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A model of a thin straight strip with a uniformly curved section and with different uniform boundary
conditions on the opposite edges subjected to the homogeneous magnetic field B is theoretically analyzed
within the framework of the linear Schrödinger equation and is applied to the study of the processes in the bent
magnetic multilayers and superconducting films. In particular, for the inner Dirichlet and outer Neumann
boundaries, it is shown that bend-induced enhancement of the superconductivity survives in the magnetic field
with the order parameter ��r� being pushed stronger and stronger to the Neumann surface with increasing B
and, simultaneously, the area where the nucleation of the superconductivity takes place is spread more and
more in the straight arms. Various magnetotransport properties of the film such as interference blockade of the
supercurrent flow at some special field-dependent temperatures are also discussed with special attention being
paid to the formation and evolution of the vortices, which appear as a result of the bend-induced interaction
between the different subbands; it is shown, in particular, that the number of vortices decreases with the field
and some of them transform into the antivortices. A proof of the very close analogy between two kinds of
strips, �1� pure Dirichlet condition on both edges and �2� inner Dirichlet and outer Neumann requirements,
derived earlier for B=0 is extended to the case of nonzero fields.
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I. INTRODUCTION

Study of magnetic multilayers in recent years1 has
brought a lot of new and fascinating physics, such as
interlayer exchange coupling,2–6 giant magnetoresistance,6,7

or current-driven switching of magnetic layers.8–10 The
underlying physical mechanism of these phenomena is the
spin-dependent reflectivity at the magnetic/nonmagnetic
interfaces,6,7 which, in turn, stems from the fact that the
spin-up electrons in the ferromagnetic layer have their band
aligned with the counterpart in the nonmagnetic interlayer,
while the spin-down bands are shifted upward on the energy
scale and, accordingly, the good match with the bands in the
spacer is lost.6 As a result, an electron with a spin parallel to
the magnetic moment of the ferromagnet almost freely
traverses the magnetic/nonmagnetic boundary, and a particle
with the opposite spin is reflected from it.6

So far, the properties of only the straight magnetic multi-
layers have been under consideration. One of the latest lit-
erature surveys on spin transport in magnetic nanostructures
is provided in Ref. 11. In the present research, we theoreti-
cally discuss the magnetotransport and electronic properties
of the bent magnetic layers. For doing this, we model the
transverse potential profile “seen” by the longitudinally itin-
erant electrons as a potential well.12,13 For the ferromagnetic
arrangement, the electron with a spin antiparallel to the mag-
netization of the magnetic layers will be trapped in the po-
tential well inside the nonmagnetic spacer if the correspond-
ing spin directions are fully occupied in the magnetic strips.6

Thus, to a good first approximation, its transverse motion can
be described by the infinitely deep potential well with Di-
richlet boundary conditions;6,14 namely, its wave function

vanishes at the magnetic/nonmagnetic boundaries. In turn,
for the antiferromagnetic ordering, when the magnetizations
of the adjacent magnetic layers point in the opposite direc-
tions parallel to the interfaces, electron transverse motion for
both spins can be reasonably well described by the potential
well with the Dirichlet boundary condition on one side and
the Neumann requirement �vanishing of the spatial derivative
of the wave function in the transverse direction� on the op-
posite edge.14 To exemplify this, one can imagine the situa-
tion when the transverse potential created by the two straight
adjacent layers of widths d and s effectively binds an elec-
tron with a mass m inside them, but there exists a potential
step V0 between neighboring layers due to their different
polarizations �see Fig. 1�a��. Then, the transverse propaga-
tion thresholds En of such a system in the absence of the
magnetic fields are determined from the following equation:

�1 +
V0

En
sin���En�cos���En + V0s�

+ cos���En�sin���En + V0s� = 0, �1�

where the distances are measured in units of d and the ener-
gies are in units of ground-state energy �2�2 / �2md2� of the
infinitely deep Dirichlet quantum well of width d. Analysis
of Eq. �1� shows that for V0= 1 / 4 � 1 / s2 −1�, the fundamental
propagation threshold for all s�1 coincides with that for the
Dirichlet–Neumann strip, E0=1 /4. In addition, for quite
small s, other low thresholds En are very close to the energies
�n+1 /2�2,
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�lim
s→0

En�V0=�1/s2−1�/4 = �n + 1/2�2, n = 1,2, . . . , �2�

which are characteristic for the Dirichlet–Neumann quantum
well. Corresponding wave functions for the two lowest n and
several s are shown in panels �b� and �c� of Fig. 1. It is seen
that for a small s, one can model the system as having mixed
boundary conditions at y= �1 /2. This is especially true for
the fundamental propagation threshold when the derivative
of the wave function identically vanishes at y=1 /2 for any s.
We will return to a more quantitative analysis of this situa-
tion later in the text. In other words, under the special choice
of the parameters, it is possible to describe the magnetic
system as having a combination of Dirichlet and Neumann
requirements. We note in passing that the electrons can also
be trapped in the magnetic layer, say, for Fe/Cr�100�
structures.15 In this case, there is no substantial difference
between the minority-spin-band structure of the Fe and the
Cr band structure, while the majority-spin bands of Fe are
located below the Cr bands. As a result, majority-spin elec-
trons face potential barriers at the surfaces, while minority-
spin electrons freely pass through them. An even more gen-
eral situation is possible when nonmagnetic spacers are the
quantum well for one spin projection and the potential bar-
rier for the opposite spin direction.4

In other words, spin-dependent reflectivity at the
interfaces6 is described in our model by the different bound-
ary conditions of the corresponding edges of the channel. In
addition, our structure contains a uniform finite bend and is
subjected to the homogeneous in-plane magnetic field B be-
ing perpendicular to the electron longitudinal motion. We
disregard the magnetic field influence on the spin of the elec-
trons in the magnetic layers and, thus, field-induced transi-
tion from the antiferromagnetic to the ferromagnetic state is
suppressed in our model. Quantum-size effects in the trans-
verse direction lead to the quantized two-probe conductance
along the duct.16,17 We note that the model of the waveguide
with the different boundary conditions is applicable also in
other areas of physics; for example, it describes continental
shelf waves18 or electromagnetic wave propagation between
the earth and the ionosphere.19,20 In solid-state physics, the
same quantization of the transverse momenta takes place in
the transmission of massless Dirac fermions through an ideal
strip of graphene.21 A similar situation that will be our sec-
ond primary target emerges also in the superconductivity.
Namely, from the phenomenological theory of
superconductivity,22 it is known that the behavior of the or-
der parameter ��r� near the transition point is well described
by the linearized Ginsburg–Landau �GL� equation,23,24

1

2m
�− i� � + qA�2��r� = − ���r� . �3�

Here, B=��A is the external magnetic field applied to the
superconductor, where A is corresponding vector potential;
q=2e, where e is the absolute value of the electronic charge;
and −�= ��2 /2m	2�0���1−T /Tc� is the GL parameter where
T is the actual temperature of the superconducting material,
Tc is the bulk critical temperature at zero magnetic field, and
	�0� represents the zero-temperature coherence length. Com-

FIG. 1. �Color online� �a� Transverse potential profile of two
magnetic layers with widths d and s. Energy gap between the layers
is V0. Origin of the coordinate system coincides with the middle of
the left well. The dashed line shows a boundary between the two
layers. �b� Wave functions of the lowest state �n=0� for the normal-
ized gap V0= 1 / 4 � 1 / s2 −1� and several normalized lengths s. �c� The
same as in panel �b�, but for the second propagation threshold �n
=1�.
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paring Eq. �3� to the usual Schrödinger equation,25 one sees
their complete analogy; namely, Eq. �3� describes the wave
function ��r� of a particle of negative charge −2e and mass
m moving with a total energy of

E =
�2

2m	2�0�
�1 −

T

Tc
� , �4�

in the magnetic field B. This correspondence was widely
used for the investigation of the superconducting properties
near the phase boundary.23,24 In the GL theory, Eq. �3� is
accompanied by the expression for the supercurrent density
j,

j = − i
q�

2m
�� � �� − �� � �� −

q2

m
A���2. �5�

When one considers spatially confined superconducting
samples, it is necessary to take into account the boundary
condition for the order parameter �,23,26

n�� + i
q

�
A����L =

1



���L, �6�

where n is a unit vector normal to the superconductor surface
L. Extrapolation length 
 in Eq. �6� can take positive as well
as negative values. Physically, the value of 1 /
 that is equal
to zero corresponds to the superconductor/vacuum or
superconductor/insulator surface,22–24 while its positive mag-
nitude describes the processes taking place at the
superconductor-normal metal interface.23,24 In the case of
superconductor/ferromagnet interface, the length 
 can take
very large values, which means a suppression of supercon-
ductivity. In turn, negative values of 
 correspond to the
border with the superconductor with the higher critical
temperature,27 which physically means enhancement of the
surface superconductivity. Since the surface-to-volume ratio
for the mesoscopic superconductors is not negligible as is the
case for the bulk material, the boundary condition �Eq. �6�� is
indispensable in defining the “energy” spectrum −� and
other properties, such as magnetization, of the finite-sized
superconductors. Theoretical predictions based on the solu-
tions of Eqs. �3� and �6� �Ref. 28–35� are in good agreement
with the experimental measurements36–38 �see Ref. 39 for
more references�.

One of the structures wherein the boundary effects are
crucial in defining sample properties is the superconducting
film.40,41 Quantum-size effects were shown to drastically
modify the properties of superconductors. In particular, re-
cent technological advances allowed physicists to grow ul-
trathin lead films on a silicon substrate and to demonstrate
that superconducting transition temperature oscillates as a
function of the film thickness.42

In the present paper, within the framework of Eqs. �3� and
�5�, we study the properties of the curved magnetic or super-
conducting film in the in-plane uniform magnetic field B. In
our model, opposite walls of the strip impose either identical
or different boundary conditions on the wave function �for
magnetic materials� or the order parameter �for supercon-
ductors� �. Under the selected choice of the gauge for the
vector potential A, as a result of its orientation to the con-

fining surfaces, it drops out from the boundary condition �Eq.
�6��, which simplifies to

�n� =
1



���L. �7�

Below, for the extrapolation length 
, we adopt two limiting
cases; namely, on each of the confining walls of the strip, it
can be either zero �Dirichlet requirement� or infinity �Neu-
mann boundary condition�. In addition to the magnetic layer
structures discussed above, such a configuration can be fab-
ricated by sandwiching the superconducting film between the
insulator and the ferromagnet. Recently, the properties of a
thin mesoscopic superconducting ring with different inner
and outer extrapolation lengths were calculated.43 Here, a
few notes on the field-free curved waveguides are in
order. Historically, early hints44,45 on the ability of the bent
waveguide with Dirichlet boundary conditions to trap the
wave inside the curved section were rigorously proved
theoretically46–48 and were confirmed experimentally.49 An
extra space in the bend presents a shelter where the charged
particles can dwell with their momenta smaller than the cut-
off momentum of the lowest subband. Interference of the
discrete level split off by the bend from the higher lying
subband, with the continuum states of the lower mode, also
drastically modifies the transport properties of the duct, lead-
ing to a steep dip on the conductance versus energy
dependence.50,51 Recent theoretical studies discovered that
the curved duct with the inner Dirichlet and outer Neumann
requirements on the strip mimics the behavior of the Dirich-
let film;18,52–54 in particular, it leads too to the bound state
below the essential spectrum of the straight waveguide. In
terms of the GL theory, it means, according to Eq. �4�, an
increased critical temperature of the bent strip compared to
that of its straight counterpart. Thus, a suppression of the
superconductivity caused by the introduction of the Dirichlet
edge is partially compensated by the bending in the appro-
priate direction. A similar geometry-induced enhancement of
the superconductivity was recently predicted for the cylinder
and the sphere with the negative extrapolation length.55 No
bound state exists for the curved Neumann strip when the
continuous spectrum covers all non-negative energy axis.
Accordingly, in this case, the bend, as it follows from Eq.
�4�, does not change the critical temperature of the sample.
Note also that curved planar waveguides possess a lot of
interesting physics related to the Josephson transmission
lines.56,57

A brief survey of the theoretical and experimental re-
search on the bent waveguides with Dirichlet boundary
condition in the external magnetic field is given in Ref. 58.
In addition to the literature cited therein, here, we want to
mention recent calculations of the conductance of quasi-
particles in an L-shaped bent quantum waveguide in an
inhomogeneous magnetic field59 when a semiconductor/
superconductor junction at the exit arm was modeled by the
introduction of �-scattering potential. Andreev reflection60

was shown to strongly influence the conductance of the
structure.

In our approach to the theoretical investigation of the
curved magnetic or superconducting strip in the external ho-
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mogeneous magnetic field, we employ the same method used
in the previous study of the bent semiconductor channel;58

namely, in each part of the waveguide, we find an analytical
solution of Eq. �3� and match them at the junctions between
the curved section and the straight arms. It allows us to find
the bound-state dependence on the magnetic field, which, in
the case of superconductors, corresponds to the Tc−B phase
boundary. The results of the bound-state analysis are equally
valid both for the magnetic materials and the superconduct-
ors. We also calculate transport properties of the film; in
particular, for temperatures below the critical one, we calcu-
late transmission of the bend as a function of T. In addition,
geometry-induced vortices present even at B=0 are shown to
dramatically change for nonzero fields; in particular, for
small and moderate magnetic intensities, the vortices in the
straight arms near the junctions transform into the antivorti-
ces that correspond to the interference of the edge currents
flowing along the opposite walls of the strip.

The paper is organized as follows: In Sec. II, our model is
presented and a necessary formulation of our method is
given. Section III is devoted to the presentation and detailed
physical interpretation of the calculated results. Summary of
the research is provided in Sec. IV.

II. MODEL AND FORMULATION

The structure we consider is schematically shown in Fig.
2. Infinitely long magnetic or superconducting strip of con-
stant width d contains a uniformly curved section with an
inner radius �0 and an angle 0. A uniform magnetic field B
is applied in the positive z direction. On each of the film
sides, we impose a uniform boundary condition—either the
Dirichlet or Neumann one. For brevity, a case when a Di-
richlet �Neumann� condition is on the inner wall of the strip
and the other condition on the outer side will be called a DN
�ND� case below. Accordingly, the situation with the pure
Dirichlet �Neumann� conditions on both sides of the channel
is referred to as a DD �NN� configuration. From the geom-
etry of the system, it directly follows that the inversion of the
magnetic field is equivalent to the change from the up- to
down-turn configuration with the previous direction of B.
Since from the corresponding calculations for the semicon-
ductor channel it is known that, generally, up- and down-turn
bends differently behave in the magnetic field,61,62 both of
these configurations are shown in Fig. 2 and analyzed later in
the text. We will look for the solution of Eq. �3� in terms of
the energy E, which is more relevant for the ferromagnetic
channel, switching, if necessary, to the temperature T of the
superconductor, according to Eq. �4�. Accordingly, our lexi-
con below will include interchangeable usage of both ferro-
magnetic and superconducting terms, and the results will be
equally applicable to both of these materials, if not explicitly
stated otherwise. It is assumed that a strip width along the z
axis is much smaller than the penetration length � of the
superconductor, which means a uniform distribution of the
field in this direction. Accordingly, the z dependence drops
out from Eq. �3� and the problem becomes strictly two di-
mensional. Similarly, the homogeneous magnitude of B in-
side the strip in the x and y directions is satisfied for d��. In

addition to the mentioned above units of distance and energy,
we will measure all momenta in units of � /d, magnetic fields
in units of � / �qd2�, time in units of 2md2 / ��2��, velocity in
units of � / �md�, conductance in units of q2 /h, magnetic flux
in units of h /q, and two-dimensional current density in units
of q� / �md3�, where q=e for the ferromagnetic layer and q
=2e for the superconductor.

In each part of the waveguide, a corresponding solution
of Eq. �3� can be expressed in the analytical form. For ex-
ample, in the straight arm to the left of the bend, it is con-
venient to choose the local Landau gauge for the vector po-
tential A= �−yB ,0�. Then, a total solution of Eq. �3� in this
region is written as

��x,y� = 	
n=1

�

�Cn�pn
�+��y�eipn

�+�x + Dn�−pn
�−��y�e−ipn

�−�x� , �8�

where transverse functions �pn
�y� satisfy either the Dirichlet

or the Neumann boundary condition at the edges y= �1 /2.
The first sum in Eq. �8� describes the waves incident on the
bend, with a second term being a set of reflected �for the real

−x

y x
1

−y
1

φ
0

ρ
0

d

0
B

(a)

−x

y

x
1

y
1

φ
0
ρ

0

d

0

B

(b)

FIG. 2. �Color online� Schematic of the �a� up-turn and �b�
down-turn curved magnetic or superconducting film in uniform
magnetic field B pointing in the positive z direction. The waveguide
width is d and the bend angle and inner radius are 0 and �0,
respectively. The inner �thick solid line� and outer �dashed line�
surfaces of the duct support uniform boundary conditions that might
be different on the opposite walls. The origin of the polar coordinate
system �� ,� coincides with the center of the bend. For case �a�, the
polar axis is a vertical junction of the straight and curved parts,
while for case �b�, it is the junction with the right straight channel.
The curved arrows show the direction in which the azimuthal angle
 grows. The local Cartesian coordinate systems �x ,y� and �x1 ,y1�
for the straight arms are also shown. Their origins coincide with the
middle of the corresponding junction with the bent part.
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pn� or localized near it �for the purely imaginary pn� modes.
Complex amplitudes Cn and Dn define the relative contribu-
tion of the nth subband into the total supercurrent. Properties
of the functions �pn

�y� and the corresponding wave vectors
pn for the DD case were analyzed in detail in Refs. 58, 61,
63, and 64, and for any other configuration of the boundary
conditions, in Ref. 65. In particular, for the uniform—either
Dirichlet or Neumann—boundary conditions, the coefficients
pn are symmetric with respect to the sign change:
pn

�+�= pn
�−�.58,61,63–65 However, for the DN and ND configura-

tions due to the broken transverse symmetry, this equation
does not hold.65 Here, we mention also that the functions
�pn

�y� are expressed through the combination of the Weber
parabolic cylinder functions U�c ,��,66,67 and for every per-
mutation of the boundary requirements,58,61,63–65 they obey
the same orthonormalization condition,



−1/2

1/2

�pn + pn� − 2By��pn
�y��pn�

�y�dy = �nn� �9�

��nn� is a Kronecker symbol�, which can be easily derived
from the general properties of the Sturm–Liouville
analysis.68 For the uniform boundary requirements, a count-
able infinite set of wave vectors pn contains a finite number
of real values, infinitely many purely imaginary values,
and—for some magnitudes of B and E—can also include
complex numbers.58,61,63–65 For the DN and ND boundary
conditions, in addition to the finite number of real pn, a so-
lution of Eq. �3� contains an infinite number of complex
states.65

In the same way, a solution after the bend reads

��x1,y1� = 	
n=1

�

Fn�pn
�+��y1�eipn

�+�x1. �10�

Again, the terms in Eq. �10� with real pn describe the waves
propagating away from the scatterer, while the terms with
purely imaginary momenta are the states trapped by the
bend. Equation �10� is written in the Landau gauge A= �
−y1B ,0� for the right arm.

Expression �5� for the current �for ferromagnets� or super-
current �for superconductors� density in our dimensionless
units reads

j = − Im����r� � ��r�� − A���r���r� . �11�

Substituting into it Eqs. �8� and �10�, integrating j over the
strip width, and utilizing Eq. �9�, one can find the total lon-
gitudinal supercurrent flowing in both straight arms. Current
conservation gives after the straightforward calculation de-
scribed above,

	
n=1

�

�Cn�2 = 	
n=1

�

��Fn�2 + �Dn�2� , �12�

i.e., the incident flux is equal to the sums of the transmitted
and reflected supercurrents.

In a standard manner, one can define scattering S and
reflection R matrices of the structure that link, respectively,
the amplitudes of the transmitted or reflected waves in each
subband with those of the incident flux:

F = SC , �13a�

D = RC , �13b�

where the amplitudes Cn, Fn, and Dn from Eqs. �8� and �10�
form infinite column vectors C, F, and D, respectively. For
the ferromagnetic arrangement, scattering matrix S defines
the conductance G of the strip,69

G�E� = 	
nn�

Snn�
� Snn�, �14�

with the summation running over all open channels. In the
case of superconductors, the conductance is infinite; how-
ever, still, matrices S and R are relevant; in particular, the
term �S11�2 defines a transmission through the bend in the
fundamental propagating mode. We note here that the unitar-
ity of the scattering process is mathematically expressed as

S†S + R†R = I , �15�

where I is the unitary matrix. Some other properties of S and
R are discussed in Ref. 65.

In the curved section, for the up-turn bend, in the polar
system of coordinates �� ,� with its origin at the center of
the bend and polar axis coinciding with the vertical junction
between the straight and curved parts, in the symmetric
gauge for the vector potential,

A = �0,
1

2
B�� , �16�

the radial and angular variables are separated,

���,� = 	
n=1

�

QnR�n
���ei�n, �17�

and the radial wave function R�n
��� satisfies the following

equation:

� d2

d�2R�n
��� +

1

�

d

d�
R�n

��� + �2ER�n
����

− ��n

�
+

1

2
B��2

R�n
��� = 0. �18�

Similar to the straight arms, our choice of the vector poten-
tial �Eq. �16�� leads at �=�0 and �=�0+1 either to the Di-
richlet or Neumann requirement for the radial wave function.
As a representative example, below we write an explicit ana-
lytical form of the radial function for the DN case,

R�n
��� = ��n

exp�−
1

4
B�2��1

2
B�2��n/2

��M�1

2
+ �n −

�2

2

E

B
,�n + 1,

1

2
B�0

2�
�U�1

2
+ �n −

�2

2

E

B
,�n + 1,

1

2
B�2�

− U�1

2
+ �n −

�2

2

E

B
,�n + 1,

1

2
B�0

2�
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�M�1

2
+ �n −

�2

2

E

B
,�n + 1,

1

2
B�2�� . �19�

Here, M�a ,b ,x� and U�a ,b ,x� are Kummer confluent hyper-
geometric functions67 and ��n

is determined from the nor-
malization condition of the following form:



�0

�0+1 ��n + �n�

�
+ B��R�n

���R�n�
���d� = �nn�. �20�

This orthonormalization condition is identical for all other
types of the boundary requirements, which again can be de-
rived from the Sturm–Liouville analysis.68 In order to distin-
guish the Weber function U�a ,x� from the confluent hyper-
geometric function U�a ,b ,x�, we write each of them with all
their variables.

The boundary condition ���0 ,�=0 is automatically sat-
isfied by Eq. �19�. Imposing the second condition
����� ,�����=�0+1=0, one gets the transcendental equation
for determining the allowed values of �n; for example, for
the DN case, it reads

M�a + �n,�n + 1,z1��1

2
��n − z2�U�a + �n,�n + 1,z2�

+ z2U��a + �n,�n + 1,z2�� − U�a + �n,�n + 1,z1�

��1

2
��n − z2�M�a + �n,�n + 1,z2�

+ z2M��a + �n,�n + 1,z2�� = 0. �21�

Here, a=1 /2− ��2 /2��E /B�, z1=�0
2 /2, z2= ��0+1�2 /2, and a

prime denotes a derivative of the function with respect to its
last argument. Equation �21� determines the values of �n for
the fixed energies E, fields B, and radius �0. Similar equa-
tions can be easily written for the other types of the boundary
conditions; for example, for the ND case, one needs to inter-
change subscripts “1” and “2” at the variable z. All other
properties of the above equations, in particular, their asymp-
totics in the vanishing fields, can be directly analyzed in the
same way, as for the DD case.58

Contrary to the systems with circular
symmetry,28,31,38,43,70–76 in our case, the coefficients �n are
not real integers. An analysis shows that, similar to the DD
configuration,58 for each fixed energy E, a complete set of
solutions of Eq. �21� consists of zero or several real radial
wave vectors and a countable infinite number of complex
values that are arranged in pairs in such a way that each �n
has its complex conjugate �n

� also satisfying Eq. �21� with the
corresponding oscillatory damped wave function having the
same real and opposite imaginary parts. Figure 3 provides a
comparative analysis of the angular wave vectors �n for all
four possible cases of the boundary conditions. For complex
wave vectors, only their positive imaginary parts are de-
picted. A strong qualitative similarity for all four cases is
seen; namely, for each complex �n, the magnitude of its
imaginary part decreases with growing energy, and at some
value—which is boundary-condition specific—it turns to

zero. At this point, the real part of the wave vector splits into
two, which develop into the opposite directions with further
growth of E. Discussion of all other properties of the con-
stants �n and corresponding functions R�n

��� in a straightfor-
ward way may be borrowed from the corresponding parts of
the description of the DD case;58 in particular, solutions of
two equations, �n�E�=0 and

 �E

� Im��n�


�2E/��Im��n��2�0
= 0, �22�

are identical for the vanishing fields only with their differ-
ence growing with B. It is important to note that for the DN
case, similar to the DD strip, solutions of Eq. �22� are always
smaller than their corresponding cutoff energies for the
straight arms.65 This is a necessary condition for the exis-
tence of the bound states with energies below the fundamen-
tal propagation threshold of the straight waveguide.50,53,58

After having found the solutions in each part of the wave-
guide, one needs to match them at the junctions. However,
before doing that, these solutions should be brought to the
form where they are expressed in the same gauge. Recall that
the order parameter ��r� in the straight arms was derived
with the corresponding local Landau gauges described above
and in the curved section a symmetric gauge �Eq. �16�� has
been implemented. Basic principles of quantum mechanics25

require that the change in the vector potential A→A+�f
should be accompanied by the corresponding transformation
of the wave function, ��r�→��r�e−if�r�, where f�r� is an
arbitrary function of space. By applying this rule to our situ-
ation and choosing as a global gauge the symmetric one, we
need to multiply the right-hand side of Eq. �8� by the factor
exp�−iBx�y+�0+ 1 / 2 � /2�. The same exponent �with the ob-
vious change x→x1, y→y1� appears in the corresponding
part of Eq. �10�. After that, a matching is done for the up-turn
bend with the use of the relations between different systems
of coordinates �x ,y�, �� ,�, and �x1 ,y1�,

�x = 0,y� ⇔ �− y + �0 +
1

2
, = 0� , �23a�

�x1 = 0,y1� ⇔ �− y1 + �0 +
1

2
, = 0� , �23b�

 �

�x


x=0
⇔

1

− y + �0 + 1
2

 �

�


=0
, �23c�

 �

�x1


x1=0
⇔

1

− y1 + �0 + 1
2

 �

�


=0

. �23d�

As a result of matching, one can express coefficients Dn and
Fn via Cn according to Eqs. �13a� and �13b�.

The procedure of finding the scattering and reflection ma-
trices for the down-turn bend is very similar to the one of the
up-turn case described above. Due to the fixed direction of
the particle motion in the uniform magnetic field, now we
need to choose the polar axis coinciding with the other junc-
tion between the curved and straight sections and the azi-
muthal angle  growing again in the counterclockwise direc-
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tion, as shown by the curved arrow in Fig. 2�b�. Accordingly,
Eqs. �23a�–�23d� will also be changed,

�x1 = 0,y1� ⇔ �y1 + �0 +
1

2
, = 0� , �24a�

�x = 0,y� ⇔ �y + �0 +
1

2
, = 0� , �24b�

 �

�x1


x1=0
⇔ −

1

y1 + �0 + 1
2

 �

�


=0
, �24c�

 �

�x


x=0
⇔ −

1

y + �0 + 1
2

 �

�


=0

. �24d�

In all other aspects, the procedure of deriving the scattering S
and reflection R matrices remains the same, as described
above. Since explicit expressions for S and R are very simi-
lar to the ones of the DD case,58 we do not write them here.

When one considers bound states lying below the funda-
mental propagation threshold of the straight DN arm, it is
necessary to set all coefficients Cn in Eq. �8� equal to zero,
Cn�0. The procedure of matching is completely similar to
the one used for the scattering case and leads then to the
infinite linear algebraic system. Requirement of the vanish-

ing of its determinant defines energies of the bound levels
and, according to Eq. �4�, temperatures T at which a nucle-
ation of superconductivity takes place. An infinite set of
eigenvectors corresponding to the eigenenergies defines co-
efficients Dn, Fn and Qn. In other words, one can fully con-
struct the order parameter � in the magnetic field.

III. RESULTS AND DISCUSSION

Here, we present results of the theory developed in Sec. II
with their detailed analysis. Since, as we pointed out earlier,
for the DN superconducting strip the critical temperature is
higher than for its straight counterpart, the main attention
will be paid just to this configuration of the boundary condi-
tions. However, before doing this, we want to return to the
applicability of our model to the magnetic materials. Namely,
the Neumann boundary condition at the interface naturally
arises in the GL description of superconducting samples. On
the other hand, for the magnetic multilayers, it needs some
additional justification provided below. As we have shown in
Sec. I for the field-free straight waveguide with the potential
profile depicted in Fig. 1�a�, mixed boundary conditions can
be achieved for V0= �1 /s2−1� /4 and quite small s. In turn, in
the curved section with an outer deeper well, the propagation
thresholds Wn are determined from the following equation:
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FIG. 3. �Color online� Propagation constants �n of the continuously curved waveguide as a function of the energy E for �0=0.01 and B=5
and four possible types of boundary conditions. States with positive �negative� �n are plotted by the dash-dotted �solid� lines and denoted by
the corresponding superscript near the level numbers. Real parts of the states with complex propagation constants are also shown by the solid
lines and denoted by the superscript �c�. Positive imaginary parts of the complex �n are plotted by the dotted curves. The dashed lines denote
zero value of the angular constant. Two characters in each panel show the corresponding type of the boundary conditions.
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�1 +
V0

Wn
�Y0���Wn + V0��0 + 1 + s��J1���Wn + V0��0 + 1�� − J0���Wn + V0��0 + 1 + s��Y1���Wn + V0��0 + 1���

��Y0���Wn�0�J0���Wn��0 + 1�� − J0���Wn�0�Y0���Wn��0 + 1��� − �Y0���Wn + V0��0 + 1 + s��J0���Wn + V0��0 + 1��

− J0���Wn + V0��0 + 1 + s��Y0���Wn + V0��0 + 1����Y0���Wn�0�J1���Wn��0 + 1�� − J0���Wn�0�Y1���Wn��0 + 1��� = 0,

�25�

where J��x� and Y��x� are the �th order Bessel functions.67 For V0= �1 /s2−1� /4, the limit of s→0 transforms Eq. �25� to

�Y0���Wn�0�J1���Wn��0 + 1�� − J0���Wn�0�Y1���Wn��0 + 1���

=
1

2���0 + 1��Wn

�Y0���Wn�0�J0���Wn��0 + 1�� − J0���Wn�0�Y0���Wn��0 + 1��� , �26�

while for the Dirichlet–Neumann configuration, the right-
hand side of this equation is identically zero.53 When utiliz-
ing properties of the Bessel functions,67 it is elementary to
show that in the limiting case of �0→�, Eq. �26� reproduces
straight Dirichlet–Neumann thresholds from Eq. �2�, as
would be expected. Note that for the zero left-hand side, one
gets the equation for the determination of the bend propaga-
tion thresholds for the DD strip.51 Thus, contrary to the
straight arms, where the limiting procedure of s→0 leads to
the DN configuration, in the bend, one arrives to the more
complicated situation. Semiclassically, this difference that
decreases with increasing �0 is explained by the centrifugal
forces acting in the curved section and being absent in the
straight arms. Figure 4 depicts radial wave functions for the
fundamental �n=0� and first propagating �n=1� bend thresh-
olds and several s with �0=0.1. It is seen that contrary to the
straight waveguide, even for the flat potential profile, the
wave function is not symmetric with respect to the middle of
the bend �dotted curves in Fig. 4�. Accordingly, decreasing
width s, in general, does not lead to the vanishing derivative
of the wave function at �=�0+1. A comparative analysis of
the two cases of Eq. �26� �with zero and nonzero right-hand
sides� shows that the threshold energies Wn for the former
case are smaller than their counterparts for the latter situa-
tion, which physically means that the DN bend binds elec-
tron stronger than the limiting case of the potential from Fig.
1�a�. As an example, we show in Fig. 5�b� bound-state ener-
gies of the curved waveguide with DN boundaries53 and of
the duct with stepped potential for s=0.01 and different V0.
As expected, for V0= �1 /s2−1� /4, at 0=0, the bound state
emerges with energy E=1 /4, as is the case for the DN quan-
tum wire too.53 Increasing bend angle 0 in both cases
causes the bound-state energies to decrease with the slope of
the curve for the DN channel being steeper. As stressed
above, smaller bound-state energies for the DN case are due
to the stronger electron confinement in the bend. However, as
shown in Fig. 5�b�, any desired bound-state energy of the DN
waveguide can be achieved in the model of the channel with
the stepped potential by tiny changes in V0; for example, to
match the DN energy at 0=120�, one needs to increase the
depth of the outer well by only �0.2%. Thus, here the pro-
posed model of the stepped potential profile can serve as a

very good first approximation for the mixed boundary con-
ditions in the magnetic multilayers. We also show in Fig.
5�a� bound-state energies of the stepped potential for differ-
ent widths s and V0= �1 /s2−1� /4. It is seen that smaller s
causes the energies to decrease faster with their difference
increasing with the bend angle 0.

FIG. 4. �Color online� �a� Radial wave functions of the funda-
mental bend propagation threshold �n=0� for the gap V0= �1 /s2

−1� /4 and several lengths s. �b� The same as in panel �a�, but for
the first excited propagation threshold �n=1�. The bend radius for
both cases is �0=0.1.
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Having learned about the applicability of the model with
the mixed boundary conditions, we return to the analysis of
the magnetic field influence on the bent waveguide. We start
from the localized modes. Our calculations show that their
energies, similar to the DD case,58 are independent of the
field orientation. Accordingly, below, we will discuss the
case of positive B only. Figure 6 shows bound-state energies
of the DN up-turn film for several �0 and 0. Recalling Eq.
�4�, one can say that Fig. 6 shows B−Tc phase boundary for
the superconducting strip. For comparison, the boundary for
the straight DN duct is also shown. It was obtained in the
manner analogous to the NN channel;40 namely, first, a low-
est solution E of the corresponding transcendental equation,

U��2

2

E

B
,− i�2B�1/2�1

2
−

p

B
��U���2

2

E

B
,− i�2B�1/2�1

2
+

p

B
��

+ U��2

2

E

B
,i�2B�1/2�1

2
−

p

B
��

�U���2

2

E

B
,i�2B�1/2�1

2
+

p

B
�� = 0, �27�

was calculated for the fixed arbitrary momentum p and, next,
this solution was minimized with respect to p. It is seen from
Fig. 6 that energies monotonically increase with the field,
which, quite naturally, means decreasing critical temperature
T of the superconducting film. Remarkably, for all bend radii

and angles, the critical temperature for the curved film re-
mains higher than for its straight counterpart. In other words,
bend-induced enhancement of the superconductivity in zero
fields53 persists for nonzero B. Similar to the DD case,58

bound-state wave function in the straight arms contains com-
ponents �pn

with only complex wave vectors pn while in the
bend, in addition to the infinite set of complex �n, there are
two waves with real coefficients �n freely propagating in the
curved section. We also note that contrary to the DD curved
channel,58 the energies for the DN case grow slower with the
field, and at high B they do not approach Landau levels stay-
ing well below them. This, of course, is due to the influence
of the Neumann surface.

Figure 7 shows the order parameter ��r� of the right
angle bend with �0=0.001 for several nonzero magnetic
fields. The corresponding plot for B=0 is depicted in Fig. 4
of Ref. 53. Increasing magnetic intensity pushes Cooper
pairs closer to the boundary with the Neumann requirement
where the nucleation of superconductivity takes place. It also
leads to the larger longitudinal extent of � in the straight
arms, which means that superconductivity for the higher B
nucleates not only in and around the bend, as it was the case
for zero and small fields, but is disseminated further and
further along the Neumann edge. For all magnetic fields, the
order parameter remains symmetric with respect to the plane
=0 /2.

Next, we consider transmission properties of the bend as a
function of energy E for different B. Due to the size quanti-
zation imposed by the finite strip width, a transport in the
film takes place in subbands that, for zero magnetic field,
have their thresholds at En

DN= �n+ 1 / 2 �2, n=0,1,
¯

. Their evo-
lution for nonzero field is discussed in Ref. 65. As follows
from Eq. �4�, energy change is equivalent to the varying
temperature T. For example, for typical experimental param-
eters 	�0�=120 nm and d=1 �m,38 one has

FIG. 5. �Color online� �a� Bound-state energies of the curved
wire with stepped transverse potential profile for the gap V0

= �1 /s2−1� /4 and several lengths s as a function of the bend angle
0: the solid curve is for s=0.001, the dotted curve is for s=0.1, the
dashed curve is for s=0.3, and dash-dotted line is for s=0.5. �b�
Bound-state energies of the curved DN waveguide �solid line� and
of the wire with the stepped transverse potential with s=0.01 and
several depths V0 �dashed curves�. The numbers above the dashed
curves denote corresponding depth V0. The upper curve is for V0

= �1 /s2−1� /4. The bend radius for both panels is �0=0.1.
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FIG. 6. �Color online� Bound-state energies E as a function of
the field B for �0=0.001 and 0=90° �thin solid line�, �0=0.001
and 0=180° �dotted line�, �0=0.1 and 0=90° �dashed line�, and
�0=0.1 and 0=180° �dashed-dotted line�. The thick solid line
shows the fundamental propagation threshold of the corresponding
straight film �least solution of Eq. �27��.
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T

Tc
= 1 − 0.14E . �28�

Accordingly, the fundamental propagation threshold for zero
magnetic field E=1 /4 is equivalent to T1=0.964Tc, and the
upper boundary of the first propagating mode E=9 /4 to T2
=0.680Tc. Note that due to the substitution of one of the
Neumann edges by the Dirichlet one, no supercurrent flows
for the temperatures in the range T1�T�Tc. This is in a
sharp contrast to the NN case when the thresholds are given
by En

NN=n2, n=0,1 ,2,
¯

, and, accordingly, a continuous
spectrum starts at E=0. Below, in order to eliminate the in-
terference between the modes that might obscure the most
characteristic features of discussed phenomena, we will con-
fine our consideration to the fundamental mode only when
the term �S11�2 is relevant. Our results show that in this case,
there is no difference in the transmission between up- and
down-turn bends. Thus, in the following, we will talk about
the magnitude of the magnetic field B only, without reference
to the up- or down-turn configuration.

Figure 8 shows the transmission through the bend with
�0=0.001 and 0=180� for several magnetic fields. For the
field-free case, there are one or several Breit–Wigner-type
resonances near the fundamental propagation threshold and a
steep antiresonance with zero transmission slightly below the
upper boundary.53 This antiresonance is explained by mixing
by the bend of the longitudinal and transverse motions in the

waveguide and the interference of the discrete level split off
by the bend from the higher lying subband, with the con-
tinuum states of the fundamental mode. As a result, the an-
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FIG. 7. �Color online� Order parameter ���x ,y�� �normalized to its maximum� of the bound state for �0=0.001 and the right angle for �a�
B=2, �b� B=5, �c� B=10, and �d� B=15.

FIG. 8. �Color online� Transmission �S11�2 as a function of the
energy E for the bend with �0=0.001 and 0=180° for several
values of the magnetic field B. The inset shows the enlarged view
near the mode upper threshold. The numbers near the curves denote
corresponding intensity B. The arrows show half widths � for B
=3.35 and B=4.
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tiresonance is formed with the energy of the zero minimum
Emin and the half width �, which depend on the parameters
of the bend.

Applied magnetic field drastically modifies transmission
dependence on the energy E with main influence being ex-
erted on the zero antiresonance with only slight changes in
the resonances near the fundamental propagation threshold.
As shown in Fig. 8, the energy Emin at which the minimum is
achieved increases with the field. Its B dependence is similar
to the bound-state energies described above. The minimum
conductance Gmin generally ceases to be zero for nonvanish-
ing magnetic fields. For example, for the parameters from
Fig. 8, it grows with small fields, reaching unity maximum at
B=2.95, which means that at this point, the resonance is
completely dissolved. After that, the value �S11�2 decreases
with the zero minimum being again achieved at B=3.35, and
the situation is repeated a few more times. Thus, contrary to
the field-free case,53 for the complete description of the reso-
nance, one needs to use not only the energy Emin and the half
width � which form the complex energy of the quasibound
state,

Eqb = Emin −
i�

2
, �29�

but also the minimum value of the conductance in the reso-
nance Gmin. Accordingly, the definition of the half width �
that defines the lifetime � of the corresponding level,

� =
1

�
, �30�

should be modified in order to reflect the nonzero minimum
of the conductance; namely, as shown in Fig. 8, now it is the

difference between the energies at which the conductance is
equal to G= �1+Gmin� /2. It is seen from Fig. 8 that � is a
nonmonotonic function of the field; in particular, it diverges
when the minimum conductance reaches its unity maximum.
As we mentioned above, it means a complete dissolution of
the quasibound level formed by the bend. Since the �−B
dependence for the DN case is very similar to the pure Di-
richlet strip,58 it is not shown here.

Transmission in the minimum Gmin as a function of the
field is shown in Fig. 9. It is seen that minimum transmission
oscillates with B, the number of oscillations being larger for
the larger bend angle and fixed radius. The maxima of Gmin
are always equal to unity, while its minima can take vanish-
ing as well as nonzero values. At strong enough magnetic
intensities, the minimum transmission approaches unity and
retains this magnitude with increasing B. As we mentioned
above, this means that the field completely washed out the
resonance. On the quantitative note, one sees that, compared
to the DD case,58 complete dissolution of the quasibound
level for the DN case takes place at smaller fields.

To get a deeper insight into the transport properties, it is
instructive to investigate currents flowing in the film. We
start this discussion from the case of nonvanishing small and
moderate fields. Figure 10 shows the current densities j cal-
culated from Eq. �11� for the up-turn bend with �0=0.001
and 0=180� at B=1 and several energies E �see correspond-
ing curve in Fig. 8, which reaches its minimum of Gmin
=0.077 at Emin=2.101 with a half width �=0.026�. It is
known53 that current density patterns for the field-free case
form the vortices inside and near the bend, which change
their chirality as the energy sweeps through Emin. The ap-
plied magnetic field changes the vortex behavior. Namely,
for the energy far away from Emin, the current flow is per-
fectly laminar throughout the whole strip with the largest
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FIG. 9. �Color online� Trans-
mission Gmin corresponding to the
minimum on �S11�2−E curve as a
function of the field B for �0=0.1
and 0=90° �solid curve�, �0

=0.1 and 0=180° �dotted curve�,
�0=0.001 and 0=90° �dashed-
dotted curve�, and �0=0.001 and
0=180° �dashed curve�.
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longitudinal j near the Neumann edge. As one comes closer
to the resonance, the vortices start to develop inside the
curved section. One of the first phases of the formation of the
vortices is shown in Fig. 10�a�, wherein three well-resolved
vortex centers are clearly seen inside the bend with the cur-
rent density around them acquiring a noticeable transverse
component. Contrary to the field-free case,53 in the straight
arms instead of the vortices, one sees the formation of the
antivortices near the curved section. Far away in the straight
arms, the current still has a longitudinal component only.
Antivortices develop as a result of the interaction of the sur-
face currents77–81 flowing along the opposite edges of the
strip. When one comes closer to Emin, whirling motion in the
bend becomes more pronounced �Fig. 10�b�� with the anti-
vortices in the straight arms being also clearly observable.
Similar to the DD case,58 the vorticity of the currents near
the junctions with the straight arms is larger than their coun-
terpart in the middle of the curved section. In turn, for the
field-free case,53 all the whirlings in the bend have the same
strength. Further evolution of the vortices with energy is very
similar to the DD case;58 namely, with E growing, the vorti-
ces move clockwise, retaining their vorticity sign and, upon
approaching the junction with the straight part, the lowest
vortex is dissolved in it giving birth to the new antivortex
�Fig. 10�c��. Simultaneously, near the upper junction, the

new vortex is formed occupying the place of its predecessor
with its vorticity being opposite. Thus, for nonzero magnetic
intensities, the change of the vorticity sign is a gradual pro-
cess, contrary to the field-free case,53,82 wherein the whirl-
ings abruptly flip their sign at the energy of the reflection
resonance due to the sudden change of the phase of the trans-
mission matrix. As one moves further to the right of the
resonance area �Fig. 10�d��, the current gradually restores its
laminar character. It is important to emphasize that, similar
to the quantum dot embedded symmetrically into the
waveguide83 or the two Neumann windows in the straight
Dirichlet waveguide,65 vortices discussed here are a simple
consequence of the geometry-induced interference between
the different subbands in the presence of the magnetic field
and, as such, they are different from the vortices in the bulk
superconductors;23,24 in particular, each of them does not
carry the flux quantum. It is also worthwhile to note that for
all magnetic fields, the current density j at the Neumann edge
has a longitudinal component only, nj=0, with no flow
through the surface, as it should be for the
superconductors.23,24

Further growth of the magnetic field leads to the qualita-
tive change of the vortices. Figure 11 shows the current den-
sity evolution for the quite strong field B=15 for the film
with �0=0.1 and 0=180� when minimal transmission Gmin

(a) (b)

(c) (d)

FIG. 10. �Color online� Spatial distribution of the current densities j of the up-turn strip at magnetic field B=1 for �0=0.001, 0

=180° and several values of the energy E: �a� E=2.05 �transmission �S11�2=0.957�, �b� E=2.095 ��S11�2=0.254�, �c� E=2.11 ��S11�2
=0.345�, and �d� E=2.15 ��S11�2=0.910�. The inner Dirichlet and outer Neumann surfaces of the film are shown by the thick solid and dashed
lines, respectively. Since the bend radius is very small, the gap between the two parallel inner walls is not seen in the figure. The larger
arrows denote higher currents. For each of the figures, the currents are normalized with respect to their largest value.
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=0.352 is achieved at Emin=3.998 43 with a narrow half
width �=0.000 17. Away from the resonance, the current for
the up-turn bend mainly flows in the vicinity of the inner
�i.e., Dirichlet� surface, as shown in Fig. 11�a�. This is a
vivid example of the surface currents in the magnetic
fields.77–81 In turn, for the down-turn bend, the current in the
straight arms, similar to the DD configuration,58 will concen-
trate near the outer surface, i.e., in our case, near the Neu-
mann wall. With energy approaching the resonance, no mul-
tiple vortices develop in the bend. Instead, according to Figs.
11�b� and 11�c�, only one vortex is observable, which is con-
fined by the curved part and its junctions with the straight
arms with current amplitude being 4 orders of magnitude
larger than for the flows at the nonresonant energies. The
vorticity sign is not changed after passing the minimum Emin.
One can say that for strong enough fields, a giant vortex is
formed in the bend-induced positive potential. At the ener-
gies sufficiently far away from the resonance, the bend-
shaped vortex is split into the several irregular patterns
shown in Fig. 11�d� with the currents in the straight arms
restoring laminar flow near the inner surface. Thus, similar to
the DD case, increasing magnetic field reduces number of the
vortices. At still higher fields, when the quasibound state is
completely dissolved, Gmin=1, no vortices are formed at all
with perfect laminar current flow.

IV. CONCLUDING REMARKS

We have theoretically considered properties of the curved
thin film with different boundary conditions in the homoge-
neous magnetic field. Even though the superconductivity and
the magnetism are two opposite, competing, not to say, an-
tagonistic, physical phenomena, we have shown that the pro-
posed model can be equally well applied to these both kinds
of strip. As already mentioned, the same model can be used
for the study of the processes in graphene,21 although it
needs relativistic generalization in this case. Our analysis
confirmed once again that the pure Dirichlet and the DN bent
films have many features in common; previous theoretical
research52,53 established this fact for the field-free case, and
our present calculations proved it for the applied magnetic
fields.58

Here, the discussed situation of the simultaneous presence
of the pure Dirichlet and Neumann requirements is a limiting
case of a more general situation when both the wave function
� and its derivative enter into the boundary conditions. In
terms of Eq. �7�, it means the finite nonzero value of the
extrapolation length 
. In mathematics, such a combination
is called a Robin boundary condition. Recently, the first the-
oretical analysis of the field-free curved waveguide with Di-
richlet and Robin requirements on the opposite walls was

(a) (b)

(c) (d)

FIG. 11. �Color online� Spatial distribution of the current densities j of the up-turn film at magnetic field B=15 for �0=0.1, 0=180° and
several values of the energy E: �a� E=3.94 ��S11�2=1�, �b� E=3.996 ��S11�2=0.999�, �c� E=3.998 43 ��S11�2=0.352�, and �d� E=4.005
��S11�2=1�. For each of the figures, the currents are normalized with respect to their largest value.
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reported.84 Further research will reveal bound-state existence
and their dependence on the extrapolation length 
 and the
parameters of the bend for both B=0 and the nonzero field.

Experimentally, semiconductor technology advanced to
such a level that allows researchers to measure miscellaneous
spin85 and charge86 properties of the pure Dirichlet L-shaped
structures. In our opinion, the discussed DN curved films
could be produced, say, by the appropriate truncation of the
superconducting Hall bars87 and flanking them with different
substrates. Depending on the crystallographic directions,
bends with other configurations can also be designed and
tested.

Throughout the whole paper, while talking about super-
conductors, we have used the linearized GL equation. It is
known22–24 that the full system of GL equations contains in
the left-hand side of Eq. �3� the term ����2� with the second
GL parameter � given by23,88 �we return here to the dimen-
sional units�

� �
1

N�0�� �2

2m	2�0��2 1

�kBTc�2 , �31�

where N�0� is the density of states at the Fermi energy and kB
is the Planck constant. Expression �31� is valid for the “pure”
superconductors. For the “dirty” superconductors �alloys�,
	2�0� in GL parameters � and � should be substituted by
	�0�l, where l is the mean free path of the material. In the
standard treatment of the bound states,23,24 the cubic term
can be safely neglected since the lowest localized solution
corresponds to the nucleation of the superconductivity when
the order parameter � representing the density of supercon-
ducting electrons is small. As we mentioned in Sec. I, such a
theoretical approach is in very good agreement with

experiment.36–38 In turn, a solution of the full system of the
GL equations for the scattering case presents a formidable
challenging problem lying beyond the scope of the present
research. Inclusion of the cubic term should modify results
presented above. However, we believe that the main features
discussed here—such as transmission change with tempera-
ture or evolution of the vortices in the magnetic field—will
qualitatively survive in such a treatment. First, we note that,
as follows from Eq. �31�, the relative contribution of the
cubic term will be small for the large terms in the denomi-
nator of its right-hand side. In particular, for the classical
�non-high-Tc� superconductors, the coherence length 	�0� is
rather large compared to the high-Tc materials. Thus, finding
optimal combination of Tc and 	 can strongly minimize �.
Second, it is known that for small superconducting alumi-
num disks with radius �0, the linearized equation correctly
captures the essential qualitative features of the magnetiza-
tion dependence on the magnetic fields74 for large enough �0,
and for the smaller radii its solutions quantitatively coincide
with the experimental data89 even better than those of the full
GL system.74 Note that experiments89 and their theoretical
explanations74 are carried out down to T=0.4 K, lying well
below the corresponding Tc=1.19 K for aluminum �cf. Ref.
23�. In our scattering configuration, such a ratio for 	�0�
=120 nm �Ref. 38� and d=1 �m corresponds to the dimen-
sionless energy E�5 lying in the neighborhood of the upper
threshold of the first excited propagating mode. This last
argument also shows that the temperature range where the
GL theory is applicable is covered by our treatment. Accord-
ingly, the main messages of the present paper concerned to
the supercurrents for temperatures below Tc should be
present—in more or less modified form—in the more elabo-
rate theories and detected in the experiment.
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