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We theoretically investigate the influence of designed pulse sequences in restoring quantum coherence lost
due to background noise in superconducting qubits. We consider both 1 / f noise and random telegraph noise
and show that the qubit coherence time can be substantially enhanced by carefully engineered pulse sequences.
Conversely, the time dependence of qubit coherence under external pulse sequences could be used as a
spectroscopic tool for extracting the noise mechanisms in superconducting qubits, i.e., by using Uhrig’s pulse
sequence �Phys. Rev. Lett. 98, 100504 �2007��, one can obtain information about moments of the spectral
density of noise. We also study the effect of pulse sequences on the evolution of the qubit affected by a strongly
coupled fluctuator and show that the non-Gaussian features in decoherence are suppressed by the application of
pulses.
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I. INTRODUCTION

Quantum decoherence, i.e., the continuous decay �“the
loss of quantum memory”� of a quantum state due to its
interaction with the environment, provides the conceptual
connection between the microscopic quantum and macro-
scopic classical worlds.1 Understanding and preventing de-
coherence is also central to the fledging field of quantum
computation, as the loss of quantum coherence leads to er-
rors in the processing of quantum information. In fact, quan-
tum error correction protocols, which are necessary for quan-
tum computation, require the decoherence to be below a
certain threshold.2 It is therefore of paramount importance
that the decoherence of qubits, two-level systems used to
store and process quantum information, is suppressed as
much as possible. In this paper, we develop realistic strate-
gies, which are based on the application of designed external
pulse sequences, that suppress an important source of deco-
herence in an important class of qubits, solid state supercon-
ducting qubits.3,4 The decoherence mechanism considered in
this work is that due to classical noise, i.e., a situation where
the qubit couples to a random classical temporally fluctuat-
ing field. Such noise is, in fact, the major source of quantum
dephasing in superconducting qubits,5–11 and therefore, the
pulse sequences proposed in this work should be useful in
restoring coherence in solid state superconducting quantum
computer architectures.

For many decades, in the field of magnetic resonance,
pulse sequence techniques have been studied as a method of
reducing spin ensemble dephasing.12,13 The most famous se-
quences are Hahn’s spin echo, Carr–Purcell–Meiboom–Gill
�CPMG� sequence,12 and periodic dynamical decoupling
�PDD�. Spin echo �SE� is the simplest, which consists of just
one � pulse, whereas CPMG is its multipulse generalization.
The PDD sequence, introduced in the context of quantum
computation, was designed to average out the influence of
the environment, effectively decoupling the qubit.14–16 Dy-
namical decoupling was further developed by introducing an
idea of recursively defined sequences,17 which is termed con-
catenated dynamical decoupling �CDD�. Recently, by using a

spin-boson model, Uhrig obtained a new sequence18 �termed
here as UDD�, which nearly completely suppresses short
time decoherence under certain conditions. UDD was later
shown to be universal,19 in the sense that for for any pure
dephasing Hamiltonian, the n-pulse UDD sequence leads to
the cancellation of n orders of the time expansion of the
off-diagonal element of the qubit density matrix �+−�t�.

In this paper, we study the effect of pulse sequences on
the decoherence in superconducting �SC� qubits, which are
subject to classical 1 / f and random telegraph noise �RTN�.
Experimental studies5,20–22 have shown that SC qubits suffer
decoherence from 1 / f noise, which is associated with fluc-
tuations of electric or magnetic dipoles in the insulating ma-
terials. In charge qubits, where the area of the tunnel junc-
tions is small, it has been established that the qubit is often
coupled to a few two-level fluctuators �TLFs�, which can be
treated as classical sources of RTN.5,6,9,11 Here, we focus on
the case of charge qubits, in which the charge noise is domi-
nant, but our results, with minor modifications, are appli-
cable to phase and flux qubits.

It has been experimentally shown that the coherence of
the Cooper-pair box charge qubit is significantly prolonged
by the application of the SE sequence.5,11,23 Characteristic
plateaus seen in the echo signal have been theoretically ex-
plained as arising when the noise is dominated by a single
classical TLF coupled to the qubit.9 Beyond SE, only
PDD24–29 and CPMG26 sequences have received theoretical
attention in the context of SC qubits. In this work, we sug-
gest the use of more sophisticated pulse sequences, such as
CDD and UDD, to suppress noise-induced decoherence in
SC qubits, finding that, depending on the details of the noise,
CPMG or UDD is optimally effective in reducing decoher-
ence in superconducting circuits. We emphasize that earlier
work in the literature on CPMG,30 CDD,31–33 and most re-
cently UDD19 pulse sequences was carried out entirely in the
context of electron spin decoherence in a nuclear spin bath,
in which the quantum correlations within the bath are impor-
tant. On the other hand, the bath fluctuations due to charge
noise in superconducting qubits can often be treated classi-
cally, as established in Ref. 9.
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Apart from prolonging the coherence time, pulse se-
quences could be used to gain valuable information about the
environmental noise as the time dependence of decoherence
is different for various sequences. The microscopic origin of
the noise affecting the coherence and energy relaxation in the
SC qubits is still a subject of ongoing research,34–39 and we
discuss here how pulse sequences can be used to learn more
about the noise spectrum at low frequencies. This approach
is complementary to using the measurement of energy relax-
ation time of the qubit for noise spectroscopy at higher fre-
quencies of the order of qubit energy splitting.40,41

We consider here the experimentally relevant5,20,21 situa-
tion, in which decoherence is dominated by pure dephasing
�i.e., “T2”� processes, and not by energy relaxation �i.e., T1�
processes, T1�T2. In the current experiments, pure dephas-
ing is the dominant mechanism of decoherence away from
the so-called optimal bias point.11,42 The decoherence at the
optimal point in the present charge and flux qubit designs is
limited by T1 processes �i.e., T2�2T1� since the effect of
noise is then suppressed to the first order.8 However, the
requirement of keeping the qubit at the optimal points at all
times might be overly confining for a system of multiple
interacting qubits.43 Thus, the ability to prolong the coher-
ence of the qubit in the pure dephasing regime is still desir-
able. Furthermore, in phase qubits,24,44,45 there is no optimal
point and the effect of pulse sequences should lead to a sub-
stantial increase in T2 in the case when qubit coherence is T2
limited. Another strategy46,47 for suppressing the influence of
the noise on the qubit was recently implemented.48 In such a
“transmon” qubit, the coupling to the charge noise is expo-
nentially suppressed. However, this qubit is still sensitive to
the flux noise, the relevance of which becomes prominent
away from the optimal flux bias point.

The paper is organized in the following way. In Sec. II,
we introduce the pure dephasing Hamiltonian and describe
the types of noise which we shall consider. Section III con-
tains the overview of various pulse sequences applicable to
the pure dephasing case. In Sec. IV, we present the analytical
solution for decoherence under pulses for the case of Gauss-
ian noise, and we discuss how the pulse sequences act as
filters suppressing the influence of low-frequency noise on
the qubit dynamics. The calculations for Gaussian 1 / f� noise
are presented in Sec. IV B, where the role of the ultraviolet
cutoff in the noise spectrum is highlighted. We also introduce
the idea of using the UDD sequence to obtain the quantita-
tive information about the low-frequency noise spectral den-
sity. Finally, in Sec. V, we present the results for decoherence
due to the RTN. We identify the regime in which the appli-
cation of even a few pulses leads to the increase in the co-
herence time, and we find that the analytical Gaussian ap-
proximation to calculation of decoherence is asymptotically
exact for large number of applied pulses.

II. HAMILTONIAN AND THE MODEL OF THE NOISE

The limit of energy relaxation time being much longer
than the dephasing time, T1�T2, corresponds to using the
pure dephasing Hamiltonian to describe the qubit-
environment interaction,

Ĥ =
1

2
�� + ��t���̂z, �1�

where � and ��t� are, respectively, the qubit energy splitting
and a classical random variable representing fluctuation of
the energy splitting due to coupling to one or many TLFs.
The function ��t� represents a classical stochastic process,
which is given by

��t� = �
i

vi�i�t� , �2�

where �i�t�= 	1 /2 corresponds to the RTN signal49 from the
ith TLF, with vi as the corresponding coupling strength.

The stochastic processes are defined by their correlation
functions. The two-point correlation function is given by

S�t1 − t2� = ���t1���t2�� , �3�

where �¯� is the average with respect to the noise realiza-
tions, and we have assumed here ���t��=0. The Fourier
transform of the two-point correlation function is the spectral
density of noise �more generally referred to as the first spec-
tral density, see Ref. 50�,

S�
� = 	
−�

�

ei
tS�t�dt . �4�

When the statistics of fluctuations are Gaussian, the noise is
completely defined by S�t�, and the average over the noise
realizations can be written as a Gaussian functional integral
over all possible realizations of ��t�,

�¯� =	 D�e−1/2
dt1
dt2��t1�S−1�t1−t2���t2�
¯ , �5�

where S−1 is defined by

	 dt�S−1�t − t��S�t� − t�� = ��t − t�� . �6�

On the other hand, when the noise is non-Gaussian, one has
to also consider higher-order correlation functions. For the
relevant here case of the RTN, the two-point correlation
function and its Fourier transform are given by

S�t1 − t2� = v2���t1���t2�� =
v2

4
e−2
�t1−t2�, �7�

S�
� =

v2


2 + 4
2 . �8�

where 
 is the rate of switching between the two values of
�= 	1 /2. We have used here the high temperature limit
�kBT�
� for the spectral function, i.e., the noise is
symmetric,9,49 with both rates of transitions between the two
states of the TLF being equal to 
. If the noise had Gaussian
statistics, one would have been able to express the higher-
order correlators through the two-point correlation function
S�t1− t2�. This is not true for the RTN, and we refer interested
reader to the Appendix for more details.

When many TLFs with a log-uniform distribution of 

�i.e., with probability of finding a fluctuator with a given 
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being P�
��1 /
� contribute to ��t�, the spectral density is
S�
��1 /
. This is the well-known 1 / f noise.50 It extends to
an infrared cutoff frequency 
ir below which the spectrum
flattens out with values of 
ir /2��1 Hz in SC qubits.11 The
log-normal distribution of switching rates arises when 
 ex-
ponentially depends on another quantity having a uniform
distribution. For example, in a model of localized TLFs, one
obtains a log-uniform distribution of tunnel splittings, which
exponentially depend on the tunnel barrier height,34 and in
the recently proposed model of the Andreev fluctuator
bath,36,38 the switching rate of the effective TLF exponen-
tially depends on the distance between the pair of impurity
sites participating in the Andreev tunneling process.

III. DECOHERENCE UNDER PULSE SEQUENCES

We consider the decoherence of the qubit initially pre-
pared in the coherent superposition of its “up” and “down”
states. Specifically, at time t�=0, we assume that the qubit’s
state vector is ���0��=a�↑ �+b�↓ � with �a�2= �b�2=1 /2, which
in the Bloch vector language corresponds to the vector being
in the xy plane. Experimentally, this is achieved by initializ-
ing the qubit in one of the eigenstates of �̂z and applying a
� /2 rotation about the x or y axis at initial time.3

In a free induction decay �FID� experiment, we let the
qubit freely evolve for time t and then perform a measure-
ment. Due to the noise in the Hamiltonian �1�, the qubit state
at the measurement time is

���t�� = e−i�t/2e−i/2
0
t ��t��dt�a�↑� + ei�t/2ei/2
0

t ��t��dt�b�↓� ,

�9�

so that the off-diagonal element of the qubit density matrix is
�we use the units with �=1�

�+−
FID�t� = e−i�te−i
0

t ��t��dt��+−�0� , �10�

where �+−�0�=ab�. We quantify the qubit coherence by using
the function W�t�, which is defined in the following way:

W�t� �
���+−�t���
���+−�0���

. �11�

We are now going to consider applying a certain number
n of ideal ��-shaped� � pulses �about, for example, the x
axis� in the time interval t�� �0, t�. In the following, t will
always denote the measurement time, and by W�t�, we mean
the coherence at time t with n pulses applied within this time.

Since the � rotation about the x axis is given by
exp�−i��̂x /2�=−i�̂x, the qubit evolution operator with �
pulses applied at times t1 , . . . , tn is

Û�t� = e−i/2�̂z
tn
t ��+��t���dt��− i�̂x�e−i/2�̂z
tn−1

tn ��+��t���dt� . . .

��− i�̂x�e−i/2�̂z
0
t1��+��t���dt�. �12�

The �̂x operators exchange the amplitudes of �↑ � and �↓ �
states of the qubit, and we arrive at the decoherence function
under the action of the pulse sequence,

W�t� = 
�exp�− i	
0

t

��t��f�t;t��dt���
 . �13�

In this equation, we have introduced the function f�t ; t��,
which characterizes the pulse sequence,

f�t;t�� = �
k=0

n

�− 1�k��tk+1 − t����t� − tk� , �14�

where ��t�� is the Heaviside step function and t0=0 and
tn+1= t the total evolution time. This function switches be-
tween 1 and −1 at the times at which the � pulses are applied
and f�t ; t��=0 for t��0 and t�� t. In Fig. 1�b�, we show, as
an example, a plot of f�t ; t�� for the two pulse CPMG se-
quence.

We denote the characteristic time of decay of W�t� as T2,
which is defined by ln W�T2�=−1. It depends on the pulse
sequence applied during the qubit evolution, and this depen-
dence on the number of pulses n and their spacing is the
main subject of this paper. In most of the cases considered
here, the decoherence is not described by a simple exponen-
tial decay W�t��exp�−t /T2�. Such a decay law appears
when the relevant dynamical time scale of the environment
�i.e., the noise autocorrelation time� is much smaller than T2
�the Markovian limit of qubit dynamics�. This is not true for
1 / f noise, which is correlated on a very long time-scale, and
also for the RTN due to a slow fluctuator �with small 
�.

A. Pulse sequences aimed at suppressing the pure
dephasing

We denote the times at which the n pulses are applied by
tk=�kt with 0��k�1, where k=1. . .n. The spacing of times

SE

PDD
CPMG

CDD
UDD

CDD

n=5

n=10

CPMG n=2

t=0̀ t=t̀
UDD

(b)

1

-1

f(t;t’>t)=0f(t;t’<0)=0

t’=tt’=t/4 t’=3t/4

(a)

t’

f(t;t’)

FIG. 1. �a� The illustration of various pulse sequences with ap-
plication times of � pulses marked. SE is shown along with the
PDD, CPMG, CDD, and UDD sequences with n=5 pulses �for
CDD, this corresponds to the third order of concatenation�. Ten-
pulse UDD and CDD �fourth order of concatenation� are also
shown. �b� The function f�t ; t�� defined in Eq. �14� for two-pulse
CPMG sequence.
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tk in the sequences under consideration here is illustrated in
Fig. 1�a�. Application of a single � pulse at t�= t /2 �n=1,
�1=1 /2� corresponds to the SE experiment. The � pulse ex-
changes the amplitudes of the two states of the qubit, and the
evolution during the remaining time period partially cancels
the evolution before the pulse. More specifically, the echo
sequence removes the influence of the noise frequencies 

smaller than 1 / t �the quasistatic shifts of the qubit precession
frequency�. This, of course, gives the complete cancellation
of the static randomness in qubit splittings � in the measure-
ment of an ensemble of qubits �inhomogeneous broadening�.
In the considered case of the SC qubits here, one always
deals with repeated measurements of a single qubit �a time
ensemble�, and SE is a very efficient technique that sup-
presses the low-frequency part of the 1 / f noise, leading to a
substantial increase in the T2 time in superconducting
charge5,11,23 and flux qubits.20,21

The multiple-pulse extension of the echo is the CPMG
sequence,12 which is defined by �k= �k−1 /2� /n. This se-
quence leads to periodic echolike revivals of the coherence.
While it was used for many years in NMR experiments per-
formed on ensembles of spins, it was recently predicted that
it should be highly effective at prolonging the coherence of a
spin qubit interacting with the nuclear bath.30 Whereas
CPMG is best understood as a refocusing sequence, in recent
years a lot of attention has been devoted to the idea of dy-
namical decoupling of the qubits from its environment by
pulses.14–17 In this approach, the pulses are used to average
out the influence of the environment on the qubit, which can
be fully achieved only in the limit of very fast repetition of
pulses. Out of many types of dynamical decoupling �DD�
protocols, we concentrate here on deterministic periodic
�PDD� sequence �see e.g., Ref. 33 for a comparison of more
kinds of DD techniques applied to the spin bath problem�. It
is defined by �k=k / �n+1�. Although it looks very similar to
CPMG �the difference being only a small offset of the initial
and final delay times�, below we will show that CPMG vis-
ibly outperforms PDD when considering the realistic small n.
The key difference is that while in the limit of very fast
application of pulses both PDD and CPMG decouple the
qubit from the environment �during the whole time of the
evolution�, for realistic small n the CPMG sequence is much
better at refocusing the coherence at the final time t�= t.

Recently, a new family of DD protocols involving concat-
enating �recursively embedding the sequences within them-
selves� has been proposed.17 For the purpose of combating
the pure dephasing, we will concentrate on concatenations of
the echo sequence, and for simplicity, we will refer to it
simply as CDD. The CDD sequence at the lth order of con-
catenation and for total evolution time t is defined as
CDDl�t�. CDD0�t� is free evolution for time t. The lth order
of concatenation is then recursively defined by

CDDl�t� � CDDl−1� t

2
� − � − CDDl−1� t

2
� − � , �15�

so that CDD1�t� is the SE with a � pulse at t /2 and CDD2�t�
is the same as n=2 CPMG sequence. For l�2, the concat-
enations of the echo give us new sequences of nontrivially
spaced � pulses, the performance of which has been inves-

tigated theoretically in the case of the nuclear spin bath.31–33

Note that the number of pulses for the lth order of concat-
enation is n�2l. The CDD sequences were argued17 to be
more tolerant to implementation errors and more efficient �in
terms of performance for the same number of pulses� than
the PDD sequence. However, the theoretical comparisons17

to other DD protocols were done in the quantum mechanical
setting by using the Magnus expansion of the evolution op-
erators, or the so-called “average Hamiltonian” theory.13

CDD is designed to cancel, with each order of concatenation,
successive orders of the qubit-bath interaction in the Magnus
expansion. It also cancels successive orders of intrabath in-
teraction for the nuclear spin bath.32 However, it is not a
priori clear whether the advantages of CDD are going to also
hold for the case of dephasing due to classical noise.

The most recent development in suppressing the pure
dephasing was the introduction of a new sequence by
Uhrig,18,51 which we term here UDD. This sequence was
optimized for pure dephasing due to a bosonic environment
or classical Gaussian noise, but later its surprising universal
character was discovered in a general quantum-mechanical
setting.19 UDD is defined by

�k = sin2��k/�2n + 2�� , �16�

and in Sec. III B, we will explain in what sense it is “opti-
mal” for the case of the Gaussian noise. Originally, the se-
quence was applied18 to the case of the environment charac-
terized by an Ohmic spectral density of the noise having a
sharp high-frequency cutoff, S�
��
��
c−
�, with the ul-
traviolet cutoff 
c. Here, we will analyze its performance for
Gaussian noise with 1 / f spectral density �with and without
the ultraviolet cutoff in the spectrum�, and for classical non-
Gaussian RTN.

B. Realistic pulses

We consider here the case of ideal, i.e., �-shaped � pulses
�so-called “bang-bang” or unbounded control�. In reality, the
pulses will have a finite duration �p and they might be im-
perfect, e.g., one can have pulse length or amplitude errors
�leading to a wrong angle of rotation� or an off-resonance
error, due to which the rotation occurs around a tilted axis.
When these errors are systematic, they can be suppressed by
using composite pulses.52 Pulse shaping has also been used
to counteract the effect of the bath noise during the finite �p
of the realistic pulse. Shapes of finite duration � and � /2
pulses were optimized to cancel the lowest order �in �p� cor-
rections due to the interaction with arbitrary bath.53,54 Opti-
mization of control pulses was also considered for qubit
coupled to a source of classical RTN55 or classical 1 / f
noise,56 and qubit interacting with a quantum two-level
system.57

These works show that the realistic � pulses can be made
quite robust to both implementation errors and environmen-
tal noise, and treating them as � shaped is a good approxi-
mation as long as �p is larger than �min, i.e., the minimal
interval between the pulses in a given sequence. For UDD,
this time scales with the number of pulses n as �min� t /n2 in
contrast to t /n scaling for all of the other sequences under
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consideration �see Fig. 1�a�, for example, with n=10�. In
reality, there is a lower limit on �p, which is related to the
presence of higher energy levels in the full spectrum of the
system. The inevitable higher-order pulse errors �unac-
counted for by optimization� can also add up in a sequence
with large n. Let us also mention that while CDD was
shown17 to be robust against certain types of pulse errors by
construction �the systematic errors being cancelled by suc-
cessive concatenations�, such an investigation has not been
made in the case of UDD. It is not known how sensitive is
the performance of this sequence to, e.g., errors in timing of
the pulses, which have to be spaced in a quite intricate fash-
ion. These considerations lead us to concentrate on the case
of rather small n. Instead of looking at a “stroboscopic” limit
of dynamical decoupling of the qubit by fast repetition of
pulses, we start from the echo sequence and show how the
decoherence changes as we increase n from 1 to 10.

IV. GAUSSIAN NOISE

We write the decoherence function W�t� from Eq. �13� as

W�t� � e−��t�, �17�

which defines the function ��t�. In the Gaussian approxima-
tion, the average over noise can be performed by using Eq.
�5�, and ��t� can be expressed through the spectral density of
the noise S�
� as

��t� = 	
0

� d


2�
S�
�� f̃�t;
��2 = 	

0

� d


�
S�
�

F�
t�

2 , �18�

where f̃�t ;
� is the Fourier transform of f�t ; t�� with respect

to t�. The filter function F�
t�= 
2

2 � f̃�t ;
��2 encapsulates the
influence of the pulse sequence on decoherence.24,58 In terms
of times tk at which the pulses are applied �with t0=0 and
tn+1= t�, we have

F�
t� =
1

2

�

k=0

n

�− 1�k�ei
tk+1 − ei
tk�
2

. �19�

Analytical expressions for F�
t� for the sequences under
consideration are given in Table I. Let us note the existence

of the following sum rule for the filter functions:

	
−�

+� d


�

F�
t�

2 = 	

−�

+�

f2�t;t��dt� = t . �20�

From this, one can see that the pulse sequences cannot pro-
long the coherence time when the integral in Eq. �18� is
dominated by an initially flat S�
��S�0� at low frequencies.
We then obtain ��t�=S�0�t /2 for all pulse sequences at times
t�1 /
 f, with 
 f as the frequency at which the noise spec-
trum starts to decay.

A. Filter functions

For FID, as 
→0, F�
t� /
2→ t2 /2. As a result, noise
significantly contributes to ��t�, and for 1 / f noise with
S�
�=A0

2 /
, we get59

��t� �
�A0t�2

2�
ln

1


irt
, �21�

where 
ir is the infrared cutoff of the 1 / f noise. In the cur-
rent experiments, the microscopic cutoff is not reached, and

ir is determined by the measurement procedure, i.e., 
ir
� tm, where tm is the averaging time. Values of 
ir /2�
�1 Hz have been reported for SC charge qubits.11 This ex-
posure to small-
 noise is already removed with the SE se-
quence, for which F�
t���
t�4 for t�4 /
. For 1 / f noise,
this leads to a significant �by at least an order of magnitude�
increase in the observed T2 time in comparison to the FID
experiment.5,11,20,21

The PDD filter for 
�2 / t is FPDD�
t��
4�
2� for odd
�even� n �see Table I� so that only the odd n sequence can
suppress low-frequency noise. For larger frequencies but
smaller than 2n / t, we have FPDD�
t���
t�2 / �2n+2�2. On
the other hand, the CPMG filter is proportional to 
4�
6� for
odd �even� n, suppressing noise with S�
��1 /
� with �
�2�4�. Furthermore, for 
�2n / t, we have Fn

CPMG�
t�
��
t�4 / �2n�4. A small change in the initial and final inter-
vals between the pulses in comparison to PDD leads to a
more efficient high-pass filter of the noise.

From the recursive definition of CDD, we get in the lth
order of concatenation,

f̃ �l��
� =
1

2
f̃ �k−1��


2
��1 − ei
t/2� , �22�

with f̃ �0�= i /
�1−ei
t�. From this, the formula for the filter
Fl

CDD�
t� given in Table I follows. For frequencies 
�4 / t,
we have

Fl
CDD �

�
t�2l+2

2�l + 1�2+1
. �23�

It is important to note that unlike in the case of the other
pulse sequences, the frequency at which F�
t� becomes
larger than 1 scales not as n / t but as �n / t �for large n�. This
is illustrated in Fig. 2, where the filters F�
t� are shown for
n=10 for all of the sequences under consideration. The CDD
filter is the first to become large with increasing 
. The ad-
vantage of CDD over much simpler PDD and CPMG se-

TABLE I. The expressions for filter functions for various pulse
sequences. Here, n is the number of pulses and l is the order of
concatenation for CDD �n�2l�. In the range of z�2n, the filter
function for UDD is very small �see Ref. 18�. In the formulas for
even-n PDD and odd-n CPMG, sin2�z /2� is replaced with
cos2�z /2�.

Sequence F�z�

FID 2 sin2 z
2

SE 8 sin4 z
4

PDD �odd n� 2 tan2 z
2n+2sin2 z

2

CPMG �even n� 8 sin4 z
4nsin2 z

2 /cos2 z
2n

CDD 22l+1sin2 z

2l+1 �k=1
l sin2 z

2k+1

UDD 1
2 ��k=−n−1

n �−1�k exp� iz
2 cos �k

n+1 ��2
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quences is apparent only at very low frequencies—but it is
the UDD filter, which is clearly the best for 
�2n / t �see
Fig. 2�.

The n pulse UDD sequence is derived by optimizing ��t�,
choosing �k so that the first 2n+1 terms in time expansion of
��t� around t=0 are zero �i.e., setting the first n terms in time

expansion of f̃�t ;
� to zero�. The physically meaningful
solution18,51 to the resulting set of nonlinear equations is
given by Eq. �16�. The resulting F�
t� is

Fn
UDD�
t� �

8�n + 1�2

��n + 1�!�2�
t

4
�2n+2

for 
 � 2/t , �24�

and Fn
UDD��
t / �2n+2��2n+2�1 for 
� �2n+2� / t. Of all of

the sequences considered here, the UDD gives the filter that
most strongly suppresses the noise at low frequencies, as
shown in Fig. 2.

In summary, the application of n pulses within time t ef-
fectively suppresses the noise power below frequency 
n
�2n / t, with the UDD sequence being, by construction, the
most efficient high-pass filter. Thus, at short time t or for
large n, only the high-frequency fluctuations with 
�2n / t
contribute to ��t�.

B. Gaussian 1 Õ f� noise

We now concentrate on the case of Gaussian 1 / f� noise
with spectral density S�
�=A0

1+� /
�, where 0.5���1.5.
The conditions under which the 1 / f noise originating from
multiple TLFs is Gaussian are discussed in Ref. 59. We first

consider the case, in which an ultraviolet cutoff 
c is present
in the noise spectrum, as it was inferred for charge noise
from experiments in Ref. 11. If we apply n pulses in time t
such that 2n / t�
c, all the noise is strongly suppressed, as
shown in Fig. 3. The observation of an initially flat W�t� is a
clear-cut signature of a finite cutoff. Therefore, pulse se-
quences can provide important insight into the noise spec-
trum.

The decay of qubit coherence for various pulse sequences
is shown in Fig. 3, where we compare W�t� for various five-
pulse sequences with SE. The FID signal is not shown since
it depends on measurement-specific infrared cutoff 
ir. How-
ever, in typical experimental situations, WFID decays much
faster than WSE. For a given n, PDD is clearly the least
effective approach at all times. As expected, for short times
t�2n /
c, UDD is orders of magnitude better than the other
pulse sequences �see Fig. 3�b��. Thus, UDD is the ideal se-
quence for maintaining a low level of decoherence, i.e., high
fidelity, which is a necessary condition for quantum error
correction. However, if the goal is simply to increase the
characteristic decoherence time T2, which is defined by
��T2�=1, then for a given n, the CPMG sequence is the best
strategy.

It is interesting to note that the CDD sequence does not
offer strong advantages compared to CPMG and UDD. At
short times, it gives smaller ��t� compared to CPMG, but the
difference is not as dramatic as in the case of UDD. At
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FIG. 2. �Color online� Filter functions F�
t� for SE and various
pulse sequences with n=10 pulses �for CDD, it corresponds to the
fourth level of concatenation�. The lower panel shows F�
t� in the
logarithmic scale.
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FIG. 3. �Color online� The dependence of �a� W�t� and �b�
��t�=−ln W�t� for SE and higher-order �n=5� sequences for 1 / f
noise with A0 /
c=1. UDD and CPMG give W�t��1 for t��2n
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c. The SE signal �equivalent to PDD or CPMG with n=1� is
also shown for comparison.
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longer times, CPMG is better and gives larger T2. It seems
that the benefits of using CDD expected in the regime of
quantum bath dynamics are largely lost when dealing with
classical noise.

A different situation arises when the cutoff cannot be
reached, i.e., we cannot apply pulses fast enough. Then, only
the low-frequency part of S�
� can be suppressed, and the
decay of W�t� is due to high-frequency tail of noise spec-
trum. For all of the sequences under consideration, it can be
shown that to a very good approximation �although slightly
worse for PDD�, the integration of Eq. �18� gives

��t� �
C�

2�

�A0t�1+�

n� . �25�

Here, C� is a sequence-specific constant of the order of 1.
This result can be quickly established for CPMG in the fol-
lowing way. Its filter function F�z=
t� consist of a periodic
train of narrow peaks with periods zp=2�n. We approximate
these peaks by square steps of width �z, which can be de-
rived from the sum rule for F�z� �Eq. �20��. Then, to the
lowest order in small quantity �z /zp=1 /n we get for that for
CPMG, we have

C� =
1

�2�2���−1�
k=1

�
1

�k − 1/2�� , �26�

which for �=1 gives C1=7��3� /�2�0.85 �where ��z� is the
Riemann zeta function�. On the other hand, for UDD, one
can use a seemingly crude approximation of Fn

UDD�z�
=an��z− �2n+2�� with a constant an. This is motivated by
the fact that the UDD filter for z�2n+2 looks similar to a
random signal since it is given by a sum of periodic func-
tions with noncommensurate periods �see Eqs. �16� and
�19��. From Eq. �20�, we get an=��n+1�, and this value
gives a good agreement with results of numerical integration
by using the exact form of the filter. The analytical approxi-
mation then gives C�=�2 / ���+1�2�+1� and n should be re-
placed by n+1 in the denominator in Eq. �25�. From these
formulas and from the numerical calculations confirming
their accuracy, we find that CPMG marginally outperforms
the other sequences �more visibly for larger values of ��, so
it is enough to implement this simple sequence to prolong
qubit coherence in this regime.

C. Noise spectroscopy using the pulse sequences

The time dependence of qubit coherence under external
pulse sequences can be used as a spectroscopic tool for ex-
tracting the noise spectrum contributing to dephasing. The
idea of using qubit energy relaxation for noise spectroscopy
was introduced in Ref. 40, and it has since been experimen-
tally realized.41 Here, we propose a quantitative method for
extracting the moments of the noise contributing to pure
dephasing, which can be different than the noise leading to
the energy relaxation. In particular, for t�1 /
c, we have
�UDD�t�� t2n+2M2n �see Eq. �24��, where Mk=

kS�
�d
 is
the kth moment of the spectral density. From the moments
Mk, one can, in principle, reconstruct the noise spectrum. For
SE and two-pulse UDD �equivalent to two-pulse CPMG� we

get, respectively, ��M2t4 /32� and ��M4t6 /1024�. The
observation of exp�−t4� and exp�−t6� decays of W�t� for
these one- and two-pulse sequences will be a signature of the
presence of finite 
c.

Fulfilling the condition 2n / t�
c might, however, be ex-
perimentally challenging. As we discussed in Sec. III B, in
reality, the pulse time �p has a lower bound, and n can also
be limited by accumulation of errors in a long and compli-
cated sequence. Assuming that �p is the limiting factor if
2 /�p�
c, it is possible for the filter function to “reach the
cutoff,” and then the previous considerations hold.

V. NON-GAUSSIAN RANDOM TELEGRAPH NOISE

The comparison between the experiment5 and theory9

clearly shows that in charge qubits, the decoherence can be
dominated by coupling to a single classical fluctuator, which
is a source of the RTN ���t�=v��t�, with ��t� as the switch-
ing between 	1 /2 with rate 
�. Two regimes of decoherence
can be identified,6,9,29 the strong �weak� coupling regime, in
which g�v /
�1 �g�1�. For g�1, we are in the “motional
narrowing” regime: the fluctuator is switching so fast that its
influence on the qubit is averaging itself out, leading to large
T2. Furthermore, since on the relevant time scale the qubit
receives a large number of “phase kicks” from the fluctuator
�with typical size of v /
�, the effective noise affecting the
pure dephasing dynamics is approximately Gaussian. On the
other hand, for g�1, one expects short decoherence time
with strongly non-Gaussian features in time dependence of
W�t�.7,9,60

We have studied the effect of the pulse sequences on qubit
decoherence by using both numerical simulations of the RTN
and the Gaussian approximation, in which we plug the
Lorentizan first spectral density of the RTN �Eq. �8�� into Eq.
�18�. The results for W�t� in both coupling regimes are
shown in Fig. 4. For g�1, the effect of pulses is marginal,
i.e., one has to apply a large number of pulses to obtain a
visible effect. On the other hand, in the strong coupling re-
gime, the application of even a few pulses substantially in-
creases the coherence time. Similar to the case of the Gauss-
ian 1 / f� noise without a cutoff, the CPMG sequence is the
better practical approach.

For g�1, there are strong deviations from Gaussian be-
havior in the SE signal �see Fig. 4�a��, and the shape of W�t�
containing the characteristic plateaus has been derived by
using various analytical methods.7,9,61 The values of v and 

can be inferred from the position and height of the first
plateau.9 However, one can see in Fig. 4�a� that as we apply
more pulses, the deviation between the simulation of the ex-
act RTN and the Gaussian approximation decreases. There-
fore, with increasing n, the simple analytical results follow-
ing from Eq. �18� become more accurate, i.e., the non-
Gaussian effects are suppressed by pulses.

The explanation of the improvement of Gaussian approxi-
mation with increasing n in the strong coupling regime is the
following: the deviation between the exact result for RTN
and Gaussian approximation arises from higher-order noise
correlators in the cumulant expansion of W�t�,
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ln W�t� = − ��2��t� − ��4��t� + ¯ �27�

with ��n��gn, and ��2� is given by the expression following
from the Gaussian approximation �Eq. �18��. The ratio R�t�
���4��t� /��2��t� can be used as a measure of the importance
of non-Gaussian effects. We have calculated it for various
pulse sequences, finding that ��4� is more strongly suppressed
by pulses than ��2� so that while the coherence time T2 is
extended with increasing n, the time scale on which the non-
Gaussian effects are negligible grows even faster. The details
of the calculations are given in the Appendix. In Fig. 5, we
show that R�t� remains small for a longer time with the ap-
plication of more pulses. The CPMG sequence is better than
UDD at suppressing R�t�, which should not be surprising in
the light of the fact that UDD is optimized to make only ��2�

as small as possible. Evidently, it suppresses ��4� less effi-
ciently than the CPMG sequence.

In the Gaussian approach, by using the analytical approxi-
mations outlined in Sec. IV B, we find that for CPMG in the
large n regime, we have

��t� � �
g2

24

�
t�3

n2 , 
t � n

g2

8
�
t − n� , 
t � n ,� �28�

and for UDD, the numerical coefficient in the first equation
is larger by a factor of about 1.5 and n should be replaced by
n+1 in the denominator. The first formula holds when the
filter function F�
t� suppresses the low-frequency �
�2
�
flat part of the Lorentzian spectral density, and only the

v2 /
2 tail contributes to ��t�. If g�1, most of the decoher-
ence occurs for ��t�� t3 and T2 falls within this regime.

Then, the application of more pulses is effective as it de-
creases the coefficient of t3, resulting in

T2 �
2




n2/3

g2/3 , g � 1. �29�

On the other hand, for g�1, most of decoherence occurs in
the long time �
t�n� ��t�� t regime, in which the largest
contribution to � comes from the flat part of the spectral
density. Then, adding a few pulses only prolongs the initial
short-time ��t�� t3 behavior, with marginal effect on the de-
coherence time �T2�8 /
g2�. However, the initial decoher-
ence �
t�n� is suppressed as before, resulting in improve-
ment of fidelity at short times. The pulses affect the T2 time
only when we apply n�8 /g2 pulses, extending the t3 regime
so that T2 falls within it.

VI. CONCLUSIONS

We have analyzed the influence on various pulse se-
quences on pure dephasing of a qubit affected by classical
noise, with emphasis on types of noise relevant for supercon-
ducting qubits. We have shown that successive higher-order
pulse sequences lead to an improvement of coherence time
for both Gaussian 1 / f� noise and RTN. We have found that
in the presence of a hard ultraviolet cutoff in the Gaussian
noise spectrum, the UDD sequence is optimal for suppress-
ing initial decoherence. However, if one cannot “reach the
cutoff,” the CPMG sequence is the best practical approach.
This is also true in the case of a single fluctuator coupled to
the qubit. There, the application of large n sequences de-
creases the deviation between exact �non-Gaussian� theory
and Gaussian approximation. For both 1 / f noise and RTN,
we predict substantial practical enhancement in SC qubit co-
herence under the CPMG pulse sequence. Furthermore, a
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FIG. 4. �Color online� The decay of qubit coherence W�t� for a
single TLF coupled to the qubit for �a� strong coupling g=10 and
�b� weak coupling g=0.2. The results of the simulation of the RTN
are shown as symbols, and the calculations in Gaussian �G� ap-
proximation are shown as lines. CDD4 �with n=10� gives practi-
cally the same result as UDD, and thus, it is not shown. For g
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detailed experimental investigation of the noise mechanisms
operational in different SC circuits and samples becomes
possible by using the UDD pulse sequence, which allows
one to gather quantitative information about low-frequency
noise contributing to dephasing.
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APPENDIX: CALCULATION OF THE FOURTH
CUMULANT OF THE RANDOM TELEGRAPH NOISE

We define the phase ��t�,

��t� = v	
0

t

��t��f�t;t��dt�, �A1�

so that the decoherence function W�t� is given by

W�t� = �e−i��t�� � exp��
k=1

�
�− i�n

n!
Ck� , �A2�

where we have written it by using the cumulant expansion.62

The cumulants Ck vanish for k�2 if the statistics of ��t� is
Gaussian. They can be written in terms of moments Mk

��t�
= ��k�t��, with the first two nonvanishing ones �we assume
���=0 so that the odd-k moments and cumulants vanish�
given by

C2�t� = M2
��t� , �A3�

C4�t� = M4
��t� − 3�M2

��t��2. �A4�

We also define

− ln W�t� � ��t� = �
k=1

�

��2k��t� . �A5�

In the Gaussian approximation, the only nonzero term in the
above expansion is ��2�= 1

2C2. For the RTN, the higher-order
terms do not vanish, e.g., we have ��4�=− 1

24C4.
In order to calculate ��4��t�, we need to understand the

structure of the higher-order correlation functions of ��t�.
Following Ref. 7, we write ��t� as

��t� = v�0�− 1�n�0,t�, �A6�

where �0=��0�= 	1 /2 is the initial condition, and n�t1 , t2� is
the random variable giving us the number of flips between
times t1 and t2. From definition of the RTN process, we have

��− 1�n�t1,t2�� = e−2
�t1−t2�. �A7�

The two-point correlation function of the noise can be writ-
ten for t1� t2 as

���t1���t2�� = v2�0
2��− 1�n�0,t1��− 1�n�0,t2��

=
v2

4
��− 1�n�0,t2��− 1�n�t2,t1��− 1�n�0,t2��

=
v2

4
��− 1�n�t2,t1�� =

v2

4
e−2
�t1−t2�, �A8�

with the result being the same for t2� t1 �since n�t2 , t1�
=n�t1 , t2�� so that we recover Eq. �7�. In an analogous way,
we can calculate the four-point correlation function, but now,
the ordering of time arguments will matter. Assuming t1
� t2� t3� t4, we get

���t1���t2���t3���t4�� =
v4

16
e−2
�t1−t2�e−2
�t3−t4�. �A9�

Time ordering is crucial here. For any other ordering, we
have to permute the times on the right-hand side. However,
we deal here with multiple integrals of the form

��	
0

t

d�����f����k� = 	
0

t

dt1¯	
0

t

�dtk���t1� ¯ ��tk��f�t1� ¯ f�tk� ,

�A10�

where we have used the simplified notation f�ti�� f�t ; ti�.
The integration region �the k cube� can be divided into k!
simplexes, each with a definite ordering relation between all
times. The integration variables can be relabeled in each in-
tegration region, and we obtain

��	
0

t

d�����f����k� = k ! 	
0

t

dt1	
0

t1

dt2¯	
0

tk−1

�dtk���t1� ¯ ��tk��f�t1� ¯ f�tn� .

�A11�

With this formula, we get for the moments

M2
� =

v2

2
	

0

t

dt1	
0

t1

dt2e−2
�t1−t2�f�t1�f�t2� , �A12�

M4
� =

3v4

2
	

0

t

dt1	
0

t1

dt2	
0

t2

dt3	
0

t3

dt4

�e−2
�t1−t2+t3−t4�f�t1�f�t2�f�t3�f�t4� , �A13�

where the formula for M2
�=2��2� is simply a different way of

obtaining the Gaussian result from Eq. �18� with Lorentzian
spectral density. By using Eq. �A4�, we obtain the fourth
cumulant C4�t�. For small number of pulses n, e.g., for FID,
SE, and n=2 CPMG/UDD �labeled hereafter as CP2�, we get

C4�t�FID = −
3g4

64
�4
t + e−4
t + e−2
t�4 + 8
t� − 5� ,

�A14�
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C4
SE�t� = −

3g4

64
�4
t + e−4
t − 8e−3
t + e−2
t�12 − 8
t�

+ 8e−
t�1 + 2
t� − 13� , �A15�

C4
CP2�t� = −

3g4

64
�4
t�1 + 2e−2
t − 6e−3
t/2 + 4e−
t + 2e−
t/2�

+ e−4
t − 8e−7
t/2 + 24e−3
t − 24e−5
t/2 − 12e−2
t

+ 24e−3
t/2 + 8e−
t + 8e−
t/2 − 21� . �A16�

The analytical expressions for larger n become cumbersome,
and we resort to numerical evaluation of C4. The results for
the ratio of the cumulants,

R�t� �
��4��t�
��2��t�

= −
1

12

C4�t�
C2�t�

, �A17�

up to n=5 are presented in Fig. 5.
The fact that with increasing n, the higher-order cumu-

lants are suppressed more strongly than the Gaussian C2�t�
can be understood in the following way. �2k is proportional
to 2k-fold time integral of a noise correlation function mul-
tiplied by 2k functions f�ti�, each of them alternating be-
tween 	1. Under the multiple integral and for large n, the
sign of the product of f�ti� switches multiple times, and with
increasing order 2k, the whole expression is effectively av-
eraged out by the filter functions.
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