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We investigate the two-magnon Raman scattering from the S= 1
2 Heisenberg antiferromagnet on the trian-

gular lattice by considering both the effect of the renormalization of the one-magnon spectrum by 1 /S correc-
tions and the final-state magnon-magnon interactions. The bare Raman intensity displays two peaks related to
one-magnon Van Hove singularities. We find that 1 /S self-energy corrections to the one-magnon spectrum
strongly modify this intensity profile. The central Raman peak is significantly enhanced due to plateaus in the
magnon dispersion, the high frequency peak is suppressed due to magnon damping, and the overall spectral
support narrows considerably. Additionally, we investigate final-state interactions by solving the Bethe-Salpeter
equation to O�1 /S�. In contrast to collinear antiferromagnets, the noncollinear nature of the magnetic ground
state leads to an irreducible magnon scattering that is retarded and nonseparable already for the lowest order.
We show that final-state interactions lead to a rather broad Raman continuum centered on approximately twice
the “roton” energy. We also discuss the dependence on the scattering geometry.
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I. INTRODUCTION

Raman scattering is an effective tool to study the excita-
tion spectrum of magnetic systems since the intensity of the
inelastically scattered light is directly related to the density
of singlet states at zero momentum. In local-moment mag-
nets with well defined magnon excitations, this quantity is
linked to the two-magnon density of states. Therefore, mag-
netic Raman scattering plays an important role in under-
standing the dynamics and interactions of magnons in con-
ventional spin systems.1–4 This is particularly true for the
spin-1/2 square-lattice Heisenberg antiferromagnet �HAF� of
high-Tc superconductor parent compounds, wherein
experimental5–7 and theoretical8–11 studies of the magnetic
correlations by Raman scattering may provide important in-
sights into the energy scales relevant to the pairing mecha-
nism �for reviews, see Refs. 12 and 13�.

The Raman scattering from HAFs can be understood in
terms of the Loudon-Fleury �LF� processes,14 in which two
magnons are simultaneously created by light absorption and
emission. In the limit of large on-site Coulomb correlations
U, the Hamiltonian that describe these processes can be ob-
tained as a leading term of the expansion in t / �U−��, where
t is the nearest-neighbor �NN� hopping and � is on the order
of photon frequencies.15

The Raman intensity of HAFs on hypercubic lattices with
unfrustrated NN exchange and collinear type of antiferro-
magnetic �AFM� order allows for a straightforward semi-
quantitative interpretation in terms of the LF processes. In
fact, in real space, exchanging two NN spins of S= 1

2 leads to
an excitation with an energy ���z−1�J, where z is the co-
ordination number and J is the AFM exchange energy. The
reduction in � /J by −1 is a consequence of the exchange
link between the NN sites and can be interpreted in terms of
a two-magnon interactions in the final state. In momentum
space, the linear spin-wave theory yields nondispersive mag-
nons along the magnetic Brillouin zone �BZ� boundary, lead-
ing to a square-root divergence of the bare two-magnon den-

sity of states at �=zJ. Inclusion of the final state magnon-
magnon interactions broadens the singularity and shifts it
down to ��2.9J �Refs. 8–11� in two dimensions, which is
consistent with both the real-space result �=J�4−1�=3J and
the experimentally observed Raman profile.

In contrast to conventional collinear HAFs, very little is
theoretically known about the Raman scattering from frus-
trated HAFs. This is intriguing since the singlet spectrum is
believed to be an essential fingerprint of such magnets. The
spin S= 1

2 on the triangular Heisenberg antiferromagnet
�THAF� lattice with NN exchange interactions is a promi-
nent example of strongly frustrated spin systems. It has a
ground state with a noncollinear 120° degree ordering of the
spins. Due to this noncollinearity of the classical ground
state, nontrivial corrections to the spin-wave spectrum ap-
pear already to the first order in 1 /S. It has been shown in
Refs. 16–18 that 1 /S corrections strongly modify the form of
the magnon dispersion of the triangular HAF. The resulting
dispersion turns out to be almost flat in a wide range of
momenta in which it possesses shallow local minima, “ro-
tons,” namely, at the midpoint of the faces of the hexagonal
BZ. This strongly differs from the classical spin-wave spec-
trum, which lacks such minima and flat zones. Similar results
have been obtained in series expansion studies.19

Motivated by these recent findings, in this paper, we ana-
lyze the Raman scattering from the THAF by 1 /S expansion.
This is complementary to the recent analysis of Raman scat-
tering on finite, 16 site THAFs by means of exact
diagonalization.20 First, our results show that the Raman in-
tensity is very sensitive to both the 1 /S corrections of the
magnon spectrum and the magnon-magnon interactions in
the final state. Moreover, we find that the Loudon-Fleury
process on the THAF leads to a Raman profile, which is
independent at O�1 /S� of the scattering geometry.

The paper is organized as follows: In Sec. II, we review
results from existing calculations16,17 of the one-magnon ex-
citations in the THAF to the first order in 1 /S that are needed
for our study of the Raman spectra. In Sec. III, we consider
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the LF process to the leading order in 1 /S. In Sec. IV, we
calculate the Raman spectrum on various levels of approxi-
mation in 1 /S, i.e., bare, one-magnon renormalized, and in-
cluding final state interactions, and show that the Raman
profile is very sensitive to the magnon-magnon interactions.
We discuss our results in Sec. V.

II. MODEL

The Hamiltonian of the THAF reads

H = J�
�ij�

SiS j , �1�

where Si are spin-1/2 operators, i refers to sites on the trian-
gular lattice, �·� denotes NN summation, and J is the ex-
change interaction. The classical ground state of the THAF21

is a noncollinear 120° ordering of spins, which is shown in
Fig. 1�a�. To avoid the complexity of a three-sublattice nota-
tion, it is convenient to work within a locally rotated frame
of reference in which the magnetic order is ferromagnetic. To
achieve this, we assume a gauge in which the �x ,z� coordi-
nates label the lattice plane and a uniform twist with a pitch
vector Q= �4� /3,0� is applied to the y axis. The laboratory

frame-of-reference spin Si is related to the spin S̃i in the
rotated frame through

Si = � sin�qi� − cos�qi� 0

0 0 − 1

cos�qi� sin�qi� 0
�

−1

S̃i, �2�

where qi=2��2li+mi� /3 and �li ,mi� are integers that label
the points on the triangular lattice, which is depicted in Fig.

1�a�. In contrast to Si, the spin S̃i is amenable to a represen-
tation in terms of a single Holstein-Primakoff boson field on
all sites,

S̃i
z = S − ai

+ai,

S̃i
+ = �2S − ai

+ai�1/2ai,

S̃i
− = ai

+�2S − ai
+ai�1/2. �3�

Because we intend to study magnon interactions of the
first order in 1 /S, we need to expand the Hamiltonian in

Eq. �1� up to the quartic order in the boson fields. We have

H − E0 = 3JS�H2 + H3 + H4� , �4�

where E0=3JS2 /2 is the classical ground state energy and

H2 = �
k

Akak
†ak +

Bk

2
�ak

†a−k
† + aka−k� , �5�

H3 = − i	 3

8S �
k1,k2,k3

�ak1

† ak2

† ak3
− ak3

† ak2
ak1

�

���̄k1
+ �̄k2

��k3,k1+k2
, �6�

H4 = −
1

16S
�

k1,k2,k3,k4

�k3+k4,k1+k2
ak1

† ak2

† ak3
ak4

�
4��k1−k3
+ �k2−k3

� + �k1
+ �k2

+ �k3
+ �k4

�

− 2�k1+k2+k3,k4
�ak1

† ak2

† ak3

† ak4
+ ak4

† ak3
ak2

ak1
�

���k1
+ �k2

+ �k3
� , �7�

where the momentum k is defined in the first magnetic BZ.
We use the following notations:

Ak = 1 + �k/2, Bk = − 3�k/2, �8�

and the momentum dependent functions are

�k =
1

3
�cos kx + 2 cos

kx

2
cos

ky
	3

2
 , �9�

�̄k =
2

3
sin

kx

2
�cos kx − cos

ky
	3

2
 . �10�

The expressions for H3 and H4 were first obtained in Ref. 16.
The essential difference between Eqs. �4�–�7� and a corre-
sponding expansion around a Neél state on a hypercubic lat-
tice is the occurrence of the term H3, which is present due to
the noncollinearity of the classical ground state configuration
of the THAF. In the remainder of this paper, we set the scale
of energy to 3J /2=1, i.e., for S= 1

2 , the prefactor in Eq. �4� is
unity.

To proceed, we diagonalize the quadratic part of the
Hamiltonian H2 by a Bogoliubov transformation to a set of
magnon quasiparticles,

ak = ukck + vkc−k
† ,

ak
† = ukck

† + vkc−k, �11�

where ck
�†� are bosons and the coherence coefficients,

uk =	Ak + Ek

2Ek
,

vk = −
Bk

�Bk�
	Ak − Ek

2Ek
, �12�

satisfy uk
2 −vk

2 =1. The Hamitonian H2 in terms of the Bogo-
liubov quasiparticles reads

in

Z

1

x
2

δ

δ3

δ
x

a) b)

0

φ
θ

Z
out

FIG. 1. �Color online� �a� Classical 120° noncollinear spin order

on the triangular lattice. Basic vectors of triangular lattice: ��1

= � 1 / 2 , 	3 / 2 �, ��2= � 1 / 2 ,− 	3 / 2 �, and ��3= �1,0�. �b� Definition of scat-
tering angles for the LF vertex.
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H2 = �
k

Ekck
†ck, �13�

and the dispersion is given by

Ek = 	Ak
2 − Bk

2 = 	�1 − �k��1 + 2�k� . �14�

The magnon dispersion Ek is depicted in Fig. 2. It vanishes
at the center of the zone, kx=0, ky =0, where �k=1 and at the
corners of the BZ, where �k=−1 /2. There are two Van Hove
singularities, i.e., at E=3 / �2	2��1.061 from the maximum
energy and at E=2 /3�0.6667J from the zone boundary.

To treat the interaction between magnons, we need to ex-
press the triplic and quartic parts of the Hamiltonian, H3 and
H4, in terms of the quasiparticles ck

�†� by using the transfor-
mation of Eq. �11�. For the triplic part, we obtain

H3 = �
k,p


ckcp
†ck−p

† f�k,p� + ckcp
†c−k+pg�k,p�

+ O�c†c†c† + H.c.�� . �15�

Terms with three creation �destruction� operators are present
in principle but are not explicitly expressed for notational
simplicity. As will become clear in Sec. IV, they play no role
in evaluating the magnon interactions within the Raman re-
sponse. Moreover,

f�k,p� = i	3
�̄p�ukuk−p + vkvk−p��up + vp� − �̄k�uk + vk�

��upvk−p + uk−pvp� + �̄k−p�uk−p + vk−p�

��ukup + vkvp�� , �16�

g�k,p� = i	3
�̄p�uk−pvk + ukvk−p��up + vp�

+ �̄k−p�uk−p + vk−p��ukup + vkvp� − �̄k�uk + vk�

��uk−pup + vk−pvp�� . �17�

For the quartic part, we obtain

H4 = −
1

16S
�
k,p

h�k,p�ckc−kcp
†c−p

† + O�c†c†c†c† + c†c†c†c

+ H.c.� , �18�

where, again, terms irrelevant for the Raman scattering are
not explicitly displayed, and

h�k,p� = 2��uk
2up

2 + vk
2vp

2���k + 4�k−p + �p� − 3�uk
2

+ vk
2�upvp�2�k + �p� − 3�up

2 + vp
2�ukvk��k + 2�p�

+ 4ukvkupvp�2 + �k + �p + 2�k+p�� . �19�

Equations �15�–�19� allow us to construct all vertices rel-
evant to the final state two-magnon interactions in the Raman
scattering. Apart from that, Eqs. �4�–�10� can be used to de-
rive the one-magnon self-energy to O�1 /S�. This was done in
Ref. 16, to which we refer the reader for details. For the
purpose of the present work, it is sufficient to employ Eqs.
�10�–�12� of Ref. 16 to calculate the renormalized magnon
dispersion Ek

r to O�1 /S�. Figure 2 �middle and bottom pan-
els� shows the result of such calculations. It is evident that in
the real part of the magnon energy, the interactions lead to
extended and almost flat regions with a shallow rotonlike
minimum along the BZ faces. Moreover, as the Im Ek

r almost
vanishes at these regions, the lifetime of a quasiparticle with
corresponding momenta is very large. On the other hand,
quasiparticles with near-maximum energies are located in the
momentum regions of rather large damping.

III. LOUDON-FLEURY VERTEX

We use the framework of the LF model for the interaction
of light with spin degrees of freedom for the calculation of
the two-magnon Raman scattering. The LF vertex has the
form

R = �
i�

��̂in · ����̂out · ��S̃iS̃i+�, �20�

where the polarizations �̂in=cos 	x̂+sin 	ŷ and �̂out=cos 
x̂
+sin 
ŷ of the incoming and the outgoing light are deter-
mined by the angles 	 and 
, which are defined with respect
to the x axis. To derive the final form of the scattering LF
vertex, we first write the spin operators in terms of the
Holstein-Primakoff bosonic a operators 
Eq. �3�� and then
express the latter in terms of the boson quasiparticle opera-
tors c. We get the following expression:

R = �k
Mk�ckc−k + ck

†c−k
† � � r− + r+, �21�

where Mk is given by

Mk = 
F1�	,
� + F2�k,	,
��ukvk − 3
4F2�k,	,
��uk

2 + vk
2� ,

�22�

and we have introduced the following notations:

FIG. 2. �Color online� One magnon dispersion. Top: Linear
spin-wave dispersion Ek from Eq. �14�. Middle and bottom: Real
and imaginary parts Re�Im�Ek

r of one magnon dispersion to O�1 /S�
from a solution of Eqs. �10�–�12� of Ref. 17 on a lattice of 252
�252 k points with artificial line broadening of �=0.05.
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F1�	,
� = 2S��=1

3
f��	,
� ,

F2�k,	,
� = 2S� f3�	,
�cos kx + f1�	,
�cos� kx

2
+

	3

2
ky

+ f2�	,
�cos� kx

2
−

	3

2
ky� ,

f��	,
� = �̂in · ��. �23�

In principle, the Raman vertex contains also ck
†ck terms.

However, at zero momentum and for the lowest order in 1 /S,
these terms do not contribute to the Raman response at finite
frequency, and we dropped them. Note that R is explicitly
Hermitian.

IV. RAMAN INTENSITY

We now calculate the Raman intensity including the one-
and two-magnon renormalizations up to O�1 /S�. The Raman
intensity I��� is obtained via Fermi’s golden rule from

I��m� = const � Im��
0



d�ei�m��T�
R���R��� �24�

by analytic continuation of the bosonic Matsubara frequen-
cies �m=2�mT onto the real axis as i�m→�+ i�, where
�=�in−�out, which refers to the inelastic energy transfer by
the photon; for the remainder of this paper, we assume the
temperature T=1 / to be zero. The prefactor “const” refers
to some arbitrary units by which the observed intensities are
scaled.

The role of the interactions is summarized in Fig. 3. Two
effects have to be distinguished, namely, renormalizations of

the one-magnon propagators, i.e., G0→G, and vertex correc-
tions to the Raman intensity �final state interactions�, i.e.,
R→�.

All propagators are expressed in ck
�†�-type terms of the

Bogoliubov particles. For orders higher than O
�1 /S�0�, the
propagators of these particles are not diagonal, i.e., both
normal Gcc�k ,��=−�T��ck���ck

†�� and anomalous Dcc�k ,��
=−�T�
ck���c−k�� propagators do occur. However, anomalous
propagators are smaller by one factor of 1 /S as compared to
the normal propagators and therefore can be neglected. For
the first order in 1 /S, the normal propagators read
G�k , i�n�=1 / �i�n−Ek

r �, i.e., the quasiparticle residue re-
mains unity, and Ek

r is taken from Eqs. �10�–�12� of Ref. 17.
In order to evaluate the Raman intensity 
Eq. �24��, we

have to calculate the Raman susceptibility �T�
R���R��. In
principle, the latter can contain terms of type �T�
r−���r−��,
with r� specified in Eq. �21� and Fig. 3�a�. However, these
terms need at least one O�1 /S� interaction event to occur or
require anomalous propagators, i.e., they are smaller by one
order of 1 /S and will be dropped. In the following, we con-
sider only �T�
r+���r−��+ �T�
r−���r+��. By Hermitian conju-
gation, it is sufficient to calculate J���= �T�
r−���r+��, which
is depicted in Fig. 3�b�.

Figure 3�b� shows the two-particle reducible Raman ver-
tex ��k ,�n ,�m�, which includes a series of magnon-magnon
interaction events. It satisfies the Bethe-Salpeter equation ex-
pressed in terms of the two-particle irreducible vertex �,
which is depicted in Fig. 3�c�,

��k,�n,�m� = r−�k� + �
p,�o

��k,p,�n,�o�G�p,�o + �m�

�G�− p,− �o���p,�o,�m� . �25�

In this work, we consider only the leading order contribu-
tions in 1 /S to �. They are shown in Fig. 3�d�. The quartic
vertex �4�k ,p� is identical to the two-particle-two-hole con-
tribution from H4 of Eqs. �18� and �19� and reads

�4�k,p� = −
1

2S
h�k,p� . �26�

The two addends forming the irreducible vertex
�3�k ,p ,�n ,�o� are assembled from H3 and one intermediate
propagator and can be written as

�3�k,p,�n,�o� =
1

2S
�
k,p


f�k,p�g�− k,− p�

�G0�k − p,i�o − i�n�

�ckc−kcp
†c−p

† + g�k,p�f�− k,− p�

�G0�p − k,i�n − i�o��ckc−kcp
†c−p

† ,

�27�

where the functions f�k ,p� and g�k ,p� obey the symmetry
relation f
g��−k ,−q�=−f
g��k ,q�.

To keep �3 to the leading order in 1 /S, we retain only the
zeroth order propagators G0 for each intermediate line. In
principle, H3 allows for an additional two-particle irreducible
graph, with the incoming �outgoing� legs placed into the

FIG. 3. Diagrams for the Raman intensity: �a� bare Raman ver-
tex R from Eq. �21�; �b� Raman susceptibility 
both bare, G0, and
dressed, G, magnon propagators are considered �see text��. �c� The
integral equation for the dressed Raman vertex � in terms of the
irreducible magnon particle-particle �IPP� vertex �. �d� Leading or-
der 1 /S contributions to the IPP vertex.
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particle-particle �hole-hole� channel and one intermediate
line at zero momentum and frequency. However, we verified
that these contributions exactly vanish.

Due to �3, Eq. �25� is an integral equation with respect to
both momentum and frequency. This is the first major differ-
ence of the Raman scattering from collinear HAFs, where
only �4 exists at O�1 /S�. To proceed, further approximations
have to be made. Here, we simplify �3 by assuming the
dominant contribution from the frequency summations to re-
sult from the mass shell of the propagators in the intermedi-
ate particle-particle reducible sections of Fig. 3�c�,

− i�n � Ek,

− i�o � Ep. �28�

This approximation will be best for sharp magnon lines and
the transferred frequencies i�m close to the Van Hove singu-
larities of 2Ek.

In this approximation for �3, the two-particle irreducible
vertex � simplifies to

��k,p,�n,�o� � ��k,p� = �3�k,p� + �4�k,p�

= −
1

2S
�2Ek−pf�k,p�g�k,p�

�Ek − Ep�2 − Ek−p
2 + h�k,p� .

�29�

Now, we can perform the frequency summation over �o on
the right hand side of Eq. �25� as well as the analytic con-
tinuation i�m→�+ i��z. With this, � in the latter equation
turns into a function of p and z only, leading to

�
p

Lk,p�z��p�z� = r−�k� , �30�

Lk,p�z� = �k,p −
��k,p�

z − 2Ep
�r� , �31�

which is an integral equation with respect to momentum
only. In the rest of the paper, the superscript r refers to the
case when renormalized propagators with Ep

r are taken in the
two-particle reducible part of the Raman intensity, while Ep
corresponds to the usage of bare propagators.

Close inspection of the vertex ��k ,p� shows that it does
not separate into a finite sum of products of lattice harmonics
of the triangular lattice. Therefore, Eqs. �30� and �31� cannot
be algebraically solved in terms of a finite number of scat-
tering channels but require a numerical solution. On finite
lattices, this can be done by treating Eq. �30� as a linear
equation for �p�z� at fixed z. This marks another significant
difference between Raman scattering from collinear and non-
collinear antiferromagnets.

Finally, the expression for the Raman intensity from Eq.
�24� can be written as

I��� = const � 
J��� − J�− ��� . �32�

J��� = Im��
k

Mk�k�� + i��
� + i� − 2Ek

�r� � . �33�

We now discuss the Raman intensity for several levels of
approximations. First, we neglect final state interactions and
set �k�z�→Mk. Figure 4 shows the Raman intensity as a
function of the transferred photon frequencies � for this
case. Figure 4 contrasts the Raman bubble with the bare
propagators against that with the renormalized ones. Such
results can be obtained on fairly large lattices since they do
not involve a solution of the integral equation �30� but only a
calculation of the one magnon self-energy.17 We keep the
shift i� off the real axis deliberately small in Fig. 4 in order
to discriminate its effect from that of the actual lifetime
broadening due to the imaginary part of Ek

r .
First, we would like to note that we find the line shape to

be insensitive to the scattering geometry. This is in a sharp
contrast to the Raman scattering from the square lattice HAF,
wherein Raman amplitudes in A1g, B1g, and B2g symmetries
are very different.

In case of the bare Raman bubble, one can see two well-
defined peaks, one at energy �=3 /	2 and one at
�=4 /3—both in units of 3J /2. These energies correspond to
two times that of the maximum and of the BZ-boundary
saddle point of the classical spin-wave spectrum Ek. Clearly,
the dominant spectral weight does not stem from the k points
at the upper cutoff of the linear spin-wave energy but from
the BZ boundary. This does not reflect the bare two-magnon
density of states but is an effect of the Raman matrix element
Mk, which preferentially samples the BZ regions.

Switching on 1 /S corrections, two modifications of the
intensity occur. First, both maxima are shifted downward by
a factor of �0.7 due to the corresponding renormalizations
of the one magnon energies. Second, as the BZ-boundary
saddle point of Ek has turned into a flat region, which occu-
pies substantial parts of the BZ for Ek

r , the intensity of the
lower energy peak is strongly enhanced due to the very large

0 0.5 1 1.5 2 2.5
Ω [3J/2]

0

0.2

0.4

0.6

0.8

1

I(
Ω

)
[a

rb
.u

ni
ts

]

N=252, η=0.003, BB
N=252, η=0.003, RB

FIG. 4. Raman intensity neglecting final state interactions, i.e.,
replacing � by M in Eq. �33�. Scattering geometry: 
=	=0. Num-
ber of k points: N�N. Dashed curve �BB�: bubble obtained by
using bare magnon energies Ek from Eq. �14�, as shown in top
panel of Fig. 2. The imaginary broadening �=0.003 was chosen as
such as to retain visible but small finite-size oscillations. Solid
curve �RB�: bubble obtained by using renormalized magnon ener-
gies Ek

r to O�1 /S� obtained from Eqs. �10�–�12� of Ref. 17 and
shown in the middle and lower panels of Fig. 2. Finite-size oscilla-
tions are suppressed by Im
Ek

r �. The absolute scale of I��� is set to
unity, but the relative scale of BB and RB is kept.
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density of one-magnon states. Equally important, the imagi-
nary part of Ek

r is finite in the BZ region, which corresponds
to the maximal one-magnon energies. This almost com-
pletely smears the peak at the upper frequency cutoff in I���,
as can be seen from the solid line in Fig. 4. In contrast to
that, Im
Ek

r � almost vanishes in the flat regions on the BZ
boundary due to phase-space constraints,18 leading to a fur-
ther relative enhancement of the intensity from there.

Next, we turn to final-state interactions. In Fig. 5, we
compare I��� from the Raman bubble obtained with the
propagators renormalized to O�1 /S� and only bare Raman
vertices to the intensity obtained by also including the
dressed Raman vertex �k�z� from Eq. �30�. The numerical
solution of the latter equation requires some comments.
Since the kernel Lk,p�z� is not sparse and has rank N2�N2,
already moderate lattice sizes lead to rather large dimensions
and storage requirements for the linear solver. We have cho-
sen N=69, leading to a 4761�4761 system, which we have
solved 200 times to account for 200 frequencies in the inter-
val �� 
0,2.5�. The kernel has the points and lines of a
singular behavior in the �k ,p� space, which stem from the
singularities of the Bogoliubov factors u
v��k� in
f
g�
h��k ,p� and from the energy denominators in Eq. �29�.
In principle, such regions are of measure zero with respect to
the complete �k ,p� space, yet we have no clear understand-
ing of their impact on a solution of Eq. �30� as N→�. In our
case, i.e., a finite lattice, we have chosen to regularize these
points and lines by cutting off eventual singularities in Lk,p.
The comparatively small system sizes require a rather larger
artificial broadening i� in order to achieve acceptably
smooth line shapes. This can be seen by contrasting the
dashed curve in Fig. 5 and the solid curve in Fig. 4, which
correspond to identical quantities, however, for different fi-
nite systems, 252�252 vs 69�69.

The main message put forward by Fig. 5 is that the final
state interactions lead to a flattening of the peak from the
two-magnon density of states, transforming it to a rather

broad Raman continuum. This can be understood, at least
qualitatively, from the RPA-like functional form of the
Bethe-Salpeter equation. Discarding momentum dependen-
cies and iterating the two-magnon bubble times, the irreduc-
ible vertex � leads to a renormalization of the intensity by a
factor roughly of the form �1 / 
1−� ·�����, where ���� re-
fers to the two-magnon bubble. Directly at the peak position
of the Raman bubble, this renormalization factor may get
small, thereby suppressing the overall intensity. While ex-
actly the same mechanism is also at work for the square
lattice HAF, its impact on the spectrum is completely differ-
ent. In the latter case, the peak intensity without final state
interactions is at the upper cutoff of the Raman intensity.
Suppression of this peak intensity simply shifts the maxi-
mum intensity to lower frequencies within the Raman spec-
trum. This shift is then interpreted in terms of a two-magnon
binding energy. Such reasoning cannot be pursued in the
present case.

V. CONCLUSION AND DISCUSSION

To summarize, we have investigated the magnetic Raman
scattering from the two-dimensional triangular Heisenberg
antiferromagnet by considering various levels of approxima-
tion within a controlled 1 /S expansion. Our study has re-
vealed several key differences as compared to the well-
known magnetic Raman scattering from the planar square
lattice spin-1/2 antiferromagnet.

First, we found that the intensity profile is insensitive to
the in-plane scattering geometry of the incoming and outgo-
ing light at O�1 /S�. This has to be contrasted against the
clear difference between A1g and B1g,2g symmetries for the
square-lattice case.

Second, on the level of the linear spin-wave theory, we
showed that the Raman intensity has two Van Hove singu-
larities. The less intensive peak is located at the upper edge
of the two-magnon density of states and stems from twice
the maximum of the one-magnon energy. This is similar to
the square lattice case. However, the dominant peak is lo-
cated approximately in the center of the two-magnon density
of states. This peak stems from the Loudon-Fleury Raman
vertex that strongly selects the Brillouin zone boundary re-
gions where the one-magnon dispersion on the triangular lat-
tice has an additional weak Van Hove singularity. This is
absent on the square lattice.

Next, we calculated the Raman intensity with the one-
magnon spectrum renormalized to O�1 /S� by neglecting,
however, the final-state interactions within the Raman pro-
cess. In this case, we have obtained a sharp and almost
�-functional Raman peak at an energy of �3J /2. At this
energy, the real part of the renormalized one-magnon disper-
sion shows a large plateau region at the Brillouin zone
boundary with a rotonlike shallow minimum. Moreover, due
to phase-space constraints, the one-magnon lifetime is large
in this region. Therefore, the two-magnon density of states in
this region is strongly enhanced, as compared to the linear
spin-wave result. In contrast to that, the intensity at the upper
edge of the spectrum is suppressed further since the O�1 /S�
corrections lead to the significant one-magnon damping. Fi-
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FIG. 5. Effect of final state interactions on Raman intensity.
Scattering geometry: 
=	=0. Number of k points: N�N. Imagi-
nary shift off real axis is �=0.03. Dashed line �RB�: replacing � by
M in Eq. �33� and using bubble with renormalized magnon energies
Ek

r to O�1 /S� obtained from Eqs. �10�–�12� of Ref. 17. Solid line
�RBV�: using dressed vertex � obtained from Eq. �30� in Eq. �33�
and renormalized magnon energies Ek

r . The absolute scale of I��� is
set to unity, but the relative scale of RB and RBV is kept.
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nally, the overall width of the spectrum is reduced by a factor
of approximately 0.7.

In the last step, we considered the impact of the final-state
interactions to O�1 /S�. Due to the noncollinear ordering on
the triangular lattice and in a sharp contrast to the square-
lattice case, we find that even to the lowest order, the two-
magnon scattering is neither instantaneous in time nor sepa-
rable in momentum space. Our solution of the corresponding
Bethe-Salpeter equation reveals a broad continuumlike Ra-
man profile, which results from a smearing of the intensity of
the two-roton peak by virtue of repeated two-magnon scat-
tering. While at this order in 1 /S the overall form of the
Raman profile is reminiscent of that on the square lattice, one
has to keep in mind that in the latter case, the position of the
maximum in the center of the Raman continuum has to be
interpreted rather differently, namely, in terms of a two-
magnon binding effect.

In conclusion, we hope that our theoretical investigation
will stimulate further experimental analysis of triangular and
more generally frustrated magnetic systems by Raman scat-
tering. Several novel materials with triangular structure have
been thoroughly investigated over the past few years, among
them the cobaltite, NaxCoO2,22 and the spatially anisotropic
triangular antiferromagents Cs2CuCl4 �Ref. 23� and
�-�BEDT-TTF�2Cu2�CN�3.24 To our knowledge, however,
magnetic Raman scattering on such systems remains a rather
open issue.
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