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The first onset of spatial dispersion, i.e., the variation of velocity of an elastic wave when its wavelength
approaches the natural scale of length of a medium, can be accommodated within continuum elasticity theory
by the incorporation of third and fourth order spatial derivatives of the displacement field in the elastic wave
equation. This paper is concerned with the access to the coefficients of these higher order derivatives in
gradient elasticity provided by inelastic neutron scattering, ballistic phonon imaging, and picosecond laser
ultrasound measurements. Numerical values of the dispersive elastic constants of the four cubic crystals,
germanium, silicon, gallium arsenide, and indium antimonide, are obtained by fitting to available near zone
center symmetry direction acoustic mode phonon dispersion relations of these crystals, measured by inelastic
neutron scattering. Ballistic phonon transport calculations using these values, account well for available dis-
persive phonon images of these crystals. For Ge, Si, and GaAs, comparison is made with values of dispersion
coefficients reported elsewhere in literature, which have been obtained from laser ultrasound measurements
and from empirical and ab initio lattice dynamics models.
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I. INTRODUCTION

The velocity of elastic waves in a solid becomes wave-
length dependent when the wavelength approaches the natu-
ral scale of length of the medium, which is characterized by,
e.g., the lattice spacing in a crystal or the range of the inter-
atomic forces. This variation of velocity is known as spatial
dispersion, and its first onset can be accommodated within
continuum elasticity theory by the incorporation of third and
fourth order spatial derivatives of the displacement field in
the elastic wave equation.1–4 This adaptation, known as gra-
dient elasticity, has found widespread application in recent
years �see, e.g., Refs. 3–7�. Its advantage over detailed mi-
croscopic models tailored to specific media is its universal
nature, with its mathematical form being independent of the
particular microstructure giving rise to the dispersion. The
limitations of gradient elasticity are that it is not applicable
to wavelengths comparable to or smaller than the natural
length scale and, without a large number of higher order
derivatives, it does not give an accurate representation of the
phonon dispersion relation near the Brillouin zone boundary
of periodic structures. As regards application to wave propa-
gation and phonon transport problems, this is not a severe
drawback, since near zone boundary acoustic waves tend to
be highly attenuated through scattering and anharmonic de-
cay. Moreover, in general, their group velocities approach
zero at the zone boundary, which renders them essentially
nonpropagating.

The coefficients of the higher order derivatives in the
wave equation constitute a set of dispersion constants. This
paper is concerned with the access to the numerical values of
these constants that is provided by picosecond laser ultra-
sound measurements,8 dispersive phonon imaging,9 and, ei-
ther directly or indirectly through the intermediary of lattice
dynamics models, phonon dispersion relations measured by
inelastic neutron scattering.10 Our investigation relates to the
four cubic crystals, Ge, Si, GaAs, and InSb. For these crys-
tals, symmetry considerations dictate that there are six inde-

pendent coefficients of the fourth order derivatives, the dis-
persive elastic constants f1 , . . . , f6, and for the latter two
crystals, which lack a center of inversion, there is, in addi-
tion, a single independent coefficient for the third order de-
rivatives, the dispersion constant d. We derive values of the
nondispersive and dispersive elastic constants by fitting to
the known near zone center portions of the acoustic mode
phonon dispersion curves for the symmetry directions of
these crystals that have been obtained by neutron scattering.
We find that ballistic phonon transport calculations employ-
ing these constants account well for the dispersive phonon
images of these crystals. These images are an acid test of the
nondispersive and dispersive elastic constants in that, unlike
neutron scattering and the laser ultrasound experiments that
we are aware of, they explore all crystallographic directions,
not just the symmetry directions. For Ge, Si, and GaAs, there
are previously reported values of dispersion constants ob-
tained from empirical and ab initio lattice dynamics models
and from laser ultrasound measurements, which we compare
our results to.

II. DISPERSIVE WAVE EQUATION

The first onset of spatial dispersion of acoustic waves in
media with microstructure can be accommodated within con-
tinuum elasticity theory by the incorporation of third and
fourth order spatial derivatives of the displacement field u in
the wave equation as follows:1–4

�
�2ui

�t2 = cikjl
�2uj

�xk � xl
+ dikjlm

�3uj

�xk � xl � xm

+ f ikjlmn
�4uj

�xk � xl � xm � xn
+ ¯ , �1�

where the subscripts refer to Cartesian axes, � is the density,
the coefficients of the second order derivatives, cikjl, are the
conventional nondispersive elastic constants, and those of
the third and fourth order derivatives, dikjlm and f ikjlmn, re-
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spectively, are dispersive elastic constants. We restrict our
attention to the domain of weak spatial dispersion near the
Brillouin zone center, not more than about halfway to the
zone boundary, where there is no need to consider higher
order derivatives than those displayed in Eq. �1�.

Equation �1� admits plane wave solutions of the form uj
=Uj exp�i�k ·x−�t��, with the wave vector k, angular fre-
quency �, and polarization vector U satisfying the following
linear equation:

�Dij − ��2�ij�Uj = 0, �2�

where

Dij = cikjlkkkl + idikjlmkkklkm − f ikjlmnkkklkmkn �3�

is the dynamical matrix. The secular equation,

��k,�� = det�Dij − ��2�ij� = 0, �4�

represents the dispersion relation for elastic waves in the
medium.

For crystals of cubic symmetry, the elastic modulus tensor
cikjl has three independent components, which in the Voigt
contracted notation are c1111=C11, c1122=C12, and c1212
=C44. The fifth rank tensor dikjlm, which identically vanishes
for centrosymmetric crystals, is called the acoustic gyrotro-
pic tensor and is implicated in the phenomenon of acoustic
activity11 in certain noncentrosymmetric crystals. For the
centrosymmetric crystal class Oh, to which Ge and Si belong,
dikjlm is zero, while for the crystal class Td, to which GaAs
and InSb belong, which lacks inversional symmetry, this ten-
sor has a single independent component, d12223, which we
abbreviate to d. Symmetry considerations limit the number
of independent components of the f ikjlmn tensor for the Oh
and Td classes to 6, namely, f1� f111111, f2� f122122, f3
� f122133, f4� f211222, f5� f112222, and f6� f112233. In terms of
these coefficients, the components of the dynamical matrix
for cubic crystals are given by1,2

Dii = C11ki
2 + C44�kj

2 + kk
2� − f1ki

4 − f2�kj
4 + kk

4� − 6f3kj
2kk

2

− 6f4ki
2�kj

2 + kk
2� �5�

and

Dij = �C12 + C44�kikj + 3id�ki
2kk − kj

2kk� − 4f5�kikj
3 + ki

3kj�

− 12f6�kikjkk
2� . �6�

No summation is implied by repeated indices in these ex-
pressions and it is required that i� j, j�k, and k� i. Note
that Refs. 1 and 2 employ symmetrized elastic constants c̃ikjl,
for which c̃1122= �C12+C44� /2.

For the crystals we are considering, the elastic constants
Cij are of the order of 1012 dyn /cm2. We can estimate the
magnitudes of the d and f i coefficients on the grounds that
the terms in Eq. �6� should all be of the same order of mag-
nitude for k=2� /a, where a	6 Å is the lattice constant.
Hence, we expect that d
104 dyn /cm and f i
10−4 dyn,
which are born out in the tables that follow.

III. EXTRACTION OF ELASTIC CONSTANTS AND
DISPERSION CONSTANTS FROM NEUTRON

SCATTERING DATA

Inelastic neutron scattering measurements of phonon dis-
persion relations are generally restricted to crystallographic
symmetry directions. We have determined the numerical val-
ues of the elastic constants and dispersion constants of Ge,
Si, GaAs, and InSb by fitting to measured near zone center
acoustic mode frequency versus wave vector data for the
�100�, �111�, and �110� crystallographic directions in these
four crystals. In these directions, there is at least one pure
transverse mode, and this allows the factorization of Eq. �4�
into a linear factor and a quadratic factor in terms of the
squared frequency and wave number. For the �100� and
�111� directions, and in the case of Oh symmetry, also the
�110� direction, the quadratic factor further factorizes, which
yield expressions of the form �2=ak2−bk4, where a and b
are constants, for the dispersion curves as follows.

For the fourfold symmetry �100� directions, Eqs. �4�–�6�
yield the following:

��L
2 = C11k

2 − f1k4, �7�

for the longitudinal mode, and

��T
2 = C44k

2 − f2k4, �8�

for the doubly degenerate transverse modes.
The dispersion relation for the longitudinal mode along

the threefold �111� directions is

��L
2 = 1

3 �C11 + 2C12 + 4C44�k2

− 1
9 �f1 + 2f2 + 6f3 + 12f4 + 16f5 + 24f6�k4, �9�

and for the doubly degenerate transverse modes is

��T
2 = 1

3 �C11 − C12 + C44�k2

− 1
9 �f1 + 2f2 + 6f3 + 12f4 − 8f5 − 12f6�k4. �10�

Along the �110� crystal axes, there is a pure transverse
mode with the following dispersion relation:

��T2
2 = 1

2 �C11 − C12�k2 − 1
4 �f1 + f2 + 6f4 − 8f5�k4. �11�

The dispersion relations for the other two modes can be ex-
pressed in the following form:

��2 = 1
2 �A � 
B� , �12�

where

A = 1
2 �C11 + C12 + 4C44�k2 − 1

4 �f1 + 3f2 + 6f3 + 6f4 + 8f5�k4

�13�

and

B = � 1
2 �C11 + C12�k2 − 1

4 �f1 − f2 − 6f3 + 6f4 + 8f5�k4�2

+ 9d2k6. �14�

The positive sign in Eq. �12� pertains to the longitudinal
mode and the negative sign to a transverse mode, and Eq.
�14� shows that these modes also depend on d2. For Td sym-
metry, the presence of the d term in Eq. �6� causes these
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modes to be slightly mixed and of elliptical polarization.1

For Oh crystals for which d=0, Eq. �12� reduces to

��L
2 = 1

2 �C11 + C12 + 2C44�k2 − 1
4 �f1 + f2 + 6f4 + 8f5�k4

�15�

and

��T1
2 = C44k

2 − 1
2 �f2 + 3f3�k4, �16�

which pertain to pure longitudinal and pure transverse
modes, respectively.

The neutron scattering data used in determining the non-
dispersive and dispersive elastic constants was obtained from
Refs. 12–16. The data utilized were only that for the acoustic
modes and confined to k values up to a maximum of between
0.4 and 0.57 in reduced wave vector coordinates, i.e., in units
of 2� /a, where a is the lattice constant of the crystal, de-
pending on the availability of data for the particular crystal
and crystallographic direction. The number of data points
available for each dispersion curve varied between 2 and 4.
In cases where it was 2, excluding for the moment the modes
depending on d, substitution into the relevant defining equa-
tion for that curve, Eqs. �7�–�11� and �15�, or �16�, yielded
the values of the two coefficients, the first being a Cij or a
combination of Cij’s and the second being an f i or a combi-
nation of f i’s. Where there were three or four data points for
a particular dispersion curve, the values of those two con-
stants were obtained from optimized fitting to those data
points.

Proceeding in this way for Ge and Si, for which there
were data available for all seven of the symmetry axis dis-
persion curves, we obtained the numerical values of seven
combinations of the three independent Cij’s and, likewise,
the numerical values of seven combinations of the six inde-
pendent f i’s. These two overdetermined problems were
solved by optimization, and a least-squares fit yielded the
values for the Cij and f i of Ge and Si, as shown in Tables I
and II, respectively. The Cij’s obtained in this way differ by
only a few percent from tabulated values of Landolt-
Börnstein �LB�,17 which have been obtained by averaging
over reported measured values. Dispersion curves for Ge and
Si, calculated with these parameters and compared with the
utilized neutron scattering data, are shown respectively in
Figs. 1 and 2.

Table I also lists values of elastic constants and dispersion
constants for Ge reported by Maranganti and Sharma,2 which
have been derived from shell model calculations of the lat-
tice dynamics of Ge, with parameters adjusted to fit neutron
scattering data for all of the branches. We have found that
with these constants, we do not obtain as good a fit to the
acoustic mode neutron scattering data as that shown in Fig.
1. The reason for this may be that because the shell model is
simultaneously fitted to experimental data for both the opti-
cal and acoustic branches, it is therefore in a sense a com-
promise. Another factor may be that the dispersion constants
of Maranganti and Sharma2 apply to asymptotically small
wave vector values, whereas the constants we have extracted
from neutron scattering acoustic mode data have been opti-
mized to give the best average fit to the neutron scattering

data over a finite range of k. We were not able to locate any
calculations of the f i’s based on the bond charge �BC� model,
which for covalent crystals such as Ge and Si are able to fit
the neutron scattering data with fewer parameters.18 The �
coefficients in the tables and their calculated values8,19 are
explained in due course.

In Table II, the elastic constants and dispersion constants
of Si, directly extracted from neutron scattering data, are
compared with values that have been obtained through the
medium of ab initio lattice dynamics, molecular dynamics,
and the shell model by Maranganti and Sharma. 2 As with
Ge, and probably for the same reasons, these other values of
the constants do not yield as good a fit to the acoustic mode
neutron scattering data as that shown in Fig. 2, which is
based on the neutron scattering constants.

For InSb and GaAs, for which the parameter d is nonzero,
the dispersion relations for the quasilongitudinal and quasi-
transverse modes in the �110� direction take on the more
complicated form described by Eq. �12�, while the expres-
sions for the other five dispersion curves, being independent
of d, are unaffected. From the �100� and �111� data, we have
obtained the Cij values for these two crystals, but determin-
ing the f i has presented somewhat more of a challenge. We
attempted to approximate Eq. �12� by polynomial expres-
sions of the same form as the other dispersion relations
through a power series expansion of the surd, but this was
not successful in fitting the dispersion relations out as far as
we would have liked. The reason for this could be traced to

TABLE I. Elastic constants and dispersion constants of Ge di-
rectly extracted from neutron scattering data of Nilsson and Nelin
�Ref. 12�, taking the density �=5.36 g /cm3 and lattice constant a
=5.65 Å. Also shown are values of these constants obtained though
the medium of the shell model by Maranganti and Sharma �Ref. 2�,
and dispersion constants � obtained from picosecond laser ultra-
sonic experiments of Hao and Maris �Ref. 8� and BC model calcu-
lations �Refs. 8 and 19�. Also shown are the LB �Ref. 17� tabulated
values of Cij.

This paper Shell modela LBb

C11�	1012 dyn /cm2� 1.391 1.31 1.29

C44 0.698 0.68 0.671

C12 0.56 0.30 0.48

f1�	10−4 dyn� 0.803 0.08

f2 1.506 2.52

f3 0.008 0.63

f4 0.489 0.03

f5 0.439 0.01

f6 −0.320 −0.29

Ultrasoundc BCcd

��100��	10−11 cm3 /s� 1.47 0.15 0.85 1.50

��110� 3.66 1.27 5.55 5.52

��111� 1.64 0.48 1.05 2.46

aReference 2.
bReference 17.
cReference 8.
dReference 19.
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the comparable magnitude of certain terms of different pow-
ers in the discriminant for the larger values of k. For extract-
ing the parameters f i and d from neutron scattering data,
there is an advantage in being able to work with expressions
that are combinations of terms in k2 and k4, and we have
obtained these from Eq. �12� by combining the longitudinal
mode and fast transverse mode expressions as follows:

��L
2 + ��T1

2 = A , �17�

and

���L
2 − ��T1

2 �2 = B . �18�

From Eqs. �13� and �14�, A has the desired form, while B in
addition contains a term in k6, which we have neglected.

For GaAs, neutron scattering data15 were available for all
seven symmetry direction dispersion curves and might have
been sufficient to determine all of the seven dispersion con-
stants except that a singular valued problem arises from the
fact that the coefficient of k4 in Eq. �17� is a linear combina-
tion of the coefficients of k4 in Eqs. �7�–�11�. The solution of
this underdetermined optimization problem was a line seg-
ment of points in dispersion parameter space, which we pa-
rametrized by d2, which had a lower limit of zero and an

TABLE II. Elastic constants and dispersion constants of Si directly extracted from the neutron scattering
data of Dolling �Ref. 13� and Nilsson and Nelin �Ref. 14�, taking the density �=2.33 g /cm3 and lattice
constant a=5.43 Å. Also shown are values of these constants obtained though the medium of the shell
model, molecular dynamics and ab initio lattice dynamics by Maranganti and Sharma �Ref. 2�, and dispersion
constants � obtained from picosecond laser ultrasonic experiments of Hao and Maris �Ref. 8� and BC model
calculations �Refs. 8 and 19�, and Landolt-Börnstein �Ref. 17� tabulated values of Cij.

This paper Molecular dynamicsa Ab initio LDa Shell modela LBb

C11�	1012 dyn /cm2� 1.775 1.45 1.68 1.66 1.65

C44 0.807 0.70 0.81 0.80 0.791

C12 0.745 0.84 0.45 0.48 0.63

f1�	10−4 dyn� 0.752 0.37 2.9 0.39

f2 1.25 0.27 4.1 2.7

f3 −0.013 −0.19 −0.42 0.48

f4 0.524 0.34 0.84 0.48

f5 0.378 0.32 0.67 0.06

f6 −0.125 −0.10 −0.66 −0.24

Ultrasoundc BCc,d

��100��	10−11 cm3 /s� 1.85 1.01 7.33 0.99 1.80 2.20

��110� 4.65 3.16 10.40 3.86 8.45 8.00

��111� 3.09 1.70 3.54 2.52 2.60 3.52

aReference 2.
bReference 17.
cReference 8.
dReference 19.

(a) (b) (c)

FIG. 1. Dispersion curves �frequency � /2� versus reduced wave vector k� of Ge along the �a� �100�, �b� �110�, and �c� �111�
crystallographic directions using elastic constants and dispersion constants directly extracted from neutron scattering data. The data points
represent the neutron scattering data of Nilsson and Nelin �Ref. 12�.
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upper limit beyond which one or more of the f i became
imaginary. The value of d2 was narrowed down within that
interval to that which gave the best visual fit to all of the
neutron scattering data we exploited. The elastic constants
and dispersive constants of GaAs obtained by these means
are shown in Table III, alongside values obtained through the
medium of the shell model, dipole model, and ab initio lat-
tice dynamics by Maranganti and Sharma2 and DiVincenzo,1

and elastic constants from LB.17

The dispersion curves of GaAs shown in Fig. 3 have been
calculated by using elastic constants directly extracted from

neutron scattering data. The data points in the dispersion
curves represent the experimental neutron scattering data of
Dolling and Waugh.15 Again, we find that with the lattice
dynamics derived constants, we do not obtain as good a fit to
the acoustic mode neutron scattering data as that shown in
Fig. 3.

The nondispersive and dispersive elastic constants of InSb
were determined in a similar way to that of GaAs, except that
we were not able to exploit the dispersion relation for the
pure transverse mode in the �110� direction, since no neutron
scattering data are available for that branch for InSb. This

(a) (b) (c)

FIG. 2. Dispersion curves of Si along the �a� �100�, �b� �110�, and �c� �111� directions using nondispersive and dispersive elastic
constants directly extracted from neutron scattering data. The data points represent the neutron scattering data of Dolling �Ref. 13� and
Nilsson and Nelin �Ref. 14�.

TABLE III. Elastic constants and dispersion constants of GaAs directly extracted from the neutron
scattering data of Dolling and Waugh �Ref. 15�, taking the density �=5.34 g /cm3 and lattice constant a
=5.65 Å. Also shown are values of these constants obtained through the medium of the shell model, dipole
model, and ab initio lattice dynamics by Maranganti and Sharma �Ref. 2� and DiVincenzo �Ref. 1�, dispersion
constants � obtained from picosecond laser ultrasonic experiments of Hao and Maris �Ref. 8� and BC model
calculations �Refs. 8 and 19�, and Landolt-Börnstein �Ref. 17� tabulated values of Cij.

This paper Dipole modela Ab initio LDa Shell modelb LBc

C11�	1012 dyn /cm2� 1.200 1.190 1.170 1.200 1.18

C44 0.580 0.600 0.560 0.600 0.594

C12 0.576 0.540 0.620 0.540 0.535

f1�	10−4 dyn� 0.400 0.40 0.40 0.26

f2 0.900 1.05 1.08 2.04

f3 −0.093 0.45 0.94 0.48

f4 0.357 0.25 0.22 0.24

f5 0.280 0.03 0.24 0.16

f6 −0.200 −0.08 0.02 −0.19

d�	104 dyn /cm� 0.25 0.41 0.13 0.18

Ultrasoundd BCde

��100��	10−11 cm3 /s� 0.79 0.79 0.80 0.51 0.74 1.34

��110� 2.54 1.42 2.12 2.24 8.15 4.44

��111� 1.08 1.29 2.74 1.56 1.20 2.28

aReference 2.
bReference 1.
cReference 17.
dReference 8.
eReference 19.
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posed an underdetermined problem of six independent equa-
tions for seven parameters, which yielded, as with GaAs, a
line segment of points in parameter space. We chose the
point on this line which yields dispersion curves along the
direction through the center of the irreducible sector of the
Brillouin zone �polar and azimuthal angles with respect to
the cube axes 
=32° and �=47°, respectively�, which lie
well within the bounds represented by the symmetry direc-
tion dispersion curves. The elastic constants and dispersion
constants of InSb obtained in this way are shown in Table
IV, and dispersion curves for the �100�, �110�, and �111�
directions, calculated by using these constants, are shown in
Fig. 4 together with data points representing the experimen-
tal neutron scattering data of Price et al.16 These curves show
good agreement with experimental data except for the pure T
mode in the �110� direction, for which there are no data.

IV. PICOSECOND LASER ULTRASOUND
MEASUREMENTS OF DISPERSION

Hao and Maris8 carried out laser ultrasound measure-
ments on a number of crystals that provide a window on the
onset of spatial dispersion for the longitudinal modes in the
symmetry directions of these crystals. In their experiments, a
picosecond laser pulse momentarily heats the aluminum
coated surface of their sample, which generates a pressure
pulse of short duration that propagates through the sample, is

reflected off the opposite face, and has its return to the first
surface monitored. The acoustic pulse has a peak frequency
of about 120 GHz, and it represents a coherent excitation that
allows for the accurate measurement of dispersion in this
frequency domain. In its passage through the crystal, the
pulse spreads out into an oscillatory Airy function type wave
form, with the higher spatial frequency Fourier components
of the pulse lagging behind the lower frequency leading edge
because of dispersion. Hao and Maris were able to fit their
results to a dispersion relation of the following form:8

��k� = Vk − �k3 . . . , �19�

where V is the longitudinal velocity in the long wavelength
limit and the coefficient � is a dispersion parameter. By com-
paring Eq. �19� to the dispersion relation �7�, we see that for
the �100� direction,

V�100� = 
C11/�; ��100� =
V�100�f1

2C11
. �20�

From Eqs. �9� and �15�, similar expressions hold for the
�111� and �110� symmetry directions, with the coefficients of
k2 and k4 in these equations replacing C11 and f1 in Eq. �20�,
respectively. For the �110� direction in GaAs, where d is
nonzero, we have evaluated ��110� by expanding the surd in
Eq. �12� in powers of k2 and by extracting the coefficients of
k2 and k4. Because of the smallness of k here, there was no

(a) (b) (c)

FIG. 3. Dispersion curves of GaAs along the �a� �100�, �b� �110�, and �c� �111� directions using values of the elastic constants directly
derived from neutron scattering data. The data points represent the neutron scattering data of Dolling and Waugh �Ref. 15�.

(a) (b) (c)

FIG. 4. Dispersion curves of InSb along the �a� �100�, �b� �110�, and �c� �111� directions. The data points represent the neutron scattering
data of Price et al. �Ref. 16�.
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recurrence of the problem encountered before.
In Table I, the values of the dispersion parameters � of Ge

reported by Hao and Maris8 are compared with those calcu-
lated by using Eq. �20� and equivalent equations for the other
directions, using the nondispersive and dispersive elastic
constants derived from neutron scattering data and those de-
rived through the medium of the shell model, and the BC
model of Weber.8,19 Although these four sets of values appre-
ciably differ, the neutron scattering, laser ultrasound, and BC
values bear the best comparison. A point of consistency be-
tween all four sets of values is that ��110� has the largest
value, ��100� the smallest, and ��111� the intermediate value.
The laser ultrasound measurements are indicative of a larger
variation of � with direction than the neutron scattering data.

In Table II, the values of the dispersion parameters � of Si
reported by Hao and Maris8 are compared with those calcu-
lated by using the constants derived from neutron scattering
data and those obtained through the medium of molecular
dynamics, ab initio lattice dynamics, the shell model, and the
BC model.8,19 The neutron scattering and laser ultrasound
values of ��100� and ��111� are in good agreement, but as with
Ge, the neutron scattering value of ��110� is somewhat lower
than the laser ultrasound one. The model derived results dif-
fer from both the neutron scattering and laser ultrasound
ones, in the case of the ab initio lattice dynamics even yield-
ing the �’s in a different order by size. Picosecond ultrasound
measurements on Si by Daly et al.20 yielded ��100�=1.44
	10−11 cm3 /s and ��111�=1.92	10−11 cm3 /s, which are
slightly smaller than those of Hao and Maris.8

In Table III, the values of the dispersion parameters � of
GaAs reported by Hao and Maris8 are compared with those
calculated by using the constants derived from neutron scat-
tering data and those obtained through the medium of the
dipole model, ab initio lattice dynamics, the shell model, and
the BC model.8,19 As with Si, the neutron scattering and laser
ultrasound values of ��100� and ��111� are in good agreement,
but the neutron scattering value of ��110� is somewhat lower
than the laser ultrasound one. The model derived results dif-

fer from both the neutron scattering and laser ultrasound
ones, in the case of the ab initio lattice dynamics, yielding
the �’s in a different order by size.

We are not aware of any laser ultrasound measurements or
lattice dynamics model based calculations of the dispersion
constants f i, d, and � of InSb.

V. PROBING SPATIAL DISPERSION WITH PHONON
IMAGING

In contrast to neutron scattering and hitherto reported la-
ser ultrasound measurements, phonon imaging explores the
effects of spatial dispersion in all directions in a crystal, not
just the high symmetry directions. A phonon image depicts
the highly anisotropic directional dependence of the thermal
phonon flux emanating from a heated spot on the surface of
a crystal.9 The measurements are conducted at liquid helium
temperatures, where there is minimal phonon scattering, and
the phonon transport takes place ballistically. By raster scan-
ning the source �usually a pulsed focused laser beam�, with
the detector at a fixed position on the opposite face of the
crystal, a map is made from the directional dependence of
the radiated phonon intensity. Bolometric detectors are most
effective for measurements on longer wavelength less disper-
sive phonons, while frequency selective tunnel junction de-
tectors are used for measurements on shorter wavelength dis-
persive phonons.9 By far, the most important contributory
factor to the nonuniformity in the phonon flux is the effect of
phonon focusing, which has to do with the fact that phonons
propagate not in the directions of their wave vectors k, which
are smoothly distributed in direction for a thermal source,
but in the directions of their group velocity or ray vectors,
V=���k� /�k. For a given frequency, these rays are perpen-
dicular to the constant frequency surface and, as a result,
they tend to be bunched up in directions normal to regions
where the surface is flattest. Caustics in the phonon intensity
arise from lines of zero curvature in the constant frequency
surface.9,21,22

In the low frequency limit, which is reasonably well sat-
isfied for thermal phonons up to and a little beyond 100
GHz, the constant frequency surfaces are all identical in
shape to the acoustic slowness surface, which is determined
just by the elastic constants Cij, and the consequences are
nondispersive phonon images, which are frequency indepen-
dent, and the caustics being extremely sharp. At higher fre-
quencies, the constant frequency surfaces change with fre-
quency, and so do phonon focusing patterns, and the caustics
undergo some blurring. There is an extensive literature on
dispersive phonon focusing. In the past, the results were gen-
erally interpreted on the basis of lattice dynamics
models.23–31 The only exception to this appeared to be an
attempt to explain certain anomalies in the focusing pattern
of quartz near its acoustic axes on the basis of first order
spatial dispersion.32

The phonons that feature in dispersive phonon focusing
are those with wave vectors sufficiently far from the center
of the Brillouin zone that they are in the nonlinear region of
the dispersion relation, but not so far from the center that
they are near the zone boundary where group velocities tend

TABLE IV. Nondispersive and dispersive elastic constants of
InSb directly extracted from neutron scattering data of Price et al.
�Ref. 16�, taking density �=5.79 g /cm3 and lattice parameter a
=6.48 Å. Also shown are the Landolt-Börnstein �Ref. 17� tabulated
values of Cij.

This paper LBa

C11�	1012 dyn /cm2� 0.707 0.662

C44 0.252 0.302

C12 0.449 0.359

f1�	10−4 dyn� 0.4162

f2 0.6181

f3 −0.2103

f4 0.2964

f5 0.2258

f6 −0.0924

d�	104 dyn /cm� 2.000

aReference 17.
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to zero, and phonon scattering is pronounced. These are pre-
cisely the modes which our gradient elasticity model is de-
signed for. In our numerical modeling of phonon images, we
assume a three-dimensional uniform distribution of wave
vectors out to a maximum value of k	0.4. From the disper-
sion relation �6�, which depends on f i and, where applicable,
also on d, we calculate the frequencies and group velocities
for all these k’s, and the points where these rays intersect the
viewing surface are collected in a 500	500 array of bins,
and the distribution used to simulate a phonon image. To
match the experimental conditions for reported phonon im-
ages, in some cases, we select the arrivals by frequency in-
terval and, where time gating has been employed in the mea-
surements, also by arrival time.

Figure 5 shows three calculated phonon images of Ge in
the �110� observation plane, the first two for essentially non-
dispersive phonons in the frequency range 0–0.3 THz, and

the third for higher frequency dispersive phonons. Bright re-
gions in these images correspond to high phonon intensity,
with the sharp lines being caustics. Figure 5�a� was calcu-
lated by using elastic constants directly extracted from neu-
tron scattering data, while Fig. 5�b� was calculated by using
elastic constants derived through the medium of the shell
model by Maranganti and Sharma.2 The labels ST and FT
refer to phonon focusing structures due to slow and fast
transverse phonons, respectively. The first of these images is
in good agreement with the phonon image measured by
Northrop and Wolfe,33 but their measured image is poorly
reproduced by using elastic constants derived through the
medium of the shell model, particularly with regard to the
diamond shaped ST structures centered on the �100� direc-
tions �near the top and bottom center in the image�, and the
absence of fully formed FT caustics. Figure 5�c� shows an
image that results from selecting phonons with frequencies at

FIG. 6. Calculated phonon images of Si in the �100� observation plane for the frequency range 0.7� f �0.9 THz: �a� using elastic
constants and dispersion constants directly extracted from neutron scattering data and �b� using elastic constants and dispersion constants
derived through the medium of molecular dynamics by Maranganti and Sharma �Ref. 2�.

FIG. 5. Calculated phonon images of Ge in the �110� observation plane �a� for essentially nondispersive phonons using elastic constants
and dispersion constants directly extracted from neutron scattering data, �b� for essentially nondispersive phonons by using elastic constants
and dispersion constants derived through the medium of the shell model �Ref. 2�, and �c� by using neutron scattering elastic constants and
dispersion constants and selecting wave vectors k up to 0.15 and phonons with frequencies near 0.85 THz.
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around 0.85 THz and with wave vectors up to 0.15, which
are calculated by using our elastic constants and dispersion
constants. This image compares well with the experimental
image obtained by Dietsche et al.23 and Northrop24 using a
detector with an onset frequency of 0.7 THz, particularly
with regard to the rounding of the �100� box structures and
the widening of the separation between the FT caustics. The
wave vector selection results in the exclusion of phonons
with smaller wavelengths, which are more susceptible to
scattering, and this has the greatest effect on the three-cusped
ST structures centered on the �111� directions, which are
now suppressed. This appears to explain the absence of these
focusing structures in the measured image.23,24

Figures 6�a� and 6�b� show dispersive phonon images of
Si in the �100� observation plane, for phonons in the fre-
quency range of 0.7–0.9 THz, calculated by using nondisper-
sive and dispersive elastic constants directly obtained from
neutron scattering data and values derived from molecular
dynamics by Maranganti and Sharma,2 respectively. The im-

age in Fig. 6�a� compares well with the image of Si mea-
sured by Tamura et al.26 using a detector with an onset fre-
quency of 0.7 THz. The image calculated by using molecular
dynamics constants for the same frequency range substan-
tially differs from the measured image.

Nondispersive and dispersive elastic constants of GaAs
directly extracted from neutron scattering data were used to
calculate the long wavelength phonon image of GaAs in the
�110� observation plane in Fig. 7�a�. This image compares
very well with the nondispersive phonon image of GaAs
measured for the same geometry by Northrop et al.27 and
Hebboul and Wolfe.28 Figures 7�b� and 7�c� show dispersive
images of GaAs in the �110� observation plane for phonon
frequencies between 0.7 and 1.0 THz, and gated to select
phonons with velocities between 2.9 and 3.9 mm /
s to
match the sliding time gate used in the experiments.27 Figure
7�b� has been calculated with constants directly derived from
neutron scattering data, while Fig. 7�c� is based on the shell
model derived constants of DiVincenzo.1 At these higher fre-

FIG. 8. Calculated phonon images of InSb in the �110� observation plane, selecting phonons with frequencies in the range �a� 0.0–0.2
THz, �b� 0.43–0.50 THz, and �c� 0.593–0.650 THz.

FIG. 7. Calculated phonon images of GaAs in the �110� observation plane: �a� essentially nondispersive image using neutron scattering
elastic constants and dispersion constants and frequencies in the range 0–0.3 THz �the other two images are dispersive images for phonons
with frequencies between 0.7 and 1.0 THz and velocities between 2.9 and 3.9 mm /
s�; �b� using elastic constants and dispersion constants
directly extracted from neutron scattering data; �c� using elastic constants and dispersion constants derived through the medium of the shell
model by DiVincenzo �Ref. 1�.
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quencies, the diamond shaped structures around the �100�
directions have become rounded and the separation of the FT
caustics near the center of the image has increased. While
both images are reasonably consistent with the experimental
image,27,28 the neutron scattering derived parameters do have
the edge, with Fig. 7�b� matching up better with the mea-
sured image.

The evolution of the �110� observation plane phonon im-
age of InSb as the phonon frequency increases is shown in
Fig. 8. These images were calculated by using nondispersive
and dispersive elastic constants directly extracted from neu-
tron scattering data. The box structures around the �100� di-
rections changes from a diamond shape for nondispersive
frequencies �Fig. 8�a�� to a rounded shape in the 0.43–0.50
THz frequency range �Fig. 8�b�� and then becomes squared
for phonons with frequencies between 0.593 and 0.650 THz
�Fig. 8�c��. The inner box structures also become smaller as a
result of dispersion, and the separation of the FT caustics
becomes progressively larger with increasing frequency.
These changes in the phonon focusing pattern are in good
agreement with the phonon images measured by Hebboul
and Wolfe.30

VI. CONCLUSIONS

The first onset of spatial dispersion of acoustic waves in
crystals is well accounted for by augmenting the elastic wave

equation with third and fourth order spatial derivatives of the
displacement field. By this means, we have been able to
successfully fit inelastic neutron scattering data on the pho-
non dispersion curves for the acoustic modes in Ge, Si,
GaAs, and InSb out to about halfway to the Brillouin zone
boundary. We have compared the elastic constants and dis-
persion constants we have obtained in this way to those cal-
culated through the medium of lattice dynamics models by
DiVicenzo1 and Maranganti and Sharma.2 Our values for the
constants come closer to fitting the picosecond laser ultra-
sound measurements of spatial dispersion in the first three of
these crystals by Hao and Maris.8 With these constants, we
are able to account well for the reported dispersive phonon
images of the four crystals. Gradient elasticity in this context
has been shown to be a useful adjunct to lattice dynamics
models and an appropriate way to treat weak spatial disper-
sion.
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