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Damping of the collective modes in liquid Fe
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The dynamic structure factor S(Q,w) of liquid Fe was measured at 1570 °C near the melting point of
1535 °C by using a high-resolution inelastic x-ray scattering (IXS). The IXS spectra obtained show well-
defined collective excitations, which is in contrast to predictions based on macroscopic thermodynamics. From
the detailed analysis using both a damped harmonic oscillator model and a generalized Langevin formalism, it
was found that the value of the specific heat ratio y and the longitudinal kinematic viscosity v rapidly decrease
with Q. However, even when these O dependent values are used in the generalized hydrodynamic theory, the
width of the inelastic excitations is overestimated by about 1 order of magnitude. A description of the damping
of the collective excitation in liquid Fe that agrees with the data is instead obtained by using a modified version
of the generalized hydrodynamic theory, in which fast viscoelastic relaxation dominates and thermal dissipa-
tion is nearly negligible. Compared to liquid alkali metals, the slow (structural) contribution to the longitudinal
viscosity is much larger than the fast viscoelastic contribution for small Q. This might reflect the formation of

a stable icosahedral intermediate-range order in liquid Fe.

DOI: 10.1103/PhysRevB.77.174203

I. INTRODUCTION

In recent years, particle dynamics in liquid metals has
been intensively investigated due to development of inelastic
x-ray scattering (IXS) at third-generation synchrotron radia-
tion sources. The high quality S(Q, ) data obtained by using
this method have been analyzed by using a damped harmonic
oscillator (DHO) model! or a generalized Langevin formal-
ism using memory functions.> While one would expect the
acoustic excitation to disperse with a sound velocity compa-
rable to the thermodynamic one, application of these models
shows that this is often not the case, even at a modest (few
nm~!) momentum transfer Q. This deviation of the sound
velocity from the macroscopic value has been thoroughly
discussed in the context of the generalized hydrodynamic
theory.> However, the damping of the excitation modes, i.e.,
the width of the inelastic excitation peaks, is not yet well
understood.

In a monatomic liquid, the excitation lifetimes are short-
ened by the heat flow and viscous drag. In the thermody-
namic (long-wavelength) limit, the width of the inelastic ex-
citation peaks, WQ?, can be estimated from macroscopic
thermodynamic quantities:?

W=

—%[(7— I)DT+17]. (1)
p

v is the ratio of specific heats at constant pressure and con-
stant volume, D7 is the thermal diffusivity, 7 is the longitu-
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dinal viscosity, and p is the density. The latter term in the
brackets is frequently referred to as the longitudinal kine-
matic viscosity v (=7/p). In general, the thermal term,
(y—1)Dy, contributes much more than the viscoelastic term,
n/ p, within the thermodynamic limit. Generalized hydrody-
namics extends this relation to short wavelengths by allow-
ing the quantities y and 7 to be O dependent. Qualitatively,
this is supported, e.g., by the case of liquid Ar, which has a
large 7y value, y>2, and is well known to have a highly
damped sound mode in liquid Ar.* Meanwhile, liquid alkali
metals have a smaller value for y~1.1-1.2 and have less
strongly damped sound modes.’

Liquid transition metals have 7y values intermediate be-
tween liquid Ar and liquid alkali metals. For example, liquid
Ni has y~ 1.88 near the melting point. In addition, it shows
a large shear viscosity value 7, of 5.64 mPas. Due to this,
Bermejo et al.® carried out an inelastic neutron scattering
experiment on liquid Ni, anticipating damped features in in-
elastic excitation modes. However, they observed well-
defined collective excitations in the wide Q range up to about
20 nm~!: regarding the atomic motions on microscopic
scales, liquid Ni resembles liquid alkali metals rather than
liquid Ar. In response to the experimental result, reasoning
from generalized hydrodynamics, they posited a Q depen-
dent y(Q) and 7(Q), approaching the hydrodynamic value as
Q—0 but strongly decreasing with increasing Q.

Scopigno et al.,> however, pointed out the inadequacy of
the generalized hydrodynamics, i.e., Eq. (1) with the Q de-
pendent ¥(Q) and 7(Q), based on two considerations. First,
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structural relaxation is frozen in the high-frequency region of
interest, while only fast u relaxation survives. Second, the
thermal contribution in Eq. (1) fails already at wave vectors
as small as a few nm™! since the adiabatic regime could be
replaced by an isothermal one. Consequently, Eq. (1) with
the Q dependent y(Q) and 7(Q) is found to overestimate the
linewidth by a factor of 2 in the case of liquid Li.”

In this paper, we present IXS spectra of liquid Fe which
has a large specific heat ratio, y= 1.72,% and shear viscosity,
7,=>5.5 mPas. Following Eq. (1), strong damping of the ex-
citation modes would be expected within the context of con-
ventional and generalized hydrodynamics. However, our data
show the existence of clear modes with damping about 1
order of magnitude smaller than that expected from general-
ized hydrodynamics, even allowing for the carefully deter-
mined parameters in Eq. (1) depending on Q. This damping
is much larger than the factor of 2 seen in liquid Li.” Never-
theless, good agreement with our results is obtained by using
a modified version of generalized hydrodynamics by Scopi-
gno et al.,’> which is mentioned above. The present result
serves to extend this model into the region of large-y,
large- 7 materials and offers an alternative view of the par-
ticle dynamics in liquid metals, which comprises the corre-
sponding microscopic character of the elements.

II. EXPERIMENTAL PROCEDURE

The IXS experiments were performed at the beamline
BL35XU of the SPring-8 by using a high energy resolution
IXS spectrometer.” A monochromatized beam of 4
X 10° photons/s was obtained from a cryogenically cooled
Si(111) double crystal followed by a Si (11 11 11) monochro-
mator operating in an extreme backscattering geometry
(about 89.98°, 21.75 keV). The same backscattering geom-
etry was used for the energy analysis of the scattered x-ray
photons with 12 spherically curved Si analyzers. The energy
resolution was determined by the scattering from a Plexiglas
sample and values of 1.6-1.9 meV (full width at half-
maximum) were found for various analyzer crystals. The Q
resolution was set to be about =0.30 nm~".

The sample thickness was about 100 um, being slightly
larger than a 1/e absorber. The purity of the sample was
99.9999%. It was located in a single-crystal sapphire cell,
which was a slight modification of the so-called Tamura-type
cell.'0 If the melting temperature of the sample is higher than
1000 °C like Fe, the original type of the sapphire cell can no
longer be used for the IXS experiment because the high-
temperature ceramics adhesive (SEM-COM Co. Inc., type
SCE-1) softens around 1000 °C, and the sample cannot be
kept in the sample reservoir. In the present experiment, in-
stead, a reservoirless cell was designed as illustrated in Fig.
1. As seen in the figure, a sample with an appropriate thick-
ness for the x-ray transmission was sandwiched with two
closed-end tubes. Then, the tubes were cemented and closed
by the high-temperature ceramics adhesive under He gas at-
mosphere in order to fix the sample thickness even after
melting and to avoid chemical corrosion between the sample
vapor and the metal heating wire at high temperatures.

The sample and the sapphire cell were placed in a vessel!!
equipped with single-crystal Si windows. The very high tem-
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FIG. 1. Cross section of a single-crystal sapphire cell used for
the IXS experiment on liquid Fe.

perature of 1570 °C was achieved by using two W resistance
heaters and monitored with two W-5%Re/W-26%Re thermo-
couples. The IXS measurements were carried out between
1.3 and 21.3nm~' over energy transfers of +40 or
*50 meV.

II1. RESULTS

Figure 2 shows the selected IXS spectra normalized to the
corresponding integral intensity which is identical to
S(Q,w)/S(Q), except for the resolution broadening. Also
given as a dashed line is a typical example of the resolution
function. Clear inelastic excitations are seen as peaks or
shoulders at both sides of the central line. As mentioned in
Sec. I, this result contradicts the hydrodynamic prediction for
the excitation damping in this large-y large-» liquid metal.
The energy of the inelastic components shifts with varying
Q. This result clearly demonstrates that the inelastic excita-
tions originate from propagating modes, as found earlier in
other liquid metals.’ The width of the quasielastic and inelas-
tic lines becomes broader with increasing Q, and eventually,
the inelastic modes look damped. Anomalies indicated by the
bars in Fig. 2 result from imperfect corrections of the phonon
modes of the sapphire container.

A resolution correction was made by taking a convolution
of a model S(Q,w) and the experimentally determined reso-
lution function for the measured result. In order to obtain the
energy and width of the inelastic excitation modes, we per-
formed an analysis by using a Lorentzian central peak and a
DHO excitation,! given as

|: ﬁa)/kBT :|A0 FO

1 —e ksl | 7 w2+F%

+ .
1 —e kT | 7 (? - w2Q)2 + 4F2Qw2

Here, A and T’y are the amplitude and the half-width at
half-maximum of the central peak, and Ay, FQ, and w, are
the amplitude, width, and energy of the inelastic excitation
modes, respectively. The solid curves in Fig. 2 indicate the
best fits of the DHO model function convoluted with the
resolution function to the experimental data. The DHO
model function almost reproduces the experimental data in
the whole Q range measured.

The open circles in Fig. 3 indicate the dispersion relation,
which is the Q dependence of the g values, obtained from
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FIG. 2. Selected IXS spectra (circles) normalized to the corre-
sponding integral intensity, which 1is nearly identical to
S(Q,w)/S(Q), except for the resolution broadening. The dashed
line represents a typical resolution function. The solid curves indi-
cate the best fits of the DHO model function convoluted with the
resolution function to the experimental data. The bars represent the
energy positions of the phonon modes of the sapphire container.

the fits. The dashed line represents the dispersion of hydro-
dynamic sound, and its slope is given by the adiabatic veloc-
ity of sound (~3800 m/s).'? As seen in the figure, the dis-
persion relation of wg in the low Q region locates larger in
energy than the hydrodynamic prediction. The increase over
the bulk sound velocity is about 11%, which is similar to
those in most liquid metals.’ This so-called positive disper-
sion can be explained within the framework of the general-
ized hydrodynamics,”> where it is shown that frequency-
dependent upper and lower limits exist for the propagating
speed of longitudinal collective modes. The observed in-
crease toward the upper limit would be related to the onset of
a shear viscosity on microscopic scales at high frequencies.

The full triangles in Fig. 3 exhibit the width of the inelas-
tic excitation, I'y. With increasing Q, I'y slowly and almost
linearly increases. If the hydrodynamic values of vy, Dy, and
7, are used for Eq. (1), the I'y value is given as the solid
curve in Fig. 3, which is much larger than the experimental
data, even though the bulk viscosity term is not included.
This result indicates that the Q range of the present IXS
experiment is, of course, already outside of where the mac-
roscopic hydrodynamic theory can be applied. The modifica-
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FIG. 3. Dispersion relation (circles) and the width (triangles) of
the inelastic excitations in liquid Fe at 1570 °C obtained from the
DHO model. The dashed line indicates the dispersion of hydrody-
namic sound. The solid curve represents the macroscopic thermo-
dynamic prediction for the widths of the inelastic excitations.

tion in the hydrodynamic theory mentioned in Sec. I will be
discussed later in detail.

IV. DISCUSSION AND GENERALIZED LANGEVIN
ANALYSIS

A practical quantity to present the broadening of the in-
elastic excitations for liquid systems may be the ratio
I’/ wg. The open circles in Fig. 4 show I'y/ wy in liquid Fe
as a function of reduced momentum transfer Q/Q,, where
Q,, which is the first maximum position in S(Q), is about
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FIG. 4. The ratio I'y/  of the inelastic excitations in liquid Fe
at 1570 °C as a function of reduced momentum transfer Q/Q,,,
where Q,, denotes the Q position of the first maximum in S(Q). The
solid curve indicates I'p/wy in liquid Cs at 35°C for the
comparison.
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FIG. 5. Q dependence of the heat capacity ratio y obtained from
the Landau—Placzek relation (Ref. 2). The arrow shows the Q—0
limit of y=1.72. The solid curve is a guide for the eyes.

30 nm~! in liquid Fe. For the comparison, the Iy/wg values
in liquid Cs at 35 °C are also exhibited by the solid curve.'
For liquid Fe, values between 0.07 and 0.37 are found in the
first quasi-Brillouin zone, i.e., the Q values up to 0~ 0Q,/2
shown as the dashed line. These values are almost twice as
large as those in liquid Cs, where the ratio ranges between
0.03 and 0.19 in the corresponding Q zone, indicating almost
a half-lifetime of the longitudinal inelastic modes in liquid
Fe compared to those in liquid Cs. Although a highly damp-
ing feature was expected from the large vy and 7, values in
liquid Fe, the actual damping is only slightly larger than that
in liquid Cs. The comparison of the damping in liquid Fe
with those in liquid alkali metals will be discussed later.

For solving the disagreement on the damping feature in
liquid Fe between the present experimental result and the
macroscopic hydrodynamic prediction, we shall discuss the
Q dependence of the heat capacity ratio y(Q) and longitudi-
nal kinematic viscosity »(Q). First, the ¥(Q) values can be
derived by using the Landau-Placzek relation,”

10

TR G)

where I and Iy are the intensities of the Rayleigh and Bril-
louin scattering contributions, respectively. These values can
be obtained from the energy integrals of the Lorentzian for
the quasielastic line and the DHO for the inelastic excitation.
Figure 5 shows the vy values obtained as a function of Q. The
arrow shows the hydrodynamic value of y=1.72, and the
solid curve is a guide for the eyes, which will be used for the
subsequent analysis. Although the y data are scattered in the
low Q region, it can be observed that y(Q) rapidly decreases
with increasing Q and eventually approaches unity beyond
0=0,/2~15 nm~'. This significant decrease in ¥(Q) with
0 seems to qualitatively contribute to the appearance of the
well-defined inelastic excitation modes in liquid Fe.

In order to obtain the Q dependence of the longitudinal
kinematic viscosity ¥(Q) from the measured S(Q, w) spectra,
the second data analysis was carried out by using a general-
ized Langevin formalism. The basic time correlation probing
the collective dynamics in a monatomic fluid (N particles
with a mass of m) is the intermediate scattering function,
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F(Q.1) = 1 3 (- @00, @)

N%
where r;() denotes the position of the jth particle at time z.
The initial value F(Q,t=0) corresponds to S(Q). Since
S(Q, w) is the frequency spectrum of F(Q,1), it is possible to
obtain the latter from experimental data with a sufficient

quality. Within the generalized Langevin formalism,'*!
F(Q,1) is determined by

F(Q,1) + w3(Q)F(Q,1) + f M(Q,t—1")F(Q,t")dt' =0,
0
(5)

where M(Q,1) is the memory function of the density fluctua-
tions, and wé(Q)=kBTQ2/ mS(Q) is the reduced second fre-
quency moment of S(Q,w), giving the lowest limit of the
sound velocity at a finite Q as ¢5(Q)=wy(Q)/ Q.

For M(Q,t), we used the well-known approximation con-
taining an exponential decay channel for thermal relaxation
and two exponentials for viscous relaxation,'® which is ex-
pressed as

M(Q,1) =[7Q) - 1103(Q)e ™12 + [0} Q) - 1) wi(Q)]
X{[1 - A(Q)]e™" ™ + A(Q)e™ ™D} (6)

The y(Q) values taken from the Landau-Placzek relation at
each finite Q and the Q—0 limit of Dy were used for the
calculation. In the second term, w,z(Q) is the reduced fourth
moment of S(Q,w), which characterizes the instantaneous
collective response of the liquid at a finite Q and determines
the generalized infinite-frequency velocity (or highest limit
of sound velocity in generalized hydrodynamics), c.
=w(Q)/Q. 7, and 7, are, respectively, the relaxation rates
for the so-called microscopic u-relaxation process as a faster
relaxation dominant over a very short time scale and the
a-relaxation (structural relaxation) process as responsible for
the long-lasting tail. A(Q) measures the relative weight of the
slow viscoelastic decay channel. For simplicity, Eq. (6) is
written as’

AL(Q)e™Pr £ A2(Q)e™ W) 1+ A2(Q)e ™D, (7)

The above approach has proven to be useful in describing
results of computer simulation studies on simple liquids'®
and also of experimental IXS data on many liquid metals.’
Details of this model were described in Ref. 7.

For each Q value, the frequency spectrum of F(Q,t) con-
voluted with the experimentally obtained resolution function
was fitted to the present scattering intensity data. The model
function fits the data well, which does not seem to be differ-
ent from the DHO fits shown as the solid curves in Fig. 2.
Then, the resolution-deconvoluted line shapes of S(Q,w)
were built from the fitting parameters, and the corresponding
longitudinal  current  correlation  functions, J(Q,w)
=(w?/0%)S(Q, w), were calculated from the obtained S(Q, )
spectra. The maximum of the J(Q, w) function, g, Was used
for determining the dispersion relation of the inelastic modes
at the finite Q values. The dispersion relation is similar to
that obtained from the DHO model analysis shown in Fig. 3,
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FIG. 6. Dynamical sound velocity ¢, at various Q values ob-
tained from the generalized Langevin analysis (circles). The full
triangles indicate the generalized isothermal sound velocity ¢, and
the empty triangles the high-frequency values c... The arrow shows
the hydrodynamic limit at Q—0, i.e., the adiabatic sound velocity
of 3800 m/s (Ref. 12).

and the magnitude of the positive dispersion in the low Q
region is 12%, which is slightly larger than that obtained
from the DHO model (11%).

The closed circles in Fig. 6 indicate the dynamical sound
velocity ¢ (=wg/ Q) at various Q values, w, being obtained
from this generalized Langevin analysis. The closed triangles
indicate the generalized isothermal sound velocity ¢
(=wy/Q), and the open triangles are the high-frequency val-
ues ¢., (=w;/ Q). The arrow shows the hydrodynamic limit at
0—0, ie., the adiabatic sound velocity of ~3800 m/s.!?
The ¢y value already deviates from the hydrodynamic value
even at the lowest Q values measured, reaches the high-
frequency limit c¢., around Q=8-10 nm~!, and again ap-
proaches the lower limit ¢, when the Q value reaches the
S(Q) maximum. Such a behavior has been commonly ob-
served in several molecular dynamics simulation results of
alkali metals'” and in experimental ones in many liquid met-
als universally.’

Figure 7 shows two viscoelastic relaxation times, 7, (full
circles) and 7, (empty circles), obtained by the fits. The
slower relaxation time 7, is almost constant (0.2—0.3 ps),
although the data at low Q values are rather scattered. On the
other hand, 7, seems to gradually decrease with increasing
0.

The Q-dependent (generalized) longitudinal kinematic
viscosity v¥(Q) in the generalized Langevin formalism corre-
sponds to the total area of the memory function, which is
expressed as

Ar,+ANT,
Q2
Figure 8 shows v(Q) as a function of Q. As expected, v(Q)

rapidly decreases with increasing Q. As y(Q) largely de-
creases with increasing Q, as shown in Fig. 5, this large

v(Q) = . (®)
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FIG. 7. The viscoelastic relaxation rates, 7, (full circles) and 7,
(empty circles), obtained from the present generalized Langevin
fits.

decrease in v(Q) also seems to qualitatively contribute to the
appearance of the well-defined inelastic excitation modes in
liquid Fe. The dashed arrow indicates the lower limit of the
hydrodynamic kinematic longitudinal viscosity at Q—0,
4v,/3=1.04 X 10~ m?/s, which is experimentally obtained
from the hydrodynamic kinematic shear viscosity.'® By com-
paring to this hydrodynamic (Q —0) value, the v(Q) values
beyond Q~ 3 nm™! appear reasonable values. Thus, the gen-
eralized bulk viscosity would be enhanced in the lower Q
region.

By using the above results of the model analyses, we shall
quantitatively discuss the damping feature of the collective
modes by the generalized hydrodynamic theory. The tri-
angles in Fig. 9 depict the Q dependence of the W values,
W=Tp/ 0% ona logarithmic scale, I, being the width of the

10°
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FIG. 8. Logarithmic plot of the Q dependence of the longitudi-
nal kinematic viscosity v calculated from the generalized Langevin
fits. The dashed arrow indicates the lower limit of the hydrody-
namic kinematic longitudinal viscosity, 4v,/3=1.04X 107 m?/s.
The solid curve is a guide for the eyes.
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FIG. 9. Logarithmic plot of the Q dependence of the W values,
W=/ Q7. The chain line indicates the macroscopic hydrodynamic
prediction given in Eq. (1) by using the Q— 0 limit of the thermo-
dynamic values. The dotted curve represents the generalized hydro-
dynamic prediction using the Q-dependent y(Q) and »(Q) values.
The solid curve shows the W values obtained by the modified ver-
sion of the generalized hydrodynamic equation, Eq. (9).

inelastic excitation modes shown as the triangles in Fig. 3.
The chain line indicates the macroscopic hydrodynamic pre-
diction calculated from Eq. (1) by using the Q—0 limit of
the thermodynamic values for y, Dy, and v,. Although the
further broadening by the bulk viscosity term is expected, the
width of the inelastic excitation modes predicted by the hy-
drodynamics already gives much larger values than the ex-
perimental results, and of course, it cannot reproduce the
large O dependence of W.

The dotted curve in Fig. 9 represents the generalized hy-
drodynamic prediction by using the Q-dependent y(Q) and
v(Q) values obtained from the above analyses for Eq. (1). As
can be clearly seen in the figure, the predicted values are too
large (about 1 order of magnitude) to reproduce the experi-
mentally obtained I/ Q? values although the Q dependence
looks similar. Bermejo et al.® also reported the well-defined
inelastic excitations in liquid Ni, which has a very similar
thermodynamic nature to liquid Fe. They discussed that
“such an apparent paradox was solved some time ago by
means of the introduction of a Q-dependent microscopic vis-
cosity 7(Q) which approaches the hydrodynamic value as
Q0 —0 but strongly decreases as Q increases.” Such an ex-
planation does not seem to work in the present analysis for
liquid Fe. We believe that a quantitative analysis is necessary
to discuss the damping of the acoustic modes reported in
liquid Ni as well.

Scopigno et al.>'° discussed the damping of the acoustic
modes for liquid Li in the same way and pointed out an
overestimate by a factor of about 2 when Eq. (1) was used.
Due to the inconsistency between the experimental result and
the theoretical prediction, they proposed a modified version
of the generalized hydrodynamic equation given as
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FIG. 10. The full and empty circles indicate, respectively, the
fast and slow viscoelastic contributions, W, and W,, to the W val-
ues. The solid curves are a guide for the eyes. The thick dashed
curve denotes the isothermal term, Wy, calculated from the modi-
fied version of the generalized hydrodynamic equation, Eq. (9). The
thin dashed curve represents the subtracted thermal relaxation term
Wad-iso deduced from the modification of the W equation by Scopi-
gno et al. (Ref. 19).
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where ¢; is the isothermal velocity of sound, ¢,=c,/ \G/. This
formula was based on the idea that in the high-frequency of
interest, structural relaxation is frozen (the system is re-
sponding as a solid) and, therefore, the viscosity associated
to this slow process does not contribute to the sound damp-
ing. Moreover, the thermal contribution in Eq. (1) might be
incorrect at Q values as large as a few nm™! since the adia-
batic regime could be replaced with an isothermal one, as
proposed by Scopigno and Ruocco.!”

The solid curve in Fig. 9 shows the W values obtained by
the modified version of the generalized hydrodynamic equa-
tion, Eq. (9). As can be clearly seen in the figure, the values
reproduce well the experimental results of I‘Q/Qz, although
both the experimental data and the calculated results are
rather scattered due probably to the interference of param-
eters obtained from the fits, and the Q dependence is slightly
different. Thus, the modification of the generalized hydrody-
namic theory by Scopigno et al.>!° leads to the correct esti-
mation for the damping of the acoustic excitation modes.

The solid circles in Fig. 10 show the fast viscoelastic

2

contribution, WM(=%§§), 2and the thick dashed curve the iso-
-Dei
2D,Q?
the generalized hydrodynamic equation, Eq. (9). The figure
clearly indicates that W, rapidly decreases with increasing
Q and becomes negligible beyond Q=5 nm~! compared to
W,. Thus, it can be concluded that the damping feature of
the longitudinal acoustic mode in liquid Fe is dominated by
the (fast) viscoelastic relaxation, and the thermal (isothermal)
one acts only in the low Q region below 5 nm™!.

thermal one, Wi, [= ] to W, in the modified version of
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FIG. 11. The resolution-deconvoluted S(Q,w) spectra (solid
curves) and their fast (dotted curves) and slow (dashed curves) vis-
coelastic and thermal (chain curves) components at selected Q val-
ues of 4 nm™! (lower panel) and 12 nm™' (upper panel).

This conclusion can be confirmed by observing the con-
tributions of the fast relaxation process in S(Q,w) spectra.
Within the context of the generalized Langevin formalism by
using the memory function of Eq. (6), the S(Q,w) is ex-
pressed as

2

T io+1/7,(0)
AYQ) -
< ) . (10)

iw+1/7,(0)

From this equation, a linear combination form of Ai(Q),
A(ZI(Q), and Alzh(Q) was obtained in the numerator of the
formula, and the contributions of the fast and slow viscoelas-
tic and thermal relaxations were calculated. Figure 11 shows
the resolution-deconvoluted S(Q, w) spectra (solid curves) at
selected Q values of 4 and 12 nm™' and their fast (dotted
curves) and slow (dashed curves) viscoelastic and thermal
(chain curves) contributions.

At Q=4 nm™!, which is shown in the lower panel of Fig.
11, the fast viscoelastic component indicated by the dotted
curve dominates the inelastic excitation mode at about
12 meV. On the other hand, the thermal relaxation compo-
nent given by the chain curve is small compared to the fast
viscoelastic relaxation one. The slow viscoelastic relaxation
component is negligible in the inelastic excitation modes and
mainly contributes to the quasielastic central line. At Q
=12 nm™!, which is shown in the upper panel of Fig. 11, the
above trend becomes much pronounced. The acoustic exci-
tation mode at about 30 meV is totally composed of the fast
viscoelastic relaxation process of the memory function, and
the thermal and slow viscoelastic relaxation processes do not
contribute to it. Thus, it is confirmed that the fast viscoelastic
relaxation dominates the damping feature of the longitudinal

A(Q)
iw+ DQ?
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FIG. 12. Selected M(Q,r) functions at several Q values are
shown as solid curves. The dotted, dashed, and chain curves indi-
cate parts of the thermal decay channel M, the fast viscoelastic
decay channel M, and the slow viscoelastic decay channel M,
respectively.

acoustic mode, and a small portion of the thermal relaxation
affects it in the low Q region only.

We discuss the time variation in the memory functions
obtained from the present generalized Langevin analysis.
Figure 12 shows M(Q,1) at selected Q values obtained from
the fitting parameters. The M(Q,r) functions can be easily
separated into three parts, i.e., the thermal decay channel
M, (=A,2he‘DTQ2’), the fast viscoelastic one M, (=A%e "),
and the slow viscoelastic one M, (=A2e™"7), which are
drawn by the dotted, dashed, and chain curves, respectively,
in Fig. 12.

At the small Q value of 3.0 nm™!, three parts compete in
the short time range below ~20 fs, but the largest contribu-
tion is M, being about twice as large as the others. With
increasing Q, however, the M, contribution decreases more
rapidly than M, in the short time range, and only the vis-
coelastic channels dominate M(Q,t) beyond 30-40 fs. In the
time range longer than 100 fs, M, becomes much smaller
than M, and the M, component entirely dominates M(Q,1).

With increasing Q, the decay of M, becomes much faster.
On the other hand, the two viscoelastic decay components
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gradually change with Q, and they rule over the memory
function in the time range beyond 10 fs. The switching from
the fast to slow viscoelastic decays happens at the time be-
tween several ten femtoseconds and about 100 fs at each Q
value measured in the present IXS experiment. In fact, the
excitation energies in the present Q range between 3.7 and
30.7 meV correspond to the time range for the density oscil-
lations between about 180 and 20 fs. So, it is reasonable that
the memory effect with such a short time regime, i.e., only
the fast viscoelastic decay channel can influence the acoustic
excitations in the corresponding high-frequency regime.

Unfortunately, the O dependence of Dy can hardly be ob-
tained due to the small contribution of the thermal decay
channel. The D value may also gradually decrease with Q
as reported for liquid Ne.?® So, the decay of the thermal
channel may become slower than the present calculation,
which, however, does not induce any large effect in M(Q,1)
in the whole time range. Thus, it is a valid conclusion that
the damping of the acoustic excitation mode is closely re-
lated to the shorter time domain of the memory function
governed by the fast viscoelastic decay channel.

Finally, we compare the results of the present analysis on
the damping of the acoustic modes in liquid Fe with those
reported for liquid alkali metals, which may help clarify a
specific structural character of liquid Fe from the dynamical
point of view. As phenomenologically discussed at the be-
ginning of this section using Fig. 4, although a highly damp-
ing feature was expected from the large vy and 7, values in
liquid Fe, the actual damping is only slightly larger than that
in liquid Cs, showing a low damping nature for the excitation
modes. Unfortunately, the generalized Langevin formalism
was not used for the analysis of the inelastic data of liquid
Cs, but the same formula of the memory function with one
thermal and two viscoelastic decay channels was applied to
other liquid alkali metals also exhibiting well-defined collec-
tivze2 excitations in the IXS spectra, such as Li,” Na,?! and
K.

The longitudinal kinematic viscosity »(Q) was obtained
for liquid Li and K. The »(Q) value of liquid Li gradually
decreases with Q from about 3.5 X 107 m?/s at the smallest
Q=1.4 nm~!' measured, as shown in Fig. 11 of Ref. 7. In the
same way, ¥(Q) of liquid K decreases with Q from about
1.8 X 107% m?/s at the smallest 9=3.2 nm™! given in Fig. 5
of Ref. 22. The present analysis for liquid Fe provides the
v(Q) values up to 1.8 X 10 m?/s as shown in Fig. 8, which
are very similar to those of liquid Li and K. Thus, the vis-
coelastic damping of the acoustic modes in liquid Fe can be
of magnitude similar to those in liquid alkali metals, as the
present experiment revealed.

This is not a surprising result because the viscoelastic
damping is not directly governed by the longitudinal viscos-
ity 7(Q) but by the longitudinal kinematic viscosity v(Q)
=7(Q)/p. Even in the hydrodynamic limit (Q —0), the ki-
nematic shear viscosity v, of liquid Fe is 0.78 X 107% m?/s,
while 0.34 X 107° m?/s for liquid Cs calculated from the lit-
erature data'® is almost half of the Fe value. If the damping
of the acoustic excitation modes is mostly governed by W,
as discussed above, and W, is proportional to the hydrody-
namic v, value in any elemental liquid metal, the widths of
the inelastic excitations of liquid Fe and Cs given in Fig. 4
are reasonably different from each other.

PHYSICAL REVIEW B 77, 174203 (2008)

How does liquid Fe differ from liquid alkali metals in the
fast and slow viscoelastic contributions to the »(Q)? In Fig.
10, the full and empty circles indicate, respectivel§2/, the fast

AT
W, (=557) and

20°

W, (= 2;2 ), in the W values, which are just half of the cor-
responding components in »(Q). Although the data points are
rather scattered due to the parameter interferences in the fit-
ting procedure, W, may show a gradual decrease with in-
creasing Q as indicated by the thick solid guide line. On the
other hand, an enhancement is seen in the structural vis-
coelastic contribution W,, at the low Q values below 4 nm™'.
At these small Q values, some of the 7, values exceed the
inverse of the resolution width, ~0.42 ps, as seen in the
lower panel of Fig. 7. A similar enhancement in 7, was also
reported in liquid Li,” Na,>' and K.?> However, the product
A? 7, or the kinematic viscosity (Afmﬁ A27,)/Q? gradually
changes with varying Q, unlike the present Fe result. Thus,
we believe that the enhancement in W, at the low Q values is
not artificial. At higher Q values beyond 4 nm~!, W, de-
creases in a manner parallel to W, with increasing Q as
shown by the thin solid guide line, and the ratio W,/ W, is
approximately 1.5.

Similar information on the ratio W,/ W, can be obtained
for liquid Li shown in Fig. 10 of Ref. 7. The ratio is about 3
at the lowest Q value of 1.4 nm™! in liquid Li, which is much
smaller than the present ratio of about 10 at Q=1.3 nm™! in
liquid Fe. With increasing Q, the ratio gradually decreases,
and in the higher Q range beyond about 3.5 nm™', it ap-
proaches the value of about 1.5, which is similar to that in
liquid Fe. The same analysis was also performed for liquid K
as given by the inset in Fig. 5 of Ref. 22. In the higher O
range beyond 3 nm~!, the ratio Ai’i’a/ AiTM is mostly less
than 2, which is again similar to that in liquid Fe.

It is interesting why the structural viscoelastic component
is enhanced in the low Q region in liquid Fe, although this
slow viscoelastic decay term does not influence the damping
of the acoustic excitations. For discussing the structural vis-
coelastic decay, it is important to know a specific structural
character of liquid Fe by comparing to those of liquid alkali
metals. At the beginning stage of the liquid metal science,
liquid Fe as well as liquid alkali metals were considered to
have a densely packed structure of hard-sphere particles be-
cause the S(Q) of these liquid metals can be well described
by the Purcus-Yevick approximation for a hard-sphere
fluid.>> However, it is also known that liquid Fe is well su-
percooled over a wide temperature range, which is an indi-
cation of a high activation barrier to form crystal nuclei in
the liquid.

Frank?* postulated that there is a significant amount of an
icosahedral intermediate-range order in the well-supercooled
melt, which consists of compact arrangements of 13 atoms
and possesses a local energy being 8.4% smaller than that of
dense-packed fcc or hep structure of the same number of
atoms if atomic interactions are approximated by a Lennard-
Jones potential. Recently, the existence of the icosahedral
intermediate-range order was experimentally confirmed for
the stable (above the melting point) and supercooled liquid
Fe by a neutron scattering measurement using a containerless
(electromagnetic levitation) technique.?> On the other hand,

and slow viscoelastic contributions,

A7,
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liquid alkali metals are supercooled in a narrow temperature
range and no indication of any stable clusters has been re-
ported from both the experimental and theoretical studies on
liquid alkali metals.

The formation of such stable clusters should cause a slow-
ing down of the atomic motion or diffusion in liquid Fe
because the atoms are trapped into these stable icosahedral
clusters in liquid Fe. This slowing down of the atomic mo-
tion does not influence the fast viscoelastic decay concerning
the cage effect in the melt, but should make the structural
viscoelastic decay much slower than that in liquid metals like
alkali metals. Thus, it is reasonable to speculate that such an
enhancement in the structural viscoelastic decay may origi-
nate from the existence of stable icosahedral clusters in lig-
uid Fe, although the size of the icosahedral clusters is
slightly larger than the correlation length of the correspond-
ing Q value of about 3 nm™' where the enhancement of W,,
starts to occur. Since the existence of the icosahedral clusters
was also experimentally observed in liquid Ni and Zr, a simi-
lar enhancement in structural viscoelastic decay would be
observed in these liquid metals.

For the further analysis of the present S(Q,w) data of
liquid Fe, the application of a mode coupling theory (MCT)
would be an alternative approach. The original version of
MCT (Ref. 26) requires detailed knowledge of the inter-
atomic potential. However, a modified version of MCT
(Refs. 27 and 28) has recently been applied to the S(Q, w)
data of molten Ti.?® Although only the S(Q) and the number
density were the inputs to calculate S(Q, w) from this version
of MCT, the damping of the longitudinal acoustic excitations
was reproduced well for molten Ti. However, the MCT cal-
culation produced the dispersion largely deviating from the
experimental data and highly depending on the small differ-
ences in S(Q) data at small Q values. To our knowledge, the
only available S(Q) of liquid Fe was the data measured by
Waseda and Suzuki*® in 1970, which covered the Q range
beyond Q=5 nm™!. Since precise S(Q) at small Q are nec-
essary even for applying the modified version of MCT to the
present data, we shall try to carry out further analyses by
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using the MCT after measuring the precise S(Q) data, in
particular, at small Q values, by a synchrotron radiation ex-
periment.

V. CONCLUSION

The S(Q,w) spectra of liquid Fe were measured at
1570 °C near the melting point of 1535 °C by using a high-
resolution IXS. The obtained IXS spectra show well-defined
collective excitations, in contrast to predictions based on
macroscopic thermodynamics. From detailed analysis using
both a DHO model and a generalized Langevin formalism, it
was found that the values of the specific heat ratio 7y and the
longitudinal kinematic viscosity v rapidly decrease with Q.
However, even when these O dependent values are used in
the generalized hydrodynamic theory, the width of the inelas-
tic excitations is overestimated by about 1 order of magni-
tude. Alternatively, a description of the damping of the col-
lective excitation in liquid Fe that agrees with the data is
obtained by using a modified version of the generalized hy-
drodynamic theory in which fast viscoelastic relaxation
dominates and thermal dissipation is nearly negligible.’
Comparing to liquid alkali metals, the slow (structural) re-
laxation process for the longitudinal viscosity is much larger
than that of the fast viscoelastic one in the small Q range in
liquid Fe, which may be reflected by a stable icosahedral
intermediate-range order formed in this liquid metal.
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