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Results from computer simulation and numerical studies for the ferromagnetic Heisenberg model on a
square lattice are presented. The model includes the exchange and dipolar interactions as well as the magnetic
anisotropy. The analysis focuses on the nature of the stripe phase which determines the phase behavior of this
system close to the reorientation transition for a particular value of the exchange constant corresponding to
J=8.9 in reduced units. The results show that as the perpendicular anisotropy parameter � is increased from
zero, the system undergoes a reorientation transition from the planar ferromagnetic phase to the stripe phase.
Both the simulations and ground state calculations show that the stripe phase consists of two distinct regions.
For large values of �, the spins are aligned, on average, perpendicular to the plane with properties qualitatively
similar to those observed for the dipolar Ising model. Close to the reorientation transition, there exists a narrow
range of � in which the perpendicular components of the spins align to form stripes, but with the spins canted
toward the plane giving rise to a net transverse magnetization. We present a phase diagram based on the results
from the numerical calculations and simulation studies and discuss connections with earlier theoretical and
simulation studies, as well as experiments on ultrathin magnetic films. In particular, we draw attention to
similarities between the results presented in this study and the so-called temperature gap �or pseudogap� region
observed experimentally at the reorientation transition in ultrathin magnetic films. We also discuss the extent to
which the results of these studies support the conclusion that the three types of magnetic order observed in
these studies represent distinct thermodynamic phases.
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I. INTRODUCTION

Ultrathin magnetic films �UTMFs� consist of several,
typically �10, layers of magnetic atoms deposited on a non-
magnetic substrate. Advances in the fabrication and charac-
terization of epitaxially grown thin films have allowed re-
searchers to fabricate films consisting of multiple layers,
each with a distinct and well defined atomic structure. By
carefully selecting the substrate, the atomic composition, and
number of layers, it is possible to produce materials that
exhibit a fascinating and diverse range of magnetic proper-
ties. Such materials are of obvious fundamental scientific
interest and are of considerable technological significance.1

The ability to finely tune the magnetic properties of these
materials by varying the number and composition of the lay-
ers makes it possible to create magnetic materials in which
the magnetic moments are aligned perpendicular or parallel
to the surface.2–12 This can give rise to an experimentally
observed reorientation transition, where the orientation of the
magnetic moments changes depending on the number of lay-
ers or the temperature2,5,7,11,12 and which has been studied
both analytically13 and by numerical simulation.14,15

A number of systems with a net magnetization perpen-
dicular to the plane have been shown experimentally to
manifest a stripe domain phase consisting of elongated mi-
crodomains of alternating magnetization direction.3,5,7–11,16

The characteristic width of these microdomains can vary sig-
nificantly as a function of film thickness, applied field, and
temperature and can extend over a wide range of length
scales. The formation of these stripe phases is reasonably
well understood theoretically as arising from the competition

between the short range exchange interaction and the long-
range anisotropic dipolar interaction,17–20 and there are in-
stances of good quantitative agreement between experiment
and certain theoretical models.16

Magnetic imaging experiments also show that in some
cases, the stripes are orientated along a common
direction,9,11,16 while in other cases, the stripes are observed
to exhibit a more complex structure with no orientational
ordering.3,7,9 The transition from an orientationally ordered
stripe phase to one in which the stripes are orientationally
disordered has been observed in experiments9 and
simulations21 and studied theoretically.22,23 However, while
there exist qualitative similarities between the results of
simulation, theory, and experiment, the precise nature of this
transition is still poorly understood.

There are other aspects of these materials for which a
complete understanding remains elusive. For example, close
to the reorientation transition, experiments show that a gap
exists between the temperature at which the perpendicular
component of the magnetization disappears and the trans-
verse component is observed.6,7,12 It has been conjectured
that this gap region is not associated with the loss of long-
range magnetic order but instead manifests a complex mag-
netic structure that cannot be resolved experimentally.12 This
conjecture is supported by imaging experiments,7 which
show a rapid decrease in the stripe width in the neighbor-
hood of the reorientation transition. Unfortunately, previous
theoretical and simulation studies offer few insights regard-
ing the precise nature of the phase behavior in this tempera-
ture region.

There are also a number of experimental studies on the
magnetic susceptibility of UTMFs which indicate a very
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strong relationship between the magnetic response of these
materials and the properties of the stripe phase; however, we
do not have a complete theoretical description.5,10,24–26

From a theoretical perspective, this gap in our understand-
ing arises because it is difficult to connect the results ob-
tained from the various approaches which have been used to
explain different aspects of the observed properties of these
systems. For example, while the formation of the stripes in
the perpendicular magnetization and their behavior at finite
temperature and in an applied field can be described in terms
of the dipolar Ising model, such a model ignores the effect of
the transverse magnetization and the structure of the walls
separating the stripes. Both of these aspects are important if
we are to account for the reorientation transition observed in
these systems, the effects of film thickness and magnetic
surface anisotropy on the properties of the spatial morphol-
ogy of the magnetic structure, and the pinning mechanisms
that determine the magnetic response of these materials. On
the other hand, while the more general dipolar Heisenberg
model provides a more complete description of the effects of
surface anisotropy and the structure of the stripe walls and
reduces to the Ising model in the appropriate limits, it is a
much more difficult model to extend to finite temperature.
While there have been a number of simulation studies pub-
lished based on the dipolar Heisenberg model, they extend
over a rather limited range of parameters27 or used an inap-
propriate sampling method.28–30

In the present work, we present a series of simulation
studies of the dipolar Heisenberg model together with some
analytical calculations. The results of the study connect with
a number of other numerical and theoretical studies, provide
a number of results, correct previous work, and provide the
beginnings of an approach that has the potential to provide a
more complete and consistent approach to these materials
and that, unlike the dipolar Ising model, can reproduce the
results of important limiting cases.

Model

We consider a system of classical spins each with a mag-
netic moment �eff. The spins are located on the vertices of a
square lattice with lattice constant a and interact through a
nearest neighbor exchange and a dipolar interaction as well
as a single site anisotropy. The Hamiltonian of a given spin
configuration ��� i� may be written in terms of dimensionless
parameters as

H = − J�
�ij�

�� i · �� j + �
i�j

��� i · �� j

	r�ij	3
− 3

��� i · r�i���� j · r� j�
	r�ij	5



− ��

i

��i
z�2, �1�

where �� i denotes a unit vector that describes the orientation
of the ith spin and r�i denotes the location of the ith spin on a
square lattice with lattice parameter equal to 1 and where �ij�
represents a sum over all pairs of nearest neighbor spins and
i� j represents a sum over all pairs of spins. The constants J
and � represent the strength of the exchange constant and the
on-site magnetic anisotropy, respectively, in dimensionless

units. We assume that the z axis is perpendicular to the sur-
face and that the x and y axes are aligned along the lattice
axes.

At �=�, the system reduces to the dipolar Ising model,
although exactly how the system approaches this limit is an
open question. In the case of the dipolar Ising model, it is
well known that the dipolar interaction destabilizes the fer-
romagnetic ground state giving rise to a perpendicular stripe
phase with several rows of spins aligned ferromagnetically,
but with a direction that alternates with some period 2h. The
period 2h�eJ/4 in the limit J→�, with a ground state en-
ergy �per spin� given by31

E = − 2J + �9.034 −
8

h

 − � . �2�

While the expressions for h and E are, strictly speaking,
correct in the limit h→�, it should be noted that these ex-
pressions are surprisingly accurate even for moderate values
of h�4.20,32–34

For small values of � and J�0.28,35 the ground state is
ferromagnetic with the spins aligned in the plane and ori-
ented along either the x or the y axis. The energy of the
planar ground state is given by

E = − 2J − 4.517. �3�

A comparison of the ground state energies for the perpen-
dicular stripe phase and the planar ferromagnetic phase indi-
cates a transition at �=12.55 from the perpendicular stripe
phase to the transverse ferromagnetic phase.20,34,36

In Sec. II, we begin by presenting results from simula-
tions at T=0.05, for �=20 and 0. We compare results of the
simulations for �=20 with previously published results for
the Ising model. Simulations for �=13.0 at T=0.5, just
above the reorientation transition, are presented for different
initial spin configurations. While there are issues regarding
the equilibration times related to the different initial condi-
tions, the simulations nevertheless provide compelling evi-
dence that the system evolves toward an equilibrium in
which the perpendicular components of the spins align to
form stripes, but with the spins canted toward the plane giv-
ing rise to a net transverse magnetization.

In Sec. III, we describe how the ground state spin con-
figuration may be calculated based on certain assumptions
regarding the periodic nature of the ground state. Ground
state spin configurations are presented for J=8.9 for several
values of � and the resultant ground state energy and trans-
verse magnetization plotted as a function of �. These results
show that for J=8.9, the model yields three distinct ground
state spin configurations which we refer to as the planar fer-
romagnetic, canted stripe, and perpendicular stripe spin con-
figurations. The results obtained from the ground state calcu-
lation are consistent with the results from the simulations
presented in Sec. II. Results are presented that show the equi-
librium stripe width of the canted stripe phase depends on �,
becoming smaller as � is decreased, qualitatively consistent
with previous theoretical work.18
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In Sec. IV, we present the results of a series of simulation
studies for a range of temperatures and �. The results of
these simulations are combined with the results of the previ-
ous section to construct a preliminary phase diagram for the
model. We finish by discussing the conclusions that may be
drawn from the results presented in the preceding sections.

II. SIMULATION STUDIES

In this section, we present the results of a series of simu-
lation studies for J=8.9 at three representative values of �:
�=20, 13, and 0. The intention is that these three values of �
will be sufficient to identify the various regions in the phase
diagram. We first summarize the properties of the three re-
gions briefly before we provide a more detailed analysis.

For �=20, the anisotropy is sufficiently large that the sys-
tem exhibits many of the features of the dipolar Ising model.
It has a ground state in which the spins are aligned perpen-
dicular to the plane but which exhibits a periodic structure
consisting of stripes of width h=8 oriented along either the x
or the y axis with the magnetization in adjacent stripes
aligned antiparallel. As the temperature is increased, the ori-
entational order of the stripes decreases until, as in the case
of the dipolar Ising model, the system undergoes a transition
to the tetragonal phase.21

For �=0, the ground state is ferromagnetic with the spins
aligned in the plane of the film and oriented along either the
x or the y axis. As the temperature is increased, the magne-
tization decreases until we reach the Curie temperature Tc, at
which point the magnetization is zero and the system makes
the transition to the paramagnetic phase.

For �=13.0, at low temperature �T=0.5�, the results from
the simulations show that the system also orders to form
stripes in the perpendicular component of the magnetization;
however, the nature of the order is such that the magnetiza-
tion is not completely aligned perpendicular to the plane but
is canted toward it in the direction of the stripes. In addition,
unlike the results for the dipolar Ising system, the walls sepa-
rating the stripes acquire a finite width in which the spins
align to form a transverse ferromagnetic region. Hence,
while the nonequilibrium relaxation is very slow, the results
nevertheless indicate that, in equilibrium, the magnetic order
manifests both orientationally ordered stripes perpendicular
to the plane together and a net transverse magnetization.

The Monte Carlo results presented in this paper are de-
rived from simulations of a system of N=128	128 spins on
a square lattice, where the long-range nature of the dipole-
dipole interaction is treated by assuming one has an infinite
system composed of replicas of the base 128	128 system.
Ewald summation techniques are then used to map the full
dipole-dipole interaction to the finite system. For the ex-
change interaction, this is equivalent to periodic boundary
conditions. Further details on this aspect of treating the di-
polar interaction are available in the work MacIsaac et al.32

The actual simulation code is written using message passing
interface directives such that the code can be efficiently run
on parallel machines. The efficiency depends on system size
�the larger the system, the higher the efficiency�, and suffi-
ciently high efficiency rates have been achieved by using

domain decomposition of the effective fields, while each pro-
cess maintains a full, up to date spin state and each process
generates its own equivalent stream of random numbers. On
small SMP machines �up to four way�, superscalar speedups
are possible, even with a system size of N=128	128.37 A
typical simulation involves on the order of 105–106 Monte
Carlo steps �MCSs� to allow the system to reach equilibrium
followed by an additional 105–107 MCSs with data taken
from every 10th or 20th MCS, depending upon the tempera-
ture of the simulation. A Monte Carlo step is defined as N
attempted spin updates. In all the work presented, the Me-
tropolis algorithm was used to update the spins. It is impor-
tant to note that the nonequilibrium relaxation times in these
systems can be very long and great care must be taken to
ensure that the system has reached equilibrium before taking
data.38,39

A. Perpendicular stripes (�=20.0)

We first consider in more detail the case of large single
site anisotropy, �=20, which is expected to have properties
similar to that found by Booth et al. for the two-dimensional
dipolar Ising model. Extensive simulations were carried out,
each starting with an initial spin configuration consisting of
perpendicular stripes of width h=8. Snapshots of spins con-
figurations at several temperatures are show in Fig. 1. The
configurations are indeed qualitatively similar to those ob-
tained for the dipolar Ising model.21 In particular, at low
temperature, T=2.0 and 3.0, the spins form ferromagnetic
stripes of width h�8 which are oriented along the x axis. As
the temperature is increased to T=3.5, the stripes are still
clearly aligned along a common axis but exhibit a number of
isolated defects. Around T=4.0, the stripes disorder, losing
their orientational order analogous to the smectic
→ tetragonal phase transition observed in the dipolar Ising
model. As the temperature is increased further, we see the
stripes begin to thin and break up.

In order to make a more systematic comparison with the
results of Booth et al., we generalize the definition of the
orientational order parameter Ohv defined in Ref. 21 as

Ohv =
nh − nv

nh + nv
, �4�

where nh and nv denote the number of antiferromagnetic
bonds in the horizontal and the vertical direction, respec-
tively. In order to accommodate the continuous nature of the
Heisenberg spins, we redefine nh and nv as

nh = �
r�

L2

�1 − �� �r�� · �� �r� + x̂� , �5�

nv = �
r�

L2

�1 − �� �r�� · �� �r� + ŷ� , �6�

where the sums are over all lattice points. These generaliza-
tions of nh and nv reduce to the expressions defined in the
work of Booth et al. in the case of the dipolar Ising model
and provide an appropriate measure of the orientational order
in the Heisenberg model.
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In Figs. 2�a� and 2�b�, we show the variation of Ohv as a
function of temperature for the dipolar Heisenberg model
and the dipolar Ising model, respectively. We note that the
results are qualitatively similar, although in the case of the
dipolar Heisenberg model, the thermal excitation of the spin
wave modes gives rise to a linear dependence of the orien-
tational order parameter at low temperature. In Fig. 2�a�, we
observe that the orientation order parameter indicates a phase
transition for �=20 at T�3.8
0.1, which is lower than cor-
responding transition temperature in the case of the dipolar
Ising model which occurs at T�5.1
0.1. Evidence for the
transition from the smectic to the tetragonal phase is also
seen in the peak of the heat capacity presented in Fig. 3. The
corresponding data for the dipolar Ising model are also pre-
sented.

B. Transverse ferromagnetism (�=0.0)

We now consider the case �=0. In our simulations, we
have used the transverse ferromagnetic ground state with the
spins aligned along the x axis as the initial spin configura-
tion. The magnetization is plotted as a function of tempera-
ture in Fig. 4�a�. We define the magnetization and the trans-
verse magnetization, M and Mt, respectively, as the ensemble
averages,

M = ��Mx�2 + �My�2 + �Mz�2�1/2, �7�

Mt = ��Mx�2 + �My�2�1/2. �8�

Mx, My, and Mz are sums over the entire lattice of the re-
spective spin components for a given spin configuration, nor-
malized by the number of spins. The results show a linear
decrease in the magnetization with temperature due to the
spin wave fluctuations at low temperature �T�6.5
0.5�,
with the magnetization dropping effectively to zero at Tc
�9.0
0.2. The transition to the paramagnetic phase at Tc is
also reflected in Fig. 4�b�, where we plot the specific heat as
a function of temperature. The data show a well defined peak
around Tc consistent with a transition from the ferromagnetic
to the paramagnetic phase.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. �Color online� Configurations showing the x, y, and z
components of the spins from a simulation with �=20. �a� T=2.0,
�b� T=3.0, �c� T=3.5, �d� T=4.0, �e� T=5.0, and �f� T=6.0 together
with the color map used to show the components of the spins.
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FIG. 2. Plot of the orientational order parameter Ohv for �a� the
dipolar Heisenberg model with �=20.0 and �b� the dipolar Ising
model.

WHITEHEAD, MACISAAC, AND DE’BELL PHYSICAL REVIEW B 77, 174415 �2008�

174415-4



C. Canted stripes (�=13.0)

For �=13.0, we present results from three separate
quenches, each with a different initial spin configuration, for
T=0.5. Our simulations reveal that the nature of the equilib-
rium magnetic order is somewhat more complicated to deter-
mine than one might initially suppose.

In the first set of simulations, we used as our initial spin
configuration perpendicular stripes with h=8. Snapshots of
several spin configurations at increasing times are presented
in Fig. 5.

The results from the simulation manifest a number of in-
teresting features. In Fig. 5�c�, we note that while the peri-
odic structure of the initial spin configuration persists, the
nature of the stripes becomes more complex with the walls
separating the stripes acquiring a finite width and the spins
inside the domain walls tilting toward the plane. Comparing
Figs. 5�c� and 5�d�, we see that as the system evolves further,
the spins in the stripe walls align along a common direction,
until at t=1	106 MCSs when the system consists of two
distinct domains, one with the spins in the stripe walls tilted
along the positive x direction and the other with the spins in
the stripe walls tilted along the negative x direction. In order
to illustrate the nature of the spin configuration more clearly,
Fig. 6 shows a plot of the magnetization vector, averaged

along the x axis �parallel to the stripes�, plotted as a function
of the y coordinate �normal to the stripes�, for the spin con-
figuration shown in Fig. 5�d�. Figure 6�a� plots the three
components of the average, while Fig. 6�b� plots the angle
the average makes with respect to the y coordinate.

Figure 6 clearly shows that the system has evolved such
that the spins inside each stripe wall are tilted along the x
axis and the stripe walls manifest a net transverse magneti-
zation, with one domain in which the magnetization is in the
positive x direction and another in the negative x direction.
We expect that the system will eventually evolve into a
single domain, with one domain growing at the expense of
the other; however, the equilibration times for such a process
are obviously extremely long. It is also interesting to note the
similarity between the domain structure shown in Fig. 5�d�
and the experimental results shown in Fig. 1 of Ref. 11 for
2.6 �monolayer� ML Fe/11 ML Ni bilayer on Cu�100�.

In the second set of simulations, we use the transverse
ferromagnetic ground state with the spins aligned along the
positive x axis as the initial spin configuration. Snapshots of
several spin configurations at increasing times are presented
in Fig. 7.

The results of the simulations show that as the system
evolves toward equilibrium, the spins rotate and align out of
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FIG. 3. Plot of the heat capacity Cv for �a� the Heisenberg model
with �=20.0 and �b� the dipolar Ising model. Lines connect succes-
sive points as a guide to the eye.
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FIG. 4. Plot of �a� the magnetization and �b� the specific heat for
the dipolar Heisenberg model with �=0.0. Lines connect successive
points as a guide to the eye.
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plane forming ferromagnetic stripes of width h�8. While
the stripes evolve slowly, by t=106 MCSs, the stripes are
clearly ordered along the x axis parallel to the initial magne-
tization. As in the previous set of runs, the stripes have a
complicated structure and are separated by stripe walls of
finite width in which the spins align to form, in this case, a
single domain, with a net transverse magnetization.

The final set of simulation results consists of a quench
from a random spin configuration and is presented in Fig. 8.
While the evolution of this system does not appear to equili-
brate even after 106 MCSs, nevertheless, we clearly see that
as the system evolves the spins align out of plane, forming
ferromagnetic stripes of width h=8. However, because the
initial state does not define a direction for nucleating stripes,
the system does not exhibit the orientational order of the
previous simulations. Nevertheless, it can be clearly seen
that the walls separating the stripes have a finite width, and
the spins within the stripe walls are tilted toward the plane in
the direction of the stripe walls as in the previous examples.

The differences and similarities between the three differ-
ent quenches described above are illustrated in the three
graphs shown in Fig. 9 which plot the energy, orientational
order parameter Ohv, and the transverse magnetization as
functions of time in MCS for each of the three initial spin
configurations. Note that the time axis is shown on a loga-
rithmic scale, where we have chosen to plot ten data points
per decade. Figure 9�a� shows the energy for each of the
three initial configurations evolving toward a common value.
The fact that the energies for each of the three quenches
quickly evolve toward a common value despite the fact that

the system has clearly not equilibrated may be attributed to
the fact that the energy associated with the relative orienta-
tion of the stripes represents an extremely small fraction of
the total energy and is, in fact, smaller than the energy fluc-
tuations even at this very low temperature.

Figure 9�b� shows the orientational order parameter for
the perpendicular stripe and planar ferromagnetic initial spin
configurations evolve toward a common value, consistent
with the final spin configurations shown in Figs. 5 and 7. The
fact that the orientational order parameter for the random
initial spin configuration is significantly lower than that of
the other two initial spin configurations reflects the observa-
tion from Fig. 8 that while the spins have aligned to form the
stripe domains, the domains themselves have not ordered
along a common axis. This is consistent with previous
work21,38–40 on the dipolar Ising system, in which it is shown
that, while the spins align to form stripes relatively quickly
from a saturated initial state, the ordering of the stripes along
a common axis occurs over a much longer time frame.

The difference between the evolution of the magnetization
in Fig. 9�c� for the perpendicular stripe and planar initial spin
configurations reflects the fact that final spin configuration
shown in Fig. 7 for the planar initial spin configuration con-
sists of a single domain in which the transverse components

(a)

(b)

(c)

(d)

FIG. 5. �Color online� Configurations showing the x, y, and z
components of the spins for a quenched system from ordered per-
pendicular stripes to T=0.50 at �a� t=100 MCSs, �b� t=1000 MCSs,
�c� t=10 000 MCSs, and �d� t=1	106 MCSs.
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FIG. 6. �Color online� Plots of the magnetization vector aver-
aged along the x axis �parallel to the stripes� as a function of y. �a�
shows each of the three components �x, squares; y, circles; z, dia-
monds� and �b� shows the angle ��y�=arctan���z� / ��x��.
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of the spins in stripe walls are aligned in the same direction,
while in the case of the initial perpendicular stripe configu-
ration, the final spin configuration consists of two roughly
equal regions, one with the transverse magnetization aligned
in the positive x direction and the other with the transverse
magnetization aligned in the negative x direction. This un-
doubtedly reflects the fact that while the planar initial spin
configuration defines a direction for the transverse magneti-
zation, the perpendicular stripe configuration does not. While
the simulations indicate that one of the regions will grow at
the expense of the other until it encompasses all the spins,
this process will take place very slowly.

The data presented in the graphs shown in Fig. 9 show
that the system we are considering is very slow to equilibrate
and that even after 107 MCSs the state is strongly dependent
on the initial conditions. However, despite the equilibration
issues, it would appear that for �=13.0, the system evolves
to an equilibrium with complex magnetic order in which the
spins align to form stripes of width h=8, but with the spins
canted toward the plane. The data therefore seems to imply
that at T=0.5 the equilibrium phase for �=13.0 is indeed a
stripe phase, in which the perpendicular component of the
magnetization oscillates with a wavelength �=2h, but with
the spins canted toward the plane in the direction of the
stripes. The canted nature of the equilibrium spin configura-
tions gives rise to a net transverse magnetization with a sig-
nificant contribution to the net magnetization from the spins
contained within the narrow region separating adjacent

stripes. We refer to this form of magnetic order as a canted
stripe configuration and distinguish it from the equilibrium
magnetic order observed for �=20.0, which we refer to as a
perpendicular stripe configuration. In the next section, we
present an analysis of the ground state spin configuration that
supports these conclusions.

III. GROUND STATE PROPERTIES

The simulation results described in the previous section
that, at low temperature close to the reorientation transition,
the equilibrium magnetic order consists of a canted stripe
configuration in which the spins are aligned at an angle � to
the z axis in a plane normal to one of the lattice axes and
parallel to the direction of the stripes. Without loss of gener-
ality, we choose the normal to this plane to be the y axis. The
angle � is therefore a periodic function of y only with period
2h.

Writing

r� = mx̂ + nŷ , �9�

�� = cos �ẑ + sin �x̂ , �10�

with

��m,n� = ��n� = ��n + 2h� , �11�

the dipolar contribution to the energy given by Eq. �1� may
be written as

(a)

(b)

(c)

(d)

FIG. 7. �Color online� Configurations showing the x, y, and z
components of the spins for a quenched system from an in-plane
ferromagnetic state to T=0.50 at �a� t=100 MCSs, �b� t=1000
MCSs, �c� t=10 000 MCSs, and �d� t=1	106 MCSs. The color
map showing how the components of the spins are mapped as in
Fig. 1.

(a)

(b)

(c)

(d)

FIG. 8. �Color online� Configurations showing the x, y, and z
components of the spins for a quenched system from random to T
=0.50 at �a� t=100 MCSs, �b� t=1000 MCSs, �c� t=10 000 MCSs,
and �d� t=1	106 MCSs. The color map showing how the compo-
nents of the spins are mapped is as in Fig. 1.
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Edip =
N0

2h
+

N

2h
�
l1=1

l2=1

l1�l2

2h

�cos���l1� − ��l2�1�	l1 − l2	�

−
3N

2h
�
l1=1

l2=1

2h

sin ��l1�sin ��l2�2�	l1 − l2	�� , �12�

where 0, 1�l�, and 2�l� are defined as

0 = �
mn

�
1

�m2 + 4h2n2�3/2 , �13a�

1�l� = �
mn

1

�m2 + �2hn + l�23/2 , �13b�

2�l� = �
mn

m2

�m2 + �2hn + l�25/2 . �13c�

These slowly converging sums may be expressed in terms of
rapidly convergent sums by means of the Ewald summation
technique, thus allowing them to be efficiently calculated
numerically. A detailed derivation is presented in the Appen-
dix. The calculation of the interactions 0, 1�l�, and 2�l�
means that the energy of any spin configuration described in
terms of the 2h variables ��l� that describe the orientation of
the spins relative to the z axis in the magnetic unit cell can be
easily evaluated.

More usefully, we can determine the spin configuration
that minimizes the energy of the canted stripe phase as a
function of the parameters J, �, and h. Figure 10 shows the
ground state �i.e., minimum energy� spin configurations for
several values of �, with the initial spin configuration given
by the formula

��n� = −
�

20
sin��n

h

 . �14�

The results for �=12.0, shown in Fig. 10, indicate that
while the spins are aligned in the transverse direction, the
single site anisotropy induces a small perpendicular compo-
nent that varies along the y axis of the unit cell. This is also
seen in Fig. 11 which plots the angle the spins in the unit cell
make with the z axis. The data show that the spins form a
ripplelike structure with an approximately sinusoidal varia-
tion in the angle. Both Figs. 10 and 11 show that the ampli-
tude of the ripples increases with increasing � until �
=13.75 above which the spins are aligned perpendicular to
the plane.

This sinusoidal variation of the spins is also reflected in
the transverse magnetization plotted as a function of � in Fig.
12. For ��11.8, we see that the transverse magnetization is
constant and saturated, corresponding to the planar ferro-
magnetic ground state spin configuration, with the spins
aligned along the x axis. For ��11.8, the transverse magne-
tization begins to decrease corresponding to the formation of
the canted stripe ground state spin configuration. The mag-
netization continues to decrease with increasing �, as the

amplitude of the ripples increases, until at �=13.6 the spins
are aligned perpendicular to the plane in the perpendicular
stripe ground state spin configuration.

The results obtained from the calculation of the ground
state spin configurations show that, at zero temperature, the
reorientation from the planar ferromagnetic ground state ��
�11.8� to the perpendicular stripe ground state ���13.6� is
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FIG. 9. Plot of the �a� energy, �b� orientational order parameter
Ohv, and �c� the transverse magnetization for each of the three ini-
tial spin configurations. Lines connect successive points as a guide
to the eye.
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mediated by the canted stripe ground state. This is also re-
flected in the ground state energy plotted as a function of �
in Fig. 13, which also includes the energies of the planar
ferromagnetic and perpendicular stripe spin configurations,
as given by Eqs. �2� and �3�, respectively, for comparison.
The data show that there exists a range of � for which the

ground state energy is lower than the energies of both the
ferromagnetic and perpendicular spin configurations. In this
region, the ground state corresponds to a canted stripe spin
configuration.

Thus far, the results presented in this section assume a
periodicity 2h=16. This is based on the results obtained ear-
lier for the dipolar Ising model which gives h=h*eJ/4 with

(a)κ = 12.00

(b)κ = 12.25

(c)κ = 12.50

(d)κ = 12.75

(e)κ = 13.00

(f)κ = 13.25

(g)κ = 13.50

FIG. 10. �Color online� Several equilibrium �minimum energy� spin configurations for J=8.9 and h=8 for several values of �.
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FIG. 11. �Color online� The angle � of the ground state spin
configurations calculated for J=8.9 and h=8 plotted for several
values of �.
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FIG. 12. Transverse magnetization of the canted stripe phase for
h=8 plotted as a function of �.
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h*=0.871,31 which yields a value of h=8 for J=8.9. How-
ever, while this result is also correct for the perpendicular
stripe spin configuration, it is by no means obvious that it
extends to the canted stripe spin configuration, since for a
given J and �, the structure and the energy of the ground
state spin configuration will depend on the periodicity in
some nontrivial fashion. In Fig. 14 the ground state energy is
plotted as a function h for three different values of �. The
graphs show that the ground state energy E0�h� depends on �
in a nontrivial way. In particular, we see that as � is reduced
from �=13.5 to 12.5, the location of the minimum also
shifts, indicating that the equilibrium width of the stripes
decreases with decreasing �. Obviously, for the size of sys-
tems considered in the present work, the range of h and � we
can consider is somewhat limited and it would be interesting
to extend these studies to larger values of J and correspond-
ingly larger stripe widths.

It is interesting to compare the results of this analysis with
the earlier work of Yafet and Gyorgy18 in which they consid-
ered the spin configuration for finite anisotropy Heisenberg
model. The analysis of Yafet and Gyorgy is based on the
ansatz that the spin configuration describing the stripes can
be separated into two regions, the stripe wall region where
the spins are assumed to vary sinusoidally with wavelength
�=2w and an interior region of width h−w in which the
spins are assumed to be aligned in a constant direction, par-
allel to the z axis. Their approach considers the case that h
�1. While the present analysis is qualitatively consistent
with the result of Yafet and Gyorgy in that h decreases with
decreasing �, the fact that in our analysis we select J=8.9
and hence h�8 excludes any meaningful quantitative com-
parison. In the context of the results presented above, the fact
that the ansatz employed by Yafet and Gyorgy cannot probe
the low amplitude oscillation in �z observed in the spin con-
figurations for ��12.0–12.5 shown in Figs. 10�a�–10�c�
also makes a detailed comparison difficult. Although, it
should be noted the ansatz used by Yafet and Gyorgy has
been generalized to consider the case of an applied trans-
verse field in which the spins in the interior region are as-

sumed to be canted by some small, uniform angle �, in the
direction of the field.12 More significant perhaps is the fact
that there is no apparent coupling aligning the magnetization
in neighboring domains walls, implicit in the present
analysis, in the analysis of Yafet and Gyorgy and its
generalizations.12 This arises as a consequence of the as-
sumption that the magnetization in the interior region of the
stripe is assumed to be uniform. This implies that the spins
inside the stripe walls cannot spontaneously align to give rise
to the net transverse magnetization observed in the present
analysis. It will be interesting therefore to extend the present
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FIG. 13. Ground state energy of the canted stripe phase for h
=8 plotted as a function of �. Also shown for comparison are the
energies of the transverse ferromagnetic phase and the perpendicu-
lar stripe phase.
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work to larger values of J and hence larger strip widths and
to compare the results with the predictions of Yafet and Gy-
orgy, in a regime where we would expect there to be good
quantitative agreement.

IV. PHASE DIAGRAM

From the simulation data presented in Sec. II for �=0, we
observe that the low temperature phase of the system is pla-
nar ferromagnetic with a transition to the paramagnetic phase
at Tc�9.0. For �=20.0, the simulation data show that at low
temperature, the equilibrium phase is the smectic stripe
phase with a transition to tetragonal phase at T0=3.8, similar
to the results obtained from the dipolar Ising model. The
transverse magnetization for �=0.0 is effectively zero over
the entire temperature range studied.

The calculation of the ground state spin configurations
shows that for T=0, there exist three distinct ground state
spin configurations: the planar ferromagnetic �0.0��
�11.8�, the canted stripe spin configuration �11.8��
�13.6�, and the perpendicular stripe spin configuration ��
�13.6�. These results are consistent with the simulations
described in Sec. II for �=13.0 and T=0.5 which show the
system evolving toward a stripe phase, with a finite orienta-

tional order parameter Ohv, but with the spins canted toward
the plane, giving rise to a finite transverse magnetization.
These results are generally consistent with the earlier simu-
lation studies of the dipolar Heisenberg model.27

In this section, we present results from an extensive series
of Monte Carlo simulations that extend these results over a
range of values of � and T. The methodology for the simu-
lations is similar to that described in Sec. II. However, in
order to avoid the equilibration problems identified by our
quench studies, we use as a common initial spin configura-
tion for all the simulations a spin configuration in which all
the spins are aligned in the xz plane with an angle � given by

��x,y� = −
�

2
cos��y

h

 . �15�

We allow the system to equilibrate for 105–106 MCSs before
we collect data every 10–20 MCSs over the next 105–107

MCSs. The initial spin configuration specified in Eq. �15�
appears to allow the system to equilibrate within the first 105

MCSs.
In Figs. 15�a�–15�d�, we plot the transverse magnetization

and the orientational order parameter as a function of tem-
perature for �=12.0, 13.0, 14.0, and 15.0. For �=12.0 and
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FIG. 15. Plots of the orientational order parameter Ohv and the transverse magnetization as a function of the temperature for �a� �
=12.0, �b� 13.0, �c� 14.0, and �c� 15.0. Note in all cases there exists a range of temperatures for which both order parameters are finite,
consistent with the canted nature of the equilibrium spin configuration. Lines connect successive points as a guide to the eye.
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T=0.2, we see that the transverse magnetization Mt�0.95,
indicating that the spins are strongly polarized along the x
axis. However, we note that the orientational order parameter
Ohv=0.18 is small, but finite, indicating that the system is in
the stripe phase but with spins canted toward the plane. This
is consistent with the ground state spin configuration shown
in Fig. 10�a�, which shows a ground state spin configuration
with small amplitude ripples along the y axis for �=12.0 at
T=0. As the temperature is increased, however, we see in
Fig. 10�a� that Ohv drops effectively to zero, while the trans-
verse magnetization remains finite over a much larger tem-
perature range, going to zero at T�8.0. These data, along
with the ground state calculations presented in Sec. III, indi-
cate that the system undergoes a transition from a striped
phase in which the spins are canted toward the plane �	Ohv	
�0, 	Mt	�0� to the planar ferromagnetic phase �	Ohv	
=0, 	Mt	�0� as the temperature is increased from T=0.2 to
0.6 and a second transition from the planar ferromagnetic
phase to the paramagnetic phase as the temperature is further
increased to T�8.0.

For �=13.0, simulation data, plotted in Fig. 15�b�, show
that for T=0.2, the transverse magnetization Mt�0.49 and
the orientational order parameter Ohv�0.83, indicating that
the system is again in the stripe phase with the spins canted
toward the plane along the x axis. As the temperature is
increased, the orientational order is observed to decrease and
the transverse magnetization increase until T�1.6, at which
point the orientational order parameter goes to zero, indicat-
ing that the system is now in the transverse ferromagnetic
phase. As the temperature is further increased, the transverse
magnetization begins to decrease, going effectively to zero at
Tc�8.4 at which point the system is in the paramagnetic
phase. This interpretation is supported by an examination of
sample spin configurations shown in Fig. 16.

For �=14.0 and 15.0, simulation data, plotted in Figs.
15�c� and 15�d�, respectively, show that for T=0.2, the trans-
verse magnetization is essentially zero while the orienta-
tional order parameter Ohv�0.9, indicating that the system is
in the stripe phase but with the spins aligned, on average,
perpendicular to the plane. As the temperature is increased,
Ohv decreases; however, before it drops to zero, we see that
at T�1.2 and 1.8, for �=14.0 and 15.0, respectively, the
transverse magnetization begins to rise, indicating that the
spins are beginning to tilt toward the plane. As the tempera-
ture is increased further, the transverse magnetization contin-
ues to increase, reflecting the increasing tilt of the spins to-
ward the plane, while the orientational order parameter
decreases until, at temperature T�2.4 and 3.5, for �=14.0
and 15.0, respectively, it drops essentially to zero, indicating
that the system has made the transition from the stripe phase
to the planar ferromagnetic phase. Once in the ferromagnetic
phase, the transverse magnetization begins to decrease with
increasing temperature dropping essentially to zero at Tc
�7.1 for �=14.0 and Tc�6.5 for �=15.0. Again, this inter-
pretation is supported by an examination of sample spin con-
figurations shown for �=14.0 in Fig. 17.

The data for �=14.0 and 15.0 are particularly interesting
as they both show the character of the magnetic order chang-
ing abruptly from a perpendicular stripe configuration to a
canted stripe configuration on heating over a very narrow

temperature range well before the system makes the transi-
tion to the planar ferromagnetic phase. This would imply that
the three ground state configurations identified in Sec. III for

(a)

(b)

(c)

(d)

FIG. 16. �Color online� Configurations showing the x, y, and z
components of the spins for �=13 at �a� T=0.6, �b� T=1.0, �c� t
=4.5, and �d� T=8.0. The color map showing how the components
of the spins are mapped is as in Fig. 1

(a)

(b)

(c)

(d)

FIG. 17. �Color online� Configurations showing the x, y, and z
components of the spins for �=14 at �a� T=0.8, �b� T=1.8, �c� t
=3.5, and �d� T=8.0 The color map showing how the components
of the spins are mapped is as in Fig. 1.
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T=0 are reflected in the magnetic order observed at finite
temperature.

The points separating the three types of magnetic order
estimated from the data presented in Fig. 15 together with
the results from the ground state calculations presented in
Sec. III for T=0.0 are shown on the phase diagram in Fig.
18. Also included are the points indicating the transition
from the planar ferromagnetic to the tetragonal/paramagnetic
phase for �=0.0 and from the smectic stripe phase to the
tetragonal phase for �=20.0, based on the data presented in
Sec. II.

Simulation results showing the transverse magnetization
as a function of � calculated for T=4.0, 5.0, and 6.0 are
shown in Fig. 19�a� and as a function of T for �=5.0, 10.0,
and 11.0 in Fig. 19�b�. In all cases, the orientational order
parameter Ohv is effectively zero. From the data, we can
estimate the transition temperature at which the system
makes the transition from the planar ferromagnetic phase to
the paramagnetic phase for several values of �. These points
are included on phase diagram of Fig. 18.

In Fig. 20 the orientational order parameter Ohv is plotted
for �=16 and 18 as a function of temperature. The transverse
magnetization in this temperature range is effectively zero
for both values of �. We can estimate the temperature at
which the orientational order parameter goes effectively to
zero indicating that the system has made the transition to the
tetragonal/paramagnetic phase. The estimates for the points
obtained from these data are included in the phase diagram.

The points delineating the different types of magnetic or-
der observed in our simulations and ground state calculations
presented in Fig. 18 show that for J=8.9 and ��0, the
Heisenberg model exhibits three distinct forms of magnetic
order characterized by the two order parameters, namely, the
transverse magnetization Mt and the orientational order pa-
rameter Ohv. That these different forms of magnetic order
define different thermodynamic phases and that the lines
separating them, implied by Fig. 18, represent phase bound-
aries is supported by the specific heat data presented in Fig.
21. Figure 21�a� shows a plot of the specific heat for �

=14.0 calculated as a function of temperature. The data show
three well defined peaks corresponding to transition from the
perpendicular stripe phase �	Mt	=0, 	Ohv	�0� to the canted
stripe phase �	Mt	�0, 	Ohv	�0�, the canted stripe phase to
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FIG. 18. The phase diagram for the system in the �T plane
determined from the values of the orientational order parameter and
the transverse magnetization obtained from Monte Carlo simula-
tions and for T=0 from numerical studies.
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the planar ferromagnetic phase �	Mt	�0, 	Ohv	=0�, and the
planar ferromagnetic phase to the tetragonal/paramagnetic
phase �	Mt	=0, 	Ohv	=0�. Figure 21�b� shows a plot of the
specific heat for T=2.0 calculated as a function of �. The
data show two well defined peaks corresponding to the tran-
sitions from the planar ferromagnetic phase to the canted
stripe phase and from the canted stripe phase to the perpen-
dicular stripe phase. One will note that the fluctuations in
Figs. 21�a� and 21�b� appear to be larger than in Figs. 3 and
4. This is due to the phase transitions being driven by
changes in the magnetization within the stripe walls, rather
than within the entire system, and hence the effective size of
the system is significantly smaller. We also note that we have
not seen any evidence for a phase transition separating the
paramagnetic and tetragonal phases.

While the results of the simulations and the ground state
calculations provide convincing evidence for the three dis-
tinct phases each characterized by a different magnetic order,
more detailed simulations on larger systems are needed in
order to determine the precise nature of the phase boundaries
and to provide a more definitive confirmation of the phase
diagram presented in Fig. 18.

V. CONCLUSIONS

In the preceding sections, we have presented the results
from both computer simulations and numerical calculations
for the two-dimensional ferromagnetic Heisenberg model on
a square lattice. The model includes an exchange interaction,
a dipolar interaction, and a magnetic anisotropy and is be-
lieved to describe many of the essential features of ultrathin
magnetic films. The reduced interaction parameters, J and �,
are defined by Eq. �1� and we consider the specific case J
=8.9.21

The results show that for a large perpendicular anisotropy
��=20�, the magnetic properties of the system are qualita-
tively similar to those observed for the dipolar Ising model.21

At low temperature, the system orders magnetically into a
smectic stripe phase with the spins aligned, on average, per-
pendicular to the plane. The stripes are oriented along either
the x or y axis and the walls separating the stripes are sharply
defined. As the temperature increases, the system undergoes
a transition to a tetragonal phase and the perpendicular
stripes lose their orientational order.

For zero anisotropy, the results show that the low tem-
perature ordered state is a planar ferromagnet with the spins
aligned along either the x or y axis with a transition to the
paramagnetic phase at T=9.0
0.2, in reduced units.

For �=13.0, close to where we would expect to observe a
transition from the perpendicular stripe phase to the planar
ferromagnetic phase, we find in both the ground state calcu-
lations and Monte Carlo simulations compelling evidence
that while the equilibrium phase at low temperature is a
stripe phase in which the perpendicular components of the
spins align to form stripes oriented along either the x or y
axis, the spins are canted toward the xy plane along a com-
mon axis parallel to the stripes. These calculations also show
that the stripe walls are no longer sharp Ising-like walls but
acquire a finite width. The ground state spin configuration is
shown in Fig. 10 for several values of �.

In Sec. IV, we presented the results of a series of Monte
Carlo simulations for various values of � and T. These re-
sults together with those presented in Secs. II and III show
that the system manifests three distinct types of magnetic
order, characterized by the two order parameters, the trans-
verse magnetization Mt, and the orientational order param-
eter Ohv. In Fig. 18, we plot the points in �T phase space
that, based on the simulations and ground state calculations,
delineate the different types of magnetic order. We note that,
as in the case of the Ising model, we have found no evidence
for a phase boundary separating the paramagnetic and tetrag-
onal phases and refer to this high temperature region as the
tetragonal/paramagnetic phase. Based on these results and
specific heat data calculated from further Monte Carlo simu-
lations, we argue that the Heisenberg model for J=8.9 mani-
fests four distinct phases which we refer to as the perpen-
dicular stripe phase, the canted stripe phase, the planar
ferromagnetic phase, and the tetragonal/paramagnetic phase.
Additional support for this claim is provided by specific heat
data.

Figure 18 shows that the canted stripe phase extends over
a finite range of � and temperature and is intermediate be-
tween the perpendicular stripe phase and the planar ferro-
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FIG. 21. The specific heat �a� at �=14 as a function of tempera-
ture and �b� at T=2.0 as a function of �. Lines connect successive
points as a guide to the eye.
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magnetic phase. In the canted stripe phase, close to the phase
boundary with planar ferromagnetic phase, the spins align to
form a spin density wave that is well approximated by a
small amplitude, sinusoidal variation in the perpendicular
component of the magnetization. As � increases, and the
system approaches the phase boundary with the perpendicu-
lar stripe phase, the amplitude of the spin density wave in-
creases and the perpendicular components of the spins at the
center of the stripes are close to their saturation value. At this
point, the spin configuration more closely resembles the per-
pendicular stripe configuration, but with a wall of finite
width separating the stripes. What is particularly noteworthy
in these results is the fact that the spins within the domain
walls are observed to align along a common axis, in this
case, the x axis, giving rise to a net transverse magnetization.
This feature of the canted stripe phase is observed not only in
the ground state calculations of Sec. III and the equilibrium
Monte Carlo simulations of Sec. IV, but also in the quenches
described in Sec. II, suggesting that this is not simply an
artifact of the initial conditions and long equilibration times.
Ground state calculations also show that the equilibrium
stripe width in the canted stripe phase decreases with de-
creasing stripe �, consistent with earlier theoretical work.18

Very recent results from work on smaller systems with
smaller stripe widths by Carubelli et al.41 are consistent with
the current results in regimes where meaningful comparisons
are appropriate.

The results presented in this paper show the same quali-
tative features of the earlier theoretical work on the both the
Ising model21 and Heisenberg models18,27 and provide an in-
teresting interpretation of the phase behavior of ultrathin
magnetic films in the vicinity of the reorientation transition.
However, given the small number of stripes despite the rela-
tively large system size, more detailed simulations on larger
systems are required to determine the precise nature of the
phase boundaries implied by Fig. 18 and how they connect.
That said, while the precise character of the phase boundaries
is an interesting and important question, the results presented
in this paper provide valuable insight into the nature of the
magnetic order close to the reorientation transition. Indeed, it
is very tempting to conclude that the canted stripe phase that
we observe, separating the perpendicular stripe phase and the
transverse ferromagnetic phase, is related in some way to the
“pseudogap which possesses complex magnetic structure”
referred to by Qiu et al.12 It will be interesting therefore to
extend these calculations to larger values of J and hence
larger stripe width. This should provide a much more de-
tailed and comparison with earlier theoretical work12,18,22,23

as well as provide a closer connection with experimental
studies.
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APPENDIX

The dipolar contribution to the energy of a given spin
configuration ��� i� is given by �Eq. �1�

Edip = �
i�j

��� i · �� j

	r�ij	3
− 3

��� i · r�i���� j · r� j�
	r�ij	5


 . �A1�

Writing

r� = mx̂ + nŷ , �A2�

�� = cos �ẑ + sin �x̂ , �A3�

with

��m,n� = ��n� = ��n + 2h� , �A4�

the dipolar contribution to the energy given by Eq. �A1� may
be written as

Edip =
N0

2h
+

N

2h
�
l1=1

l2=1

l1�l2

2h

�cos���l1� − ��l2�1�	l1 − l2	�

−
3N

2h
�
l1=1

l2=1

2h

sin ��l1�sin ��l2�2�	l1 − l2	�� , �A5�

with

0 = �
mn

�
1

�m2 + 4h2n2�3/2 , �A6a�

1�l� = �
mn

1

�m2 + �2hn + l�23/2 , �A6b�

2�l� = �
mn

m2

�m2 + �2hn + l�25/2 . �A6c�

Writing 1�l� �for l�0� as

1�l� = �
mn

1

�m2 + �2hn + l�23/2

=
4

��
�
mn
�

0

�

d��2e−�2�m2+�2hn + l�2

=
4

��
�
mn
�

0

�

d��2e−�2�m2+�2hn + l�2

+
4

��
�
mn
�

�

�

d��2e−�2�m2+�2hn + l�2, �A7�

the second term in Eq. �A7� may be evaluated to give
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4
��

�
mn
�

�

�

d��2e−�2�m2+�2hn + l�2 = �
mn

f1���m2 + �2hn + l�2
�m2 + �2hn + l�23/2 ,

�A8�

with

f1��� =
2�

��
e−�2

+ erfc��� . �A9�

Since f1����exp�−�2� for �→�, the above series converges
rapidly for any reasonable choice of �.

Evaluating the first term in the Eq. �A7� is somewhat
more complicated. Using the results that

�
m=−�

�

e−�2m2
=

��

�
�

m=−�

�

exp�−
�2m2

�2 
 , �A10a�

�
n=−�

�

e−�2�2hn + l�2
=

��

2h�
�

n=−�

�

exp�i
�nl

h
−

�2n2

4h2�2
 ,

�A10b�

we can write the first term in the series as

4
��

�
mn
�

0

�

d��2e−�2�m2+�2hn + l�2

=
2��

h
�
mn

exp�i
�nl

h

�

0

�

d� exp�−
�2

�2 � n2

4h2 + m2
�
=

2�2

h
�
mn

exp�i
�nl

h

� n2

4h2 + m2

	� 1
��
�

��n2/4h2+m2/�

� ds

s2 e−s2

=

2�2

h
�
mn

exp�i
�nl

h

�� n2

4h2 + m2
g1��

�
� n2

4h2 + m2
 ,

�A11�

with

g1��� = � e−�2

���
− erfc���
 . �A12�

Combining the results of Eqs. �A8� and �A11�, we obtain
�for l�0�

1�l� = �
mn

f1���m2 + �2hn + l�2
�m2 + �2hn + l�23/2

+
2�2

h
�
mn

exp�i
�nl

h

�� n2

4h2 + m2

	g1��

�
� n2

4h2 + m2
 . �A13�

A similar procedure may be used to express 2�l� in terms
of rapidly convergent series. Writing 2�l� as

2�l� = �
mn

m2

�m2 + �2hn + l�25/2

=
8

3��
�
mn

m2�
0

�

d��4e−�2�m2+�2hn + l�2

=
8

3��
�
mn

m2�
0

�

d��4e−�2�m2+�2hn + l�2

+
8

3��
�
mn

m2�
�

�

d��4e−�2�m2+�2hn + l�2, �A14�

the second term in Eq. �A14� may be evaluated to give

8

3��
�
mn

m2�
�

�

d��4e−�2�m2+�2hn + l�2

= �
mn

m2f2���m2 + �2hn + l�2�
�m2 + �2hn + l�25/2 , �A15�

with

f2��� =
e−�2

3��
�6� + 4�3� + erfc��� . �A16�

Since f2����exp�−�2� for �→�, the above series converges
rapidly.

Evaluating the first term in the Eq. �A14� is somewhat
more complicated. We recall the result

�
m=−�

�

m2e−�2m2
=

��

2�5 �
m=−�

�

��2 − 2m2�2�exp�−
�2m2

�2 
 .

�A17�

This result together with Eq. �A10b� allows us to write the
first term in the series as
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8

3��
�
mn

m2�
0

�

d��4e−�2�m2+�2hn + l�2

=
2��

3h
�
mn

exp�i
�nl

h

�

0

�

d��1 −
2m2�2

�2 
exp�−
�2

�2 � n2

4h2 + m2
�
=

2�2

3h
�
mn

exp�i
�nl

h

� n2

4h2 + m2 1
������n2/4h2+m2/�

� ds

s2 e−s2
−

2m2

��m2 +
n2

4h2
���n2/4h2+m2/�

�

dse−s2�
=

2�2

3h
�
mn

exp�i
�nl

h

��� n2

4h2 + m2
g1��

�
� n2

4h2 + m2
 −
m2

� n2

4h2 + m2

g2��

�
� n2

4h2 + m2
� , �A18�

with

g2��� = erfc��� . �A19�

Combining Eqs. �A15� and �A18�, we obtain the follow-
ing expression for 2�l�:

2�l� = �
mn

m2f2���m2 + �2hn + l�2�
�m2 + �2hn + l�25/2 +

2�2

3h
�
mn

exp�i
�nl

h



	��� n2

4h2 + m2
g1��

�
� n2

4h2 + m2


−
m2

� n2

4h2 + m2

g2��

�
� n2

4h2 + m2
� . �A20�

The remaining term, 0, may also be evaluated using the
techniques described above. Writing

0 = �
mn

�
1

�m2 + 4h2n2�3/2

= �
mn

��
0

�

d��2e−�2�m2+4h2n2�

=
4

��
�
mn

��
0

�

d��2e−�2�m2+4h2n2�

+
4

��
�
mn

��
�

�

d��2e−�2�m2+4h2n2�, �A21�

the second term in Eq. �A21� may be evaluated to give

4
��

�
mn

��
�

�

d��2e−�2�m2+4h2n2� = �
mn

�
f1���m2 + �2hn + l�2

�m2 + 4h2n2�3/2 ,

�A22�

with f1��� defined in Eq. �A9�. The first term may be written
as

�
mn

��
0

�

d��2e−�2�m2+4h2n2�

=
4

��
�
mn
�

0

�

d��2e−�2�m2+4h2n2� −
4

��
�

0

�

d��2

=
2�2

h
�
mn

�� n2

4h2 + m2
g1��

�
� n2

4h2 + m2

−

4
��

��3

3

 . �A23�

Combining Eqs. �A22� and �A23�, we can write 0 as

0 = �
mn

�
f1���m2 + �2hn + l�2

�m2 + 4h2n2�3/2

+
2�2

h
�
mn

�� n2

4h2 + m2
g1��

�
� n2

4h2 + m2

−

4
��

��3

3

 . �A24�
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