
these quasiparticles are reflected into each other with prob-
ability that tends to unity, R23→1. The same effect is present
for phonons and R− rotons at the maxon maximum.

The angular dependence of Rij is most easily analyzed in
terms of k� instead of the three angles of incidence. The
values of k� equal to ksol�
� or ki�
� correspond to different
critical angles of incidence. So, when k�� �0,ksol�, the quan-
tities Z and f�nz

�i� �i.e., fnz and f−nz
�i� for i=1,2 ,3� are all real, so

all the waves are traveling waves and D�0. When
k�� �ksol ,k1�, the wave in the solid is damped, Z= i	Z	, and
D=0, but f�nz

�i� �R and all the waves in the helium are still
reflected into each other. When k�� �k1 ,k2�, the phonon
wave in helium is damped, k1z= i	k1z	, and no longer gives a
traveling wave packet, and f�nz

�i� also become complex. This
corresponds to R� rotons incident at angles greater than
�31,21

cr and reflecting into themselves or into each other. When
k�� �k2 ,k3�, the quantities f�nz

�i� are also complex but the
structure is different; this case corresponds to R+ rotons in-
cident at angles greater than �32

cr and reflecting into R+ rotons,
again with probability of 1.

In all the cases, energy conservation can be explicitly
verified but it takes different forms:



j=1

3

Rij = 1 − Di for i = 1,2,3 if k� � ksol�
� ,



j=1

3

Rij = 1 for i = 1,2,3 if ksol�
� � k� � k1�
� ,

R22 = R33 = 1 − R23 if k1�
� � k� � k2�
� ,

R33 = 1 if k2�
� � k� � k3�
� . �48�

For the interface between helium and a solid, the limit
Z0�1 is a good approximation, and in Eqs. �41� and �42�
and Eqs. �46� and �47�, Z can be neglected �in this limiting
case, D→0 and �i

cr→0�. However, the angles are not small
anymore, as was the case for Di, and the angular dependence
of the coefficients is strong. This can be clearly seen in Fig.
7, where the graphs of R1j and R2j are shown for 	
 /kB
=10 K. The coefficient R21 becomes zero at the critical

FIG. 6. Functions Rij�
 ,�i=0� for i , j=1,2 ,3.
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angle �21
cr . The peak of R22 and minimum of R23 correspond

to angles above critical, where k1z is imaginary and the
damping depth of the phonon wave becomes roughly half of
the damping depth of the nonlocality kernel h�r�; then, the
imaginary part of the numerator of Eq. �47� turns to zero, and
as Z is small, R23 has a deep minimum.

A more extensive analysis of the functions Rij�� ,�i� for
the case Z0�1 allows us to state the following: the main
processes near the roton minimum, �→�rot+0, for all angles
are the conversion of R− and R+ rotons into each other and
reflection of phonons into themselves; near the maxon maxi-
mum, phonons and R− rotons are converted into each other
and the reflection of R+ rotons into themselves. For phonons
and R− rotons, when the incidence angle becomes close to
� /2, the probabilities of reflection into themselves, R11,22,
tend to unity; for R+ rotons, this happens at �3→�32

cr −0, and
at greater angles, R33=1 exactly. The conversion coefficients
R1j,j1 for j=2,3 are monotonically decreasing functions of
the angles of incidence; R1j becomes zero at � j→� /2 as
�� /2−�1 and Rj1 becomes zero at � j→� j1

cr as �� j1
cr −� j. A

little above � j1
cr, the coefficients R22 and R33 have high sharp

peaks, and R23 has a corresponding minimum, as described
above.

Then, for the case depicted in Fig. 4, the most powerful
beam will always be beam ii �basically because of phonons
with energies less than �rot�. We have shown that R− rotons
are hardly created by a solid heater �Eq. �39��, and the prob-
ability of R+ roton creation is also quite small at frequencies
near �rot �see Fig. 5� if the incident beam mainly consists of
low energy phonons. It was shown in Refs. 7 and 8 that in a
phonon beam, low energy phonons �l-phonons� are converted
into phonons with energy of about 10 K �h-phonons�. The
fraction of the energy in the initial beam that is converted to
the h-phonons can be up to 50%.8 The conversion coefficient

of these phonons to R− rotons is given by R12 at 	
 /kB
�10 K. It is much greater than that that at the roton mini-
mum and almost reaches 1/2 at normal incidence, which is
more than R11, see Fig. 7.

We suggest the experimental setup depicted in Fig. 8. The
heater injects a phonon beam, in which h-phonons are cre-
ated. The h-phonons, which are incident on the solid-helium
interface, are reflected into three beams of phonon and R−

rotons and R+ rotons of comparable intensities �the R− rotons
are reflected backward�. These beams propagate toward the
free surface of helium and quantum evaporate atoms from it
�the R− rotons evaporate atoms backward3�, which are then
detected. Thus, the energy is transported from the heater to
the interface by phonons and then to the detector by R− ro-
tons along a Z-shaped trajectory, with retroreflection at the
point of creation of R− rotons and retrorefraction on the sur-
face. The angles and fractions of the initial beam’s energy,
which is transferred to different reflected beams, are shown
for the h-phonon part of the incident beam. The l-phonons
for the most part are directly reflected and are not shown.

If the source of quasiparticles has more rotons in the in-
cident beam, as the one used in Ref. 3, then beams 32 and 23
may also be detectable.

The main contribution to the energy flow through the in-
terface at low temperatures can be expected to be made by
phonons below the roton gap, i.e., with �� �0,�rot�. The
problem of transmission through interfaces by phonons with
anomalous dispersion was solved in Refs. 20 and 30. In the
current work, the dispersion relation in Eq. �1� that is used is
more general than the one used in the previous works. It is
nonmonotonic and normal below the roton gap.

When ���rot, the roots k2z,3z are defined so that k1z�0
and k3z=−k2z

� �C+, as shown in Sec. II C. With these kiz, the
out and in solutions are constructed �Eqs. �21� and �22��. So,
the amplitude coefficients are still defined by Eqs. �27� and
�31�, but the quantities f�nz

�i� are now complex. The only valid
reflection coefficient R11 is defined by Eq. �46�, with the
complex kiz as introduced above. The transmission coeffi-
cient is Dph=1−R11. It can be shown that in the limit of
small frequencies, �→0, when the dispersion is almost lin-
ear, the expression for Dph approaches the standard one for
linear dispersion. At �→�rot−0, it rapidly decreases to less
than half because of the increasing influence of the roton
waves. The curve D��� is continuous at �rot but has a kink.

FIG. 7. ��a� and �b�� Reflection coefficients R1j and R2j for j
=1,2 ,3 as functions of incidence angle � at �=0.2871 �	
 /kB

=10 K�.

FIG. 8. The predicted creation of R− rotons by h-phonons inci-
dent on the interface with a solid. There should be backward reflec-
tion and quantum evaporation with backward refraction.
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IV. ENERGY FLOWS THROUGH THE INTERFACE

When a phonon in the solid, with frequency 
 and wave
vector ksol, is incident on the interface at angle �sol, the av-
erage energy transferred into helium is 	
D�
 ,k��, where D
is given by Eq. �34� and k�=ksol cos �sol. Let the phonons in
the solid be in thermodynamic equilibrium at temperature T.
Then, the normal component of the density of energy flow
through the interface is �see, for example, Ref. 11�

Q�T� =� d3ksol

�2��3	
nT�
�ssol cos �solD , �49�

where nT is the Bose–Einstein distribution function and the
integration domain is the half-space ksol z�0. The parts of
this energy flow that are transferred into helium by either
phonons, R− rotons, or R+ rotons of helium that are created at
the interface by the incident phonons are obtained in the
same way. However, instead of the full coefficient D, we
now use the partial transmission coefficients Di. These are
the corresponding creation probabilities of the quasiparticles.
After changing the integration variables to the arguments of
Di�
 ,k��, the partial energy flows can be expressed in the
following form:

Qi
→�T� =� d


8�2	
nT�
��
0

ki
2�
�

dk�
2Di�
,k�� . �50�

Here, the upper limit by k�
2 corresponds to the maximum

transmission angle of quasiparticles of type i, which is equal
to �i

cr from Eq. �25�. The quantities Qi
→ for i=1,2 ,3 are the

individual contributions of phonons and R− and R+ rotons to
the energy flux from the solid into helium.

Their contributions to the energy flux in the opposite di-
rection, Qi

←�T�, are the normal components of the energy
fluxes from helium into the solid. These are realized by he-
lium quasiparticles of type i incident on the interface. The
average energy transferred into the solid per incident quasi-
particle of type i is due to Eq. �45�, 	
Di�
 ,k��. Then, the
energy flux is derived in the same way as Eq. �49�, with the
difference that instead of ssol in the integral, we have 	ui	
because the number of quasiparticles incident on the inter-
face per unit of time is proportional to their group velocity:

Qi
←�T� =� d3ki

�2��3	
nT�
�	ui	cos �iDi. �51�

When changing the integration variables to �
 ,k��, we use
the Jacobian determinant and we explicitly obtain that
Qi

←�T�=Qi
→�T�.

Figure 9�a� shows the ratio between the contributions to
the energy flux through the interface of all quasiparticles
above the roton gap �i.e., with 	
 /kB��� Q�=Q1+Q2
+Q3, and the contribution of phonons below the roton gap
Q�, which is obtained by using Eq. �50� with Dph. We see
that at temperatures T�1 K, the phonons are dominant.
However, at T�2.5 K, the two contributions are equal, and
at higher temperatures, the phonons and rotons above the
roton gap play the main role in heat exchange with the solid,
see Fig. 9�b�. The contribution of the R+ rotons to Q� in-
creases with temperature and at T�3 K, their contribution

surpasses that of the phonons, see Fig. 9�b�. The contribution
of the R− rotons is approximately constant and is no greater
than 6%. This is due to the low creation probability D2 for all
frequencies �Eq. �39��. At T=3 K, the contribution of the R−

rotons to the full energy flow is 3%.
When there is energy flow through the interface, it in-

duces the Kapitza temperature jump at the interface �see, for
example, Ref. 11�. The contributions of quasiparticles of
each type to this jump are obtained by differentiating Eq.
�50� with respect to T.

V. CONCLUSION

In this work, we have solved the problem of the interac-
tion of He II quasiparticles, i.e., phonons, R− rotons, and R+

rotons, with the interface between helium and a solid. These
excitations have the nonmonotonic dispersion curve shown
in Fig. 1. The consistent solution of the problem has been
introduced, which allows us to rigorously describe the simul-
taneous creation of the three types of He II quasiparticles by
any one of them or by a phonon in the solid that is incident
on the interface.

When a phonon in the solid is incident on the interface, it
is reflected with some probability and a phonon, R− roton, or
R+ roton is created with corresponding probabilities in the
helium. It is shown that the created R− roton, due to its nega-
tive group velocity, is refracted backward �Fig. 3�. When
some quasiparticles of helium are incident, all the quasipar-
ticles with the same frequency and transverse wave vectors
are created. The set of six critical angles as functions of
frequency is introduced �Eqs. �25� and �26��. These separate

FIG. 9. �a� The ratio of the contributions to the energy flow
through the interface by quasiparticles above roton minimum, Q�,
to the phonons below roton minimum, Q�, as a function of tem-
perature �on a logarithmic scale�. �b� The contributions of phonons,
R− rotons, and R+ rotons to the energy flow created by quasiparti-
cles above the roton minimum as functions of T.
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the intervals of angles of incidence for the different quasi-
particles, from which other quasiparticles can be created. It is
shown that when a phonon or R+ roton is incident, the R−

roton is retroreflected �i.e., reflected backward�, and likewise,
when an R− roton is incident, the phonon and R+ rotons are
retroreflected �Fig. 4�. This effect is the Andreev reflection of
phonons and rotons.

The probabilities of creation of all quasiparticles at the
interface when any quasiparticle is incident are derived as
functions of frequency and incidence angles �Eqs. �33�, �46�,
and �47� and Figs. 5–7�. It is shown that the creation prob-
ability of an R− roton by a phonon in the solid, and vice
versa, is very small for all angles and frequencies �Eqs. �38�
and �39��. This means that R− rotons are as badly created by
a solid heater as they are poorly detected by a solid bolom-
eter. This explains the failure to detect R− rotons in direct

experiments until 1999.3 New predictions are made for ex-
periments with beams of phonons and rotons interacting with
the solid interface and, in particular, creating R− rotons at the
interface by a beam of h-phonons.

The full energy flow through the interface is also calcu-
lated as a function of temperature of the solid, as well as the
individual contributions of the phonons and R+ and R− rotons
�Eq. �50�� to it, see Fig. 9. The contribution of the R− rotons
is shown to be very small.
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