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We consider a spin-1
2 XY chain in a transverse �z� field with multisite interactions. The additional terms

introduced into the Hamiltonian involve products of spin components related to three adjacent sites. A Jordan–
Wigner transformation leads to a simple bilinear Fermi form for the resulting Hamiltonian and, hence, the spin
model admits a rigorous analysis. We point out the close relationships between several variants of the model,
which were discussed separately in previous studies. The ground-state phases �ferromagnet and two kinds of
spin liquid� of the model are reflected in the dynamic structure factors of the spin chains, which are the main
focus in this study. First, we consider the zz dynamic structure factor, reporting for this quantity a closed-form
expression and analyzing the properties of the two-fermion �particle-hole� excitation continuum, which governs
the dynamics of transverse spin component fluctuations and of some other local operator fluctuations. Then we
examine the xx dynamic structure factor, which is governed by many-fermion excitations, reporting both
analytical and numerical results. We discuss some easily recognized features of the dynamic structure factors,
which are signatures of the presence of the three-site interactions.
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I. MULTISITE INTERACTIONS AND JORDAN–WIGNER
FERMIONIZATION

Spin-1
2 XY chains provide an excellent ground for study-

ing various properties of quantum many-particle systems
since, after performing the Jordan–Wigner transformation,
these spin models can be reduced to systems of noninteract-
ing spinless fermions.1 One interesting issue that has recently
emerged in the theory of quantum spin systems is the study
of effects of multisite interspin interactions. Such interac-
tions may arise, e.g., in an effective spin model for the stan-
dard Hubbard model at half filling in higher orders �beyond
t2 /U� of the strong-coupling t /U expansion.2 Another ex-
ample is provided by quantum spin systems with energy
currents.3–5 As early as 1971,6 Suzuki proposed generalized
one-dimensional XY models with multisite interactions,
which allows for a rigorous analysis by the Jordan–Wigner
fermionization approach. An exactly integrable spin-1

2 XXZ
quantum spin chain with three-site interactions was sug-
gested in Ref. 7 �see also Ref. 8�. An XY version of this
model was independently considered in Ref. 9. Another ver-
sion of the spin-1

2 XY chain with three-site interactions was
suggested in Refs. 10 and 11. Later on, spin-1

2 XY chains
with three-site interactions were considered in a number of
papers concerning quantum phase transitions, transport prop-
erties, and entanglement.12–20 Recently, in Ref. 21, the spin-1

2
XY chain with alternating three-site interaction has been in-
troduced, whereas in Ref. 22, the dynamic characteristics of
a few quantum spin chains with multisite interactions have
been discussed. However, an exhaustive study of the dy-
namic properties of spin-1

2 XY chains with multisite interac-
tions, similar to that for conventional XY chains,23–25 has not
been performed yet. With our paper, we attempt to fill this
gap.

In what follows, we consider the Hamiltonian

H = �
n

�Jn�sn
xsn+1

x + sn
ysn+1

y � + Dn�sn
xsn+1

y − sn
ysn+1

x �

+ Kn�sn
xsn+1

z sn+2
x + sn

ysn+1
z sn+2

y �

+ En�sn
xsn+1

z sn+2
y − sn

ysn+1
z sn+2

x � + �nsn
z� . �1.1�

Here, Jn and Dn are the isotropic XY �or XX� exchange in-
teraction and the z component of the Dzyaloshinskii–Moriya
interaction between the neighboring sites n and n+1, respec-
tively. Kn and En are two types of three-site exchange inter-
actions introduced in Refs. 10 and 11 and in Ref. 9, respec-
tively �see also Ref. 26 where the general Hamiltonian �1.1�
was introduced as well�. �n is the transverse �z� external
magnetic field at site n. The sum in Eq. �1.1� runs over all N
lattice sites; boundary conditions �open or periodic� are not
important for the quantities to be calculated in the thermo-
dynamic limit N→�. In this study, in most cases, we restrict
ourselves to homogeneous chains with site-independent val-
ues of the interspin interaction constants and field, i.e., Jn
=J.

We start by discussing the symmetry properties of the
Hamiltonian �1.1� in order to show the close relations be-
tween the models of Ref. 9 �i.e., with the XZY −YZX type of
three-site interactions� and of Refs. 10 and 11 �i.e., with the
XZX+YZY type of three-site interactions�, which were not
discussed before. Consider a local spin rotation around the z
axis

sn
x → s̃n

x = sn
x cos �n + sn

y sin �n,

sn
y → s̃n

y = − sn
x sin �n + sn

y cos �n,

sn
z → s̃n

z = sn
z . �1.2�

Under that transformation, the parameters for the interspin
interactions in the Hamiltonian �1.1� are mapped as follows:

Jn → J̃n = Jn cos��n+1 − �n� + Dn sin��n+1 − �n� ,
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Dn → D̃n = − Jn sin��n+1 − �n� + Dn cos��n+1 − �n� ,

Kn → K̃n = Kn cos��n+2 − �n� + En sin��n+2 − �n� ,

En → Ẽn = − Kn sin��n+2 − �n� + En cos��n+2 − �n� .

�1.3�

This shows clearly that the rotations �1.2� may be employed
to simplify the Hamiltonian �1.1� by eliminating some
of the interactions. For example, in a homogeneous chain,

we may achieve D̃=0 by setting �n+1−�n=� with tan �

=D /J.27 The remaining coupling constants then are J̃

=sgn�J��J2+D2, K̃= ��J2−D2�K+2JDE� / �J2+D2�, and Ẽ
= �−2JDK+ �J2−D2�E� / �J2+D2�.

More interestingly, by using Eqs. �1.2� and �1.3�, we can
eliminate from the Hamiltonian Eq. �1.1� either of the three-
site interactions, Kn or En. By introducing �n=�n+2−�n, we

note that K̃n=0 if tan �n=−Kn /En. These �n values can be

used to calculate the J̃n and D̃n by using �2m−�2m−1=�2
−�1+� j=1

m−1��2j −�2j−1� and �2m+1−�2m=�2m−1−�2m+�2m−1;

the surviving three-site coupling is Ẽn=sgn�En��En
2+Kn

2. If,

on the other hand, we set tan �n=En /Kn, we get En
˜ =0,

whereas K̃n=sgn�Kn��Kn
2+En

2. For the uniform chain, on
which we mainly focus in what follows, �n=�, �2m−�2m−1
=�2−�1, and �2m+1−�2m=�−�2+�1, and assuming

�2−�1=� /2, we get J̃=J cos�� /2�+D sin�� /2�,
D̃=−J sin�� /2�+D cos�� /2�, and either K̃=0,

Ẽ=sgn�E��K2+E2 if tan �=−K /E or Ẽ=0,

K̃=sgn�K��K2+E2 if tan �=E /K.
To summarize this part, we have shown that while study-

ing the effects of three-site interactions on the basis of the
model �1.1�, it would be sufficient to consider the model
�1.1� with either nonzero parameters Jn, Dn, Kn or Jn, Dn, En
since the most general case when all four types of interac-
tions have nonzero values can be reduced either to the former
case or to the latter case. One consequence of this is that the
model considered in Ref. 11 can be reduced to the model
considered in Ref. 9. Namely, starting from the model with
J�0, K�0, and D=E=0, and choosing �n+2−�n=� /2,
�n+1−�n=� /4, and �n=n� /4, we arrive at the model with

J̃=J /�2, D̃=−J /�2, Ẽ=−K, and K̃=0. Vice versa, starting
from the model with J�0, D�0, E�0, and K=0, and per-
forming the same transformation, we arrive at the model

with J̃= �J+D� /�2, D̃= �−J+D� /�2, K̃=E, and Ẽ=0. In our
study of the dynamic properties of quantum spin chains with
three-site interactions, we focus on the case J�0, K�0, and
D=E=0, leaving a detailed study of other cases for the fu-
ture.

The peculiar nature of the three-site interactions studied
here becomes clear after performing the Jordan–Wigner
transformation

sn
+ = sn

x + isn
y = Pn−1cn

†, sn
− = sn

x − isn
y = Pn−1cn,

cn
† = Pn−1sn

+, cn = Pn−1sn
−,

Pm = �
j=1

m

�1 − 2cj
†cj� = �

j=1

m

�− 2sj
z� . �1.4�

By substituting Eq. �1.4� into Eq. �1.1�, we find

H = �
n
� Jn + iDn

2
cn

†cn+1 +
Jn − iDn

2
cn+1

† cn −
Kn + iEn

4
cn

†cn+2

−
Kn − iEn

4
cn+2

† cn + �n	cn
†cn −

1

2

� , �1.5�

i.e., the Hamiltonian of the spin model is a simple bilinear
form in terms of spinless fermions. For the uniform case, it is
convenient to employ periodic boundary conditions in the
spin Hamiltonian �1.1�, which leads either to periodic or an-
tiperiodic boundary conditions in the fermion Hamiltonian
�1.5�, depending on whether the number of spinless fermions
is even or odd. Either the nearest-neighbor hopping integrals
or the next-nearest-neighbor hopping integrals can be made
real �or purely imaginary� by applying a gauge transforma-
tion, which is the analog of Eqs. �1.2� and �1.3� in the
spinless-fermion picture.

In the uniform case, we can diagonalize Eq. �1.5� by per-
forming the Fourier transformation

cn
† =

1
�N

�
�

exp�i�n�c�
†, cn =

1
�N

�
�

exp�− i�n�c�,

�1.6�

with �= �2� /N�m ��= �2� /N��m+1 /2�� in the subspaces
with odd �even� numbers of spinless fermions and m=
−N /2, −N /2+1, . . ., N /2−1 �if N is even� or m=−�N−1� /2,
−�N−1� /2+1, . . ., �N−1� /2 �if N is odd� arriving at

H = �
�

��	c�
†c� −

1

2

 ,

�� = J cos � + D sin � −
K

2
cos�2�� −

E

2
sin�2�� + � .

�1.7�

From Eq. �1.7�, we immediately conclude that the exter-
nal magnetic field � plays the role of a chemical potential
for spinless fermions. More interestingly, the two terms pro-
portional to cos�2�� and sin�2�� in the elementary excitation
spectrum �� �1.7�, which arise from the three-site spin inter-
actions, may drastically modify ��, leading to additional
ground-state �GS� phases. We consider the case J�0, K
�0, and D=E=0; for this case, �−�=��. As long as �K �
	 �J � /2, the spinless-fermion system may possess only two
Fermi points, whereas for sufficiently strong three-site inter-
action, �K � 
 �J � /2, the spinless fermion system may also
possess four Fermi points. The ground-state phase diagram
obtained in Ref. 11 is shown in Fig. 1. Two different spin
liquid phases reflect the importance of the existence of two
versus four Fermi points, as discussed already earlier.11 As a
result, in addition to the conventional quantum phase transi-
tion between the spin liquid I phase and the ferromagnetic
phase, the spin model may exhibit also quantum phase tran-
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sitions �1� between the spin liquid I phase and the spin liquid
II phase and �2� between the spin liquid II phase and the
ferromagnetic phase, as well as a point where three phases
meet �see Fig. 1�. The spin liquid I phase and the spin liquid
II phase are characterized by a change in the power-law de-
cay and oscillating factor of spin-spin correlations �see Eqs.
�20�–�23� in Ref. 11�.

To describe a zero-field quantum phase transition from the
spin liquid I to the spin liquid II phase at �K�=2�J�, Titvinidze
and Japaridze11 introduced the order parameter � constructed

from the average length L̄ of the ferromagnetic string in the
ground state �see Eqs. �31�–�33� in Ref. 11�. On the other
hand, in their study of the �homogeneous� model �1.1� with
J�0, E�0, and D=K=0, Lou et al.12 introduced the scalar
chirality parameter O=−�1 /N��n
sn−1

x sn
zsn+1

y −sn−1
y sn

zsn+1
x � and

calculated this quantity in the ground state at �=0 �see Eqs.
�10� and �11� in Ref. 12�. A nonzero value of O signals the
appearance of a different �chiral� spin liquid phase, which
emerges when three-site interactions exceed a critical value.
By eliminating XYZ−YZX terms from the Hamiltonian by
the unitary transformation discussed above, one arrives at the

spin model with J̃=J /�2, D̃=−J /�2, K̃=E, Ẽ=0 �i.e., the
model similar to the one considered in Ref. 11�, and O

→ Õ=−�1 /N��n
sn−1
x sn

zsn+1
x +sn−1

y sn
zsn+1

y �. The latter quantity

Õ apparently has no relation to the order parameter � used in
Ref. 11.

It is also worth mentioning here that the spin model �1.1�
can be written as a one-dimensional model of hard-core
bosons after introducing the on-site creation and annihilation
operators sn

+=sn
x + isn

y and sn
−=sn

x − isn
y, sn

z =sn
+sn

−−1 /2. The
hard-core boson model is obtained by taking the U→� limit
of the boson Hubbard model. With this mapping, in the case
of a conventional transverse XX chain, the ferromagnetic
phase corresponds to the Mott insulator with �1 /N��n
sn

+sn
−�

=0 or �1 /N��n
sn
+sn

−�=1 �the thermodynamic average taken
at zero temperature, T=0�, whereas the spin liquid �spin liq-
uid I� phase is the superfluid with 0	 �1 /N��n
sn

+sn
−�	1. As

a function of the field or chemical potential �, the model
displays two superfluid to Mott insulator transitions at �
= � �J�.28 After switching on the three-site interaction K�0,
the picture remains qualitatively the same as long as �K /J�
	1 /2. If �K /J� exceeds 1 /2, we face an additional transition,
which manifests itself as an extra cusp in the dependence of
�1 /N��n
sn

+sn
−� on �. Thus, following the ground-state aver-

age boson number per site �or mz= �1 /N��n
sn
z�

= �1 /N��n
sn
+sn

−�−1 /2� as a function of �, one may repro-
duce the various phases and the phase transitions between
them, as shown in Fig. 1. An alternative way to follow the
changes in the ground-state dependence of mz on � is to
examine the ground-state susceptibility 
zz=�mz /�� as a
function of �. We notice that the ground-state dependence of
−
zz on � is the same as that of ��E=0� on �, where ��E�
= �1 /N�����E−��� and ��=J cos �− �K /2�cos�2��+� is
the one-particle density of states. As a result, the ground-
state dependence 
zz vs � exhibits a square-root van Hove
singularity along the lines separating different phases in Fig.
1. �The only exception are the two points K= � �J� /2 and
�= � �J�+K /2, at which ����4 and, therefore, 
zz displays
a van Hove singularity with the exponent 3/4.� The diver-
gence of the uniform static zz susceptibility implies a “ferro-
magnetic” character of the associated phase transitions.

To summarize, there is no doubt that while “the two Fermi
point spinless fermions” transform into “the four Fermi point
spinless fermions,” some noticeable changes in the proper-
ties of the spin model should take place; however, a trans-
parent quantity associated with this modification of the
Fermi surface topology, which may play the role of the order
parameter, is still lacking.

Finally, it is worth noting the studies on the one-
dimensional Hubbard model with next-nearest-neighbor hop-
ping because the noninteracting limit of that model re-
sembles Eq. �1.7� �see, e.g., Ref. 29 and references therein�.
In contrast to those studies, we calculate two- and many-
particle correlation functions �although for a system of non-
interacting spinless fermions �1.7��, which are related to two-
spin correlation functions for an interacting quantum spin
system.

In our study of the dynamic properties of the spin model,
we focus on the dynamic structure factor

SAB��,�� = �
l=1

N

exp�− i�l��
−�

�

dt exp�i�t�Š�An�t� − 
A��

��Bn+l�0� − 
B��‹ , �1.8�

where An and Bn are some local operators attached to
the site n �like sn

�, �=x ,y ,z or dn
�1�=sn

xsn+1
x +sn

ysn+1
y �,

An� t � = exp� iHt �An exp�− iHt �, 
� . . . �� = Tr �exp�−�H��. . .�� /
Tr exp�−�H�, and 
A�= �1 /N��n
An�. By knowing the dy-
namic structure factors, we can find the corresponding dy-
namic susceptibilities according to well known relations
�see, e.g., Ref. 30�.
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FIG. 1. The ground-state phase diagram of the homogeneous
model �1.1� with J= �1, K�0, and D=E=0 discussed earlier in
Ref. 11. The region −1+K /2	�	1+K /2 corresponds to the spin
liquid I phase �two Fermi points �dark gray��, the regions K	
−1 /2, 1+K /2	�	−K /2−1 / �4K� and K
1 /2, −K /2−1 / �4K�
	�	−1+K /2 correspond to the spin liquid II phase �four Fermi
points �light gray��, and the remaining regions correspond to the
ferromagnetic phase �light�. The black dots correspond to the sets of
parameters that we most often use below to discuss dynamic
quantities.
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In Sec. II, we report a closed-form expression for the zz
dynamic structure factor Szz�� ,�� �i.e., An=Bn=sn

z in Eq.
�1.8�� and for some similar dynamic structure factors SI�� ,��
�see Eqs. �2.3� and �2.4� below�, all of which are governed
by two-fermion �particle-hole� excitations. Then, in Sec. III,
we discuss the general properties of the two-fermion excita-
tion continuum, focusing on spectral boundaries, soft modes,
singularities, etc. We also contrast generic and specific fea-
tures of various two-fermion dynamic quantities. In Sec. IV,
we examine many-fermion dynamic quantities focusing, in
particular, on the xx dynamic structure factor Sxx�� ,�� �i.e.,
An=Bn=sn

x in Eq. �1.8��. We report exact analytical results
�1� in the high-temperature regime �=0 �T→�� and �2� in
the strong-field regime in the ground state as well as precise
numerical results for arbitrary temperatures. Finally, in Sec.
V, we summarize our findings. Some selected results of the
present study were announced in Ref. 31.

II. zz DYNAMIC STRUCTURE FACTOR AND SOME
OTHER TWO-FERMION DYNAMIC STRUCTURE

FACTORS

We start with the calculation of the transverse dynamic
structure factor Szz�� ,�� that corresponds to An=Bn=sn

z in
Eq. �1.8�. Since sn

z =cn
†cn−1 /2 according to Eq. �1.4�, the

calculation of the transverse dynamic structure factor is very
simple.23,32 By using Eqs. �1.6� and �1.7� and the Wick–
Bloch–de Dominicis theorem, we end up with the result

Szz��,�� = �
−�

�

d�1n�1
�1 − n�1+����� + ��1

− ��1+��

= �
�1

� � n�1
�1 − n�1+��

� �

��1
���1

− ��1+��� �
�1=�1

�

. �2.1�

Here, n�=1 / �1+exp������ is the Fermi function and ��1
��

are the solutions of the equation

� + ��1
� − ��1

�+� = 0. �2.2�

There are more local spin operators which, in fermionic
representation, are given by a product of two Fermi opera-
tors,

dn
�1� = sn

xsn+1
x + sn

ysn+1
y =

1

2
�cn

†cn+1 − cncn+1
† � ,

dn
�2� = sn

xsn+1
y − sn

ysn+1
x =

i

2
�cn

†cn+1 + cncn+1
† � ,

tn
�1� = sn

xsn+1
z sn+2

x + sn
ysn+1

z sn+2
y = −

1

4
�cn

†cn+2 − cncn+2
† � ,

tn
�2� = sn

xsn+1
z sn+2

y − sn
ysn+1

z sn+2
x = −

i

4
�cn

†cn+2 + cncn+2
† � ,

�2.3�

and so on. The correlation functions 
dn
�1��t�dn+l

�1� �0��,

dn

�2��t�dn+l
�2� �0��, 
tn

�1��t�tn+l
�1� �0��, and 
tn

�2��t�tn+l
�2� �0�� and the cor-

responding structure factors SJ�� ,��, SD�� ,��, SK�� ,��, and
SE�� ,�� therefore can again be easily calculated with the
result

SI��,�� = �
−�

�

d�1BI��1,�1 + ��C��1,�1 + ��

���� − E��1,�1 + ���

= �
�1

� �BI��1,�1 + ��C��1,�1 + ��

� �

��1
E��1,�1 + ��� �

�1=�1
�

,

BJ��1,�2� = cos2�1 + �2

2
,

BD��1,�2� = sin2�1 + �2

2
,

BK��1,�2� =
1

4
cos2��1 + �2� ,

BE��1,�2� =
1

4
sin2��1 + �2� ,

C��1,�2� = n�1
�1 − n�2

� ,

E��1,�2� = − ��1
+ ��2

. �2.4�

We note that Szz�� ,�� �2.1� is also given by Eq. �2.4� with
Bzz��1 ,�2�=1.

In Figs. 2–4, we show the grayscale plots for the different
two-fermion dynamic structure factors �2.1� and �2.4� for
several representative sets of the Hamiltonian parameters, at
zero and infinite temperatures. By comparing the closed-
form expressions �2.1� and �2.4� and the grayscale plots in
Figs. 2–4, we conclude that �1� the generic properties of all
these two-fermion dynamic quantities are controlled by the �
function containing E��1 ,�2� in Eqs. �2.1� and �2.4� in the
high-temperature limit T→� ��→0�, whereas in the low-
temperature limit T→0 ��→��, the factor containing Fermi
functions, C��1 ,�2�, becomes important in addition and �2�
the specific properties of the various two-fermion dynamic
quantities arise only due to different functions BI��1 ,�2�. In
Sec. III, we further examine the two-fermion dynamic struc-
ture factors, which reveal their similarities and differences.

III. TWO-FERMION EXCITATION CONTINUUM:
GENERIC VERSUS SPECIFIC PROPERTIES

Let us discuss the properties of the two-fermion excitation
continuum, which is probed by a number of dynamic quan-
tities such as the transverse dynamic structure factor
Szz�� ,��, the dimer dynamic structure factor SJ�� ,��, etc.
For the model under consideration here, Eq. �1.1� with cou-
pling constants D=E=0, the elementary excitation spectrum
�1.7� differs from that of the standard homogeneous XX
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chain by the cos�2�� term. That term has important conse-
quences, which we explore by generalizing the work of Tay-
lor and Müller23 on conventional XY chains.

We start with the high-temperature limit T→�. A two-
fermion dynamic quantity �2.4� may have a nonzero value at
a point �� ,�� in the wave vector–frequency plane �we as-
sume ��0, −���	�� if

� = E��1,�2� = − ��1
+ ��2

, � = − �1 + �2�mod�2��� ,

�� = J cos � −
K

2
cos�2�� + � , �3.1�

where −���1	�. We rewrite the function E��1 ,�1+�� in
the form

E��1,�1 + �� = 2 sin
�

2
sin	�

2
+ �1


��− J + 2K cos
�

2
cos	�

2
+ �1
� �3.2�

and solve the equation �E��1 ,�1+�� /��1=0 with respect to
�1 or, more precisely, with respect to x=cos�� /2+�1� to find

x� =
J

8K cos
�

2

��� J

8K cos
�

2
�

2

+
1

2
. �3.3�

For �K /J�	1 /2, there is only one pair of �1 that solves Eq.
�3.3� and fulfills the condition �x��1, which thus yield a
stationary point of the function E��1 ,�1+��. That pair is
given by �̃1

−=arccos x−−� /2 and �̃1
−=−arccos x−−� /2 for

JK
0 and by �̃1
+=arccos x+−� /2 and �̃1

+=−arccos x+−� /2
for JK	0. In the opposite case �K /J�
1 /2, there are two
such pairs, �̃1

−=arccos x−−� /2, �̃1
−=−arccos x−−� /2 and �̃1

+

=arccos x+−� /2, �̃1
+=−arccos x+−� /2. As a result, the upper

boundary �u��� of the two-fermion excitation continuum is
given by

�−��� = �E��̃1
−,�̃1

− + ���, JK 
 0 �3.4�

or

�+��� = �E��̃1
+,�̃1

+ + ���, JK 	 0. �3.5�

Note that for �K /J�
1 /2, the first derivative of E��1 ,�1
+�� with respect to �1 is also zero along �+���	�−���
=�u��� for JK
0 or along �−���	�+���=�u��� for
JK	0.

Due to the presence of a two-particle density of states, the
two-fermion dynamic quantities �2.1� and �2.4� may exhibit a
van Hove singularity along the lines

�s��� = ��−���,�+���� , �3.6�

or, more precisely, along �−��� ��+���� if JK
0 �JK	0�
for �K /J�	1 /2 and along both lines �−��� and �+��� for
�K /J�
1 /2. Thus, a sufficiently strong three-site interaction
K increases the number of van Hove singularities. This is
nicely seen in Fig. 4 �and also in Fig. 5� where the two-
fermion dynamic structure factors for J=1 and K=2.5 at T
→� are plotted. �Recall that Bzz��1 ,�2�=1 and therefore,
Fig. 4�a� with grayscale plot for Szz�� ,�� most transparently
demonstrates a different �low-frequency� line of van Hove
singularities emerging for �K /J�
1 /2.�

Interestingly, in addition to the conventional inverse
square-root van Hove singularity, a singularity with exponent
−2 /3 may occur as �K /J�
1 /2. In fact, by plotting
��2E��1 ,�1+�� /��1

2��1=�̃1
vs �, we note that ��2E��1 ,�1+�� /

��1
2��1=�̃1

=0 for �=��, which satisfies x+=1 and JK
0 �or
x−=−1 and JK	0�. A similar analysis of ��3E��1 ,�1+�� /
��1

3��1=�̃1
vs � shows that ��3E��1 ,�1+�� /��1

3��1=�̃1
�0 for

�=��. Moreover, we find that E��1 ,�1+��=0 for these val-
ues of � and �1. This immediately implies that SI��� ,��
��−2/3, �→ +0. In Fig. 5, we demonstrate potential van
Hove singularities of the two-fermion dynamic structure fac-
tors. In particular, we illustrate the van Hove singularity with
exponent −2 /3 for J=1 and K=2.5. By solving equation
x+=1 �Eq. �3.3�� with respect to �, we find ��

�2.738 876 81. The frequency profiles around this value of
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the wave vector clearly show two types of van Hove singu-
larity, i.e., with exponent −1 /2 �in most cases, when �
→�s���−�, e.g., the dotted and solid lines in Figs. 5�b� and
5�c�� and with exponent −2 /3 �only when �=�� and �
→�, e.g., the dashed lines in Figs. 5�b� and 5�c��.

We consider now the case of zero temperature T=0 when
the Fermi functions entering the function C��1 ,�2� in Eq.
�2.4� become extremely important. They imply that in the
ground state, we have to require, in addition to Eq. �3.1�,
��1

�0 and ��2
�0. We first consider the case �K /J�	1 /2.

By plotting the dependence of E��1 ,�1+��C��1 ,�1+�� on
�1 we find that the two characteristic curves, ��1+� with �1

satisfying ��1
=0 �or E��1 ,�1+�� with �1 satisfying ��1

=0�
and −��1

with �1 satisfying ��1+�=0 �or E��1 ,�1+�� with
�1 satisfying ��1+�=0�, play a special role. By solving the
equation �k=0 for k, or more precisely for y=cos k, we find

y� =
J

2K
�� J2

4K2 +
�

K
+

1

2
. �3.7�

By taking into account that �y��1, we see that for �K /J�
	1 /2, Eq. �3.7� may yield two k values, ǩ=arccos y−, ǩ

=−arccos y− �for JK
0� or ǩ=arccos y+, ǩ=−arccos y+ �for
JK	0�. For �K /J�
1 /2, there may be two such pairs of k,

ǩ=arccos y−, ǩ=−arccos y− and ǩ=arccos y+, ǩ=−arccos y+;
we will discuss that case later.

For �K /J�	1 /2, we consider two characteristic lines

�−
+��� = ��arccos y−+��, �−

−��� = ��−arccos y−+��, JK 
 0

�3.8�

or

�+
+��� = ��arccos y++��, �+

−��� = ��−arccos y++��, JK 	 0.

�3.9�

The smaller one of the two values �−
i ���, i=−,+ for JK
0

��+
i ���, i=−,+ for JK	0� gives the lower boundary of the

ground-state two-fermion excitation continuum �l���,
whereas the other �larger� one gives either the upper bound-
ary of the ground-state two-fermion excitation continuum
�u��� or the middle boundary of the ground-state two-
fermion excitation continuum �m���. The former case occurs
if �̃1, which yields ��E��1 ,�1+�� /��1��1=�̃1

=0 �see above�,
belongs to the region of �1 where E��1 ,�1+��C��1 ,�1+��
=0 �as, e.g., seen in Fig. 6�b� for small ����. In the latter case,

FIG. 3. Two-fermion dynamic structure factors �a� SJ�� ,��, �b�
SD�� ,��, �c� SK�� ,��, and �d� SE�� ,�� for the model �1.1� with J
=1, D=E=0, K=2.5, and �=0 at T=0.

FIG. 4. Two-fermion dynamic structure factors �a� Szz�� ,��, �b� SJ�� ,��, and �c� SK�� ,�� for the model �1.1� with J=1, D=E=0, and
K=2.5 at T→�. Note that for an infinite temperature, the two-fermion dynamic structure factors are field independent.
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when �̃1, which yields ��E��1 ,�1+�� /��1��1=�̃1
=0, does be-

long to the region of �1 where E��1 ,�1+��C��1 ,�1+���0,
the larger value of �−

i ���, JK
0 �Eq. �3.8�� ��+
i ���, JK	0

�Eq. �3.9��� gives the middle boundary of the ground-state
two-fermion excitation continuum �m���, whereas the upper
boundary �u��� is given by Eq. �3.4� �Eq. �3.5��. For the
frequencies � between �l��� and �m��� ��m��� and �u����,
Eq. �2.2� has one solution �two solutions� �1

�. Thus, the
ground-state SI�� ,�� changes by a factor 2 at the middle
boundary �m���.

The soft modes �0 can be determined from the
equation �−

���0�=0, JK
0 ��+
���0�=0, JK	0�. Therefore,

if JK
0,

�0 = �0, � 2 arccos y−�, y− 
 0,

�0 = �0, � 2 arccos y− � 2��, y− 	 0 �3.10�

or, if JK	0,

�0 = �0, � 2 arccos y+�, y+ 
 0,
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FIG. 6. Characteristic lines of the two-fermion excitation continuum. We assume J=1 and K=0.5, �a� �=0, �b� �=−0.5, �c� �=1; K
=2, �d� �=0, �e� �=−0.5, �f� �=1; and K=2.5, �g� �=0, �h� �=−0.5, �i� �=1. � and � symbols correspond to �−��� and �+���,
respectively. Solid, dashed, dash-dotted, and dotted lines correspond to �−

+���, �−
−���, �+

+���, and �+
−���, respectively. ��a�, �d�, and �g� can

be compared to Figs. 2�a�–2�c�.�
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�0 = �0, � 2 arccos y+ � 2��, y+ 	 0. �3.11�

We now turn to the case �K /J�
1 /2. As already men-

tioned, Eq. �3.7� may yield two pairs of k, ǩ=arccos y−, ǩ=

−arccos y− and ǩ=arccos y+, ǩ=−arccos y+, and, therefore,
all four characteristic lines in the �-�, plane, �−

+���, �−
−���,

�+
+���, and �+

−��� given by Eqs. �3.8� and �3.9�, come into
play simultaneously. Thus, as �K� exceeds �J� /2, an “extra”
ground-state two-fermion excitation continuum emerges. Its
lower boundary and upper on middle boundary are given by
formulas �3.8� and �3.9� �in the case when Eqs. �3.8� and
�3.9� give the middle boundary, the upper boundary is given
by one of the formulas in Eqs. �3.4� and �3.5��. The number
of soft modes increases but cannot exceed 9.

In the vicinity of a soft mode �0, the lower boundary of
the two-fermion continuum in most cases displays a “V”
shape, i.e., it is proportional to ��−�0�. However, it is worth
noting that a parabolic shape ���−�0�2 is also possible for
suitable parameter combinations. To see this, we recall that
the lower boundary is basically determined by the equation
�k=0 with �k=J cos k− �K /2�cos�2k�+�. For the conven-
tional XX chain �K=0� in a transverse field �, we see that at
the critical field values �= � �J� the dispersion �k� �k−k0�2,
with a corresponding parabolic shape of the lower continuum
boundary near a soft mode at �0. �This can be seen, e.g., in
Fig. 11f of Ref. 24.� At the critical field, the nature of the
ground state of the XX chain changes from partially filled to
completely filled or completely empty in terms of Jordan–
Wigner fermions. For nonzero K, the cos�2k� term may gen-
erate additional maxima or minima in �k. That implies the
emergence of additional critical field values, at which k re-
gions near the additional minima or maxima of �k open or
close for occupation by Jordan–Wigner fermions. These criti-
cal values correspond to the lines separating different
ground-state phases in Fig. 1. Along these lines, we expect a
parabolic behavior of the lower two-fermion continuum
boundary �see, e.g., Figs. 2�b� and 2�d�–2�f��.

By summarizing this part, we report in Fig. 6 all of the
characteristic lines of the two-fermion excitation continuum
discussed above. In these plots, symbols correspond to �−���
�x symbols� and �+��� �� symbols�, whereas lines corre-
spond to �−

+��� �solid line�, �−
−��� �dashed line�, �+

+��� �dash-
dotted line�, and �+

−��� �dotted line�. For �K /J�	1 /2, only
three characteristic lines are relevant, but if �K /J�
1 /2, all
six lines are relevant. These lines are important not only for
understanding the distribution of the two-fermion dynamic

structure factors SI�� ,�� �Eqs. �2.1� and �2.4�� over the �-�
plane �see grayscale plots in Figs. 2–4� but also for many-
fermion dynamic structure factors �like Sxx�� ,��� at low
temperatures, as will be discussed in Sec. IV �see grayscale
plots in Fig. 10�.

Finally, we discuss some specific properties of the two-
fermion dynamic structure factors �2.4� controlled by differ-
ent B functions. By comparing different panels in Figs. 3 and
4, we observe a number of small but definite differences for
the detailed distributions of SI�� ,�� over the �-� plane.

To be specific, we may focus on the dynamic dimer struc-
ture factor SJ�� ,��. It is known that SJ�� ,�� does not di-
verge along the upper boundary due to BJ��1 ,�2� for the
conventional XX chain, i.e., when K=0 �see, e.g., Ref. 25
and references therein�. This can also be seen in Fig. 7�b�,
where the dotted line corresponds to K=0. This changes,
however, if K�0: the dynamic dimer structure factor exhib-
its a van Hove singularity along the upper boundary �the
dashed and solid lines in Fig. 7�b��, which indicates the pres-
ence of nonzero three-site interactions.

Next we may consider SK�� ,��. As can be seen in
Figs. 4�c� and 7�c�, the van Hove singularity at the
upper boundary becomes less distinctive as K increases. To
explain this, we introduce the notation x=cos�� /2+�1�
and rewrite �E��1 ,�1+�� /��1 �Eq. �3.2�� as
2 sin�� /2��2K cos�� /2��2x2−1�−Jx�, whereas BK��1 ,�1
+�� �Eq. �2.4�� as �1 /4��2x2−1�2. In the vicinity of the upper
boundary, the denominator in Eq. �2.4� for SK�� ,�� tends to
zero; however, in the limit K→�, the numerator in Eq. �2.4�
for SK�� ,�� becomes proportional to the denominator
squared, which makes the fraction equal to zero. Thus, for
any finite large K, the van Hove singularity at the upper
boundary does exist �although with increasing K, it is harder
to numerically find it� and it disappears only in the limit
K→�.

IV. MANY-FERMION DYNAMIC QUANTITIES

In this section, we discuss many-fermion dynamic quan-
tities, fixing for concreteness our attention to the xx dynamic
structure factor Sxx�� ,��. First, we report two analytical re-
sults referring to the high-temperature limit and to the zero-
temperature strong-field regime, respectively, and then we
turn to high precision numerical data for arbitrary values of
temperature and the Hamiltonian parameters.

We first consider the xx two-spin time-dependent correla-
tion function 
sj

x�t�sj+n
x � at T→�. Since the Zeeman term
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FIG. 7. An illustration of the role of B functions. �a� Szz�� /2,��, �b� SJ�� /2,��, and �c� SK�� /2,�� at T→�. J=1, K=0 �dotted lines�,
K=0.5 �dashed lines�, and K=1 �solid lines�.
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commutes with the Hamiltonian of the considered model
�1.1� and, in the high-temperature limit, exp�−�H�→1 and,
consequently, the averages of spin operators are zero, we can
easily extract the dependence on the transverse field � as
follows:


sj
x�t�sj+n

x � = cos��t��
sj
x�t�sj+n

x ���=0. �4.1�

Thus, we can proceed assuming �=0. Next, we substitute
into the spin correlation function on the right hand side in
Eq. �4.1� a short-time expansion33 sj

x�t�=sj
x+ i�H ,sj

x�t
− �1 /2�[H , �H ,sj

x�]t2+ . . . and, after simple but tedious calcu-
lations, we find

4�
sj
x�t�sj+n

x ���=0

= �n,0�1 − 	 Jj−1
2 + Jj

2

8
+

Kj−2
2 + 2Kj−1

2 + Kj
2

32

t2 + ¯ � ,

�4.2�

where, for generality, we have considered a model with
position-dependent couplings. Equation �4.2� is consistent
with the Gaussian decay

4
sj
x�t�sj+n

x � = �n,0 cos��t�exp�− 	 J2

4
+

K2

8

t2� �4.3�

for the model with position-independent couplings. By using
MAPLE codes, we checked that the terms up to t4 in the short-
time expansion for 
sj

x�t�sj+n
x �, indeed, agree with Eq. �4.3�.

Alternative �although not independent� arguments sup-
porting Eq. �4.3� follow Refs. 34 and 35. We examine the
continued-fraction coefficients �k of the relaxation function
cxx�z�=4�0

�dt exp�−zt�
sj
x�t�sj

x�=1 / �z+�1 / �z+�2 / �z+ ¯ ���
at T→�. The sequence of the continued-fraction coefficients
�k reflects the time dependence of the associated autocorre-
lation function and, in particular, when �k=k�, then
4
sj

x�t�sj
x�=exp�−�t2 /2�. The sequence �k can be determined

by the methods elaborated in Ref. 35. We designed a MAPLE

program which, in a reasonable amount of time, calculated
�k for k=1,2 ,3 ,4 and confirmed the Gaussian decay �4.3�.

Finally, from our calculations, we also find a more general
result for the homogeneous model �1.1�, which is given by
Eq. �4.3� after the substitution J2→J2+D2 and K2→K2+E2.

To summarize, in Fig. 8, we compare analytical predic-
tions according to Eq. �4.3� �symbols� with numerical calcu-
lations �lines� �see below� and observe an excellent agree-
ment between both sets of data. Equation �4.3� provides an
extension of the well-known result for the conventional
transverse XX chain36 for the kind of three-site interactions
considered here. The presented arguments in favor of the
Gaussian decay �4.3� may be put even on a more rigorous
foundation by using the approach elaborated in Ref. 37.

Next, we turn to the zero-temperature strong-field regime.
More precisely, we consider the ferromagnetic phase �light�
in Fig. 1. In the ferromagnetic phase, the ground state of the
spin model is completely polarized, i.e., �GS�=�n�↓ �n
��GS�=�n�↑ �n� for positive �negative� �, which permits to
easily take into account the Jordan–Wigner sign factors en-

tering the formula for 
sj
x�t�sj+n

x �.38 By assuming, for ex-
ample, �GS�=�n�↓ �n �light region in the upper half-plane in
Fig. 1�, we immediately get

4
sj
x�t�sj+n

x � =
1

N
�
�

exp�i��n − ��t��

——→
N→� 1

2�
�

−�

�

d� exp�i��n − ��t�� ,

�4.4�

with ��=J cos �− �K /2�cos�2��+�
0. For �GS�=�n�↑ �n
�light region in the lower half-plane in Fig. 1�, we have

4
sj
x�t�sj+n

x � =
1

N
�
�

exp�− i��� � ��n − ��t��

——→
N→� 1

2�
�

−�

�

d�

�exp�− i��� � ��n − ��t�� , �4.5�
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FIG. 8. Time dependence of the xx autocorrelation function in
the high-temperature limit ��=0.0001�; J=1. �a� 
sj

x�t�sj
x� at �=0

and K=0, 0.5, 1, 1.5, 2, 2.5, and 3 �from top to bottom�. �b� 
sj
x�t�sj

x�
at K=1 and �=0, 0.5, 1, 1.5, and 2 �from top to bottom�. Symbols
correspond to Eq. �4.3�; lines correspond to numerical data obtained
for N=400 and j=41.
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with ��=J cos �− �K /2�cos�2��+�	0. Equations �4.4� and
�4.5� contain the result for the conventional transverse XX
chain,38 4
sj

x�t�sj+n
x �=exp�−i���t��−i�nJn�Jt�, where Jn�z� is

the Bessel function of the first kind.39 Some further proper-
ties of 
sj

x�t�sj+n
x � are collected in the Appendix. We only

notice here that in the regime considered, the xx time-
dependent correlation function oscillates, with the envelope
decaying proportional to t−1/2 as t→� for �K /J��1 /2 or
proportional to t−1/4 for �K /J�=1 /2 �see Eqs. �A6�–�A8� and
Fig. 9�.

Equations �4.3�–�4.5� immediately yield the xx dynamic
structure factor �1.8�. In the high-temperature limit, we have

Sxx��,�� =
��

4�J2 +
K2

2
�exp�−

�� − ��2

J2 +
K2

2
�

+ exp�−
�� + ��2

J2 +
K2

2
�� , �4.6�

i.e., the xx dynamic structure factor displays a �-independent
Gaussian ridge centered at frequency ��� with the width con-
trolled by interspin interactions. In the zero-temperature
strong-field regime, we have

Sxx��,�� =
�

2
��� − ������ ,

����� = ���� + J cos � −
K

2
cos�2�� , � 
 0

��� + J cos � +
K

2
cos�2�� , � 	 0,� �4.7�

i.e., the xx dynamic structure factor displays a � peak along
the line ����� �Eq. �4.7�� in the �-� plane. Interestingly, if
K�0, the symmetry of Eq. �4.7� with respect to the change
�→−� is broken, which is in agreement with the ground-
state phase diagram shown in Fig. 1.

We turn next to the case of arbitrary values of temperature
and the Hamiltonian parameters. In this case, we numerically
calculate the xx dynamic structure factor. The numerical ap-
proach for calculating dynamic quantities was explained in
detail earlier.24,40 To calculate 
sj

x�t�sj+n
x �, we express the spin

operators sx entering this quantity in terms of the Fermi op-
erators c�, c�

† according to Eqs. �1.4� and �1.6�, obtaining as
a result an average of a product of a large number of Fermi
operators attached not only to the sites j and j+n but to two
strings of sites extending to the site j=1. We apply the Wick–
Bloch–de Dominicis theorem and present the result as the
Pfaffian of the 2�2j+n−1��2�2j+n−1� antisymmetric ma-
trix constructed from the known elementary contractions
�only these quantities are influenced by the existence of
three-site interactions�. Finally, we numerically evaluate the
Pfaffians, obtaining as a result the desired xx time-dependent
spin correlation function. To get Sxx�� ,�� �Eq. �1.8��, we
numerically perform the integration over time t and then the
summation over n. Typically, we take N=400, assume j
=41, and calculate 
sj

x�t�sj+n
x � for n up to nmax=100 in the

time range up to tmax=100. �However, for large �, we as-
sume j=81, nmax=100, and tmax=200, whereas for �=0.1, it
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FIG. 9. Time dependence of 
sj
x�t�sj+n

x � ��a� n=0; �b� n=1� in the low-temperature limit ��=100�; J=1, K=0.25, and �=10. Lines
correspond to numerical data for N=400 and j=101. Symbols correspond to the long-time asymptotics given by Eq. �A6�. �We notice that
the asymptotic becomes accurate already for short times.� Solid �dashed� lines or filled �empty� symbols refer to the real �imaginary� part of

sj

x�t�sj+n
x �.
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is sufficient to take j=41, nmax=50, and tmax=50.� In the
low-temperature strong-field regime, the xx time-dependent
spin correlation functions display long-time oscillations,
which lead to evident problems with integrating over time;
therefore, in this case �in fact, only for the set of parameters
corresponding to Fig. 10�g��, we introduce under the integral
in Eq. �1.8� an auxiliary damping factor exp�−��t��, where �
is a small positive number. We examine in detail different
types of finite size effects24,40 to be sure that our results for
Sxx�� ,�� refer to the thermodynamic limit. In Fig. 10, we
demonstrate the results for the xx dynamic structure factors
for a set of parameters that is in correspondence with the one
used in Figs. 2�a�–2�f� and the analytical predictions �4.6�
and �4.7� �Figs. 2�g�–2�i��.

We start discussing the results obtained for Sxx�� ,�� from
the case of low temperatures. Although Sxx�� ,�� is a many-
fermion quantity and, therefore, is not restricted to a certain
region in the �-� plane, it is mostly concentrated along cer-
tain lines in the �-� plane, which roughly correspond to the
characteristic lines of the two-fermion excitation continuum
discussed in Sec. III �cf. Figs. 10�a�–10�c� with Figs.
2�a�–2�c� and Figs. 6�a�, 6�d�, and 6�g� as well as Figs.
10�d�–10�f� with Figs. 2�d�–2�f��. For example, for J=1, K
=0.5, and �=0 �Fig. 10�a�� Sxx�� ,�� is accumulated along
the three lines in the �-� plane, �−��� �Eq. �3.4�� and �−

����
�Eq. �3.8��, shifted along the � axis by �. Although the im-
portant role of the two-fermion excitations for the low-
temperature many-fermion dynamic quantities such as
Sxx�� ,�� was noted several times earlier, we still do not have
a simple explanation for that fact. On the other hand, Figs.
10�d�–10�g� demonstrate the development toward the zero-
temperature strong-field result �4.7�.

As temperature increases, the role of the two-fermion ex-
citations diminishes and, in the high-temperature limit,
many-fermion excitations produce the �-independent Gauss-
ian decay �4.6� �cf. Figs. 10�h� and 10�i� to Figs. 10�a� and
10�g�, respectively�.

V. CONCLUSIONS

In conclusion, we have examined several dynamic struc-
ture factors of the spin-1

2 transverse XX chain with �XZX
+YZY�-type three-site interactions. These three-site interac-
tions essentially enrich the ground-state phase diagram of the
spin model which, may show two different spin liquid phases
�spin liquid I and spin liquid II� in addition to the ferromag-
netic phase. We have explicitly calculated several dynamic
structure factors �with the transverse dynamic structure fac-
tor Szz�� ,�� and the dimer dynamic structure factor SJ�� ,��
among them�, which are exclusively governed by two-
fermion �particle-hole� excitations. We have discussed in
some detail the properties of the two-fermion excitation con-
tinuum, determining its boundaries, soft modes, and expo-
nents of van Hove singularities.41 We have also discussed
some specific features of different two-fermion dynamic
structure factors. Our analysis of many-fermion dynamic
structure factors is restricted to the xx dynamic structure fac-
tor Sxx�� ,��. For this quantity, we have reported exact ana-
lytical results in the high-temperature and zero-temperature
strong-field limits and precise numerical results for other sets
of parameters. The three-site interactions introduced left a
number of signatures in the dynamic quantities, which pro-
duced an extra two-fermion excitation continuum, a van

FIG. 10. Sxx�� ,�� for the model �1.1� with J=1 and D=E=0; �a� K=0.5, �=0; �b� K=2, �=0; �c� K=2.5, �=0; �d� K=0.5, �
=1.25; �e� K=2, �=−1.125; �f� K=0.5, �=−0.75; and �g� K=0.5, �=−1.125 �for this set of parameters, we assume �=0.02; see the main
text� at low temperature �=20. �h� and �i� correspond to the high-temperature limit; �=0.1, K=0.5, and �h� �=0 or �i� �=−1.125.
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Hove singularity with exponent 2 /3, or a singularity of the
dimer structure factor along the upper boundary of the two-
fermion excitation continuum. In the presence of three-site
interactions, the symmetry of the xx dynamic structure factor
in the zero-temperature strong-field regime with respect to
the change �→−� is broken.

We emphasize that the advantage of the model considered
is its exact solvability, that means, in particular, the possibil-
ity to accurately calculate various dynamic quantities. On the
other hand, although there are some examples of real-life
systems that can be modeled as spin-1

2 XX chains �see, e.g.,
Ref. 42�, the three-site interactions introduced are of a rather
special kind, however, the reported results may serve to test
other �approximate� techniques used to study more realistic
models, e.g., with next-nearest-neighbor interactions or with
four-site interactions. Moreover, our results on dynamics
may be used to discuss the effects of stationary energy fluxes
in quantum spin chains. Thus, in Ref. 3�c�, the transverse
�zz� dynamic structure factor for a model with D=K=0 was
discussed in relation to possible experimental observation of
energy-current carrying states in quantum spin chain com-
pounds.
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APPENDIX: TIME-DEPENDENT xx SPIN CORRELATIONS
IN THE ZERO-TEMPERATURE STRONG-FIELD

REGIME

We can rewrite Eq. �4.4� ��
0 �Ref. 43�� as follows:

4
sj
x�t�sj+n

x � = exp�− i	� +
K

2

t�Ln, �A1�

with

Ln �
1

�
�

0

�

d� cos��n�exp�− it�J cos � − K cos2 ��� .

�A2�

The function Ln introduced in Eq. �A2� for even n can be
expressed in terms of the function �3�� ,� ,x ,y� �see Sec.
5.7.1 in Ref. 44� as follows:

L0 = exp�iKt��3	1

2
,1;− iKt,

J2t2

4

 ,

L2m = exp�iKt��
l=0

m

�− 1�l m��m + l�
��m − l + 1��2�l + 1�

��3	l +
1

2
,l + 1;− iKt,

J2t2

4

 , �A3�

where ��n� is the gamma function.
We notice that, in the case K=0,

Ln = �− i�nJn�Jt� , �A4�

whereas in the case J=0,

Ln = �exp	i
Kt

2

imJn	Kt

2

 , n = 2m

0, n = 2m + 1,
� �A5�

where Jn�z� is the Bessel function of the first kind.
Finally, we notice that the long-time asymptotics for


sj
x�t�sj+n

x � in the zero-temperature strong-field regime can be
accurately calculated by using the stationary phase method.45

For �K /J�	1 /2, we have

Ln �
t→� 1

�2��J�t
exp�iKt�� exp�− iJt + i

�

4
sgn�J��

��1 −
2K

J
� +

exp�iJt − i
�

4
sgn�J� + i�n�

��1 +
2K

J
� � . �A6�

For �K /J�
1 /2, we have

Ln �
t→� 1

�2��J�t
exp�iKt�� exp�− iJt + i

�

4
sgn�J − 2K��

��1 −
2K

J
� +

exp�iJt − i
�

4
sgn�J + 2K� + i�n�

��1 +
2K

J
�

+ 2

exp�− i	K +
J2

4K

t + i

�

4
sgn	2K −

J2

2K

�

��2K

J
−

J

2K
� cos	n arccos

J

2K

� . �A7�
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For �K /J�=1 /2, we have

Ln �
t→�

�− 1��n/2��1−sgn�JK��� �� 1
4�

2��2�J�t�1/4 exp�i sgn�JK�	−
1

2
Jt +

�

8
sgn�J�
�

+
1

2���J�t
exp�i sgn�JK�	3

2
Jt −

�

4
sgn�J�
 + i�n�� . �A8�

The long-time asymptotic behaviors �A6�–�A8� may emerge already at relatively short times, as can be seen in Fig. 9.
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