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In this work, we generalize a many-body extension of pairwise interatomic potentials originally proposed by
Baskes �Phys. Rev. Lett. 83, 2592 �1991��, in particular, showing how a pair potential interacting with multiple
near neighbor shells may be extended to an embedded atom form without changing the cohesive energy or
lattice constant. This is important for parametric studies of interatomic potentials, particularly how elastic
constants affect other properties. Specifically, we apply this to the modified Johnson potential, a pair potential
for Fe that has been used extensively for understanding liquid and amorphous metals.
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I. INTRODUCTION

For many atomistic simulations, one key choice must be
made as to the empirical form of the atomistic interactions.1,2

For properties that are expected to be widely generic, i.e.,
those that may apply to a class of materials, it may be useful
to choose either a simple model that does not necessarily
accurately describe any particular real material. Such poten-
tials include hard spheres, purely repulsive 1 /rn potentials,3,4

or Lennard-Jones interactions.3 On the other hand, for mate-
rial specific properties, it is important to develop accurate
potentials that capture the important energetics for the mate-
rial being studied. Classical empirical potentials of interest
include Stillinger-Weber interactions for Si and Ge,5 and
Tersoff6 and Brenner7 potentials for covalent systems includ-
ing C, Si, and C-H. Empirical potentials that include elec-
tronic degrees of freedom include tight-binding models8 and
bond-order potentials;9,10 appropriately used, these latter po-
tentials can significantly be more accurate �although more
computationally intensive� than the classical counterparts.

For metallic systems, embedded atom models11 are many-
body �MB� potentials that remedy some of the drawbacks of
pair potentials while maintaining a certain simplicity and
computational efficiency. In particular, the energy is ex-
pressed as a functional of pair functions, which eliminates
the need for explicit three-body terms. The total energy may
be written as

E = �
i
�F��̄i� +

1

2�
j�i

��rij�� . �1�

Here, there is a pair potential ��r� plus an embedding energy
F��̄� associated with an ion embedded in a surrounding

charge density �̄. The density �̄i is calculated by

�̄i =
1

�0
�
j�i

��rij� , �2�

where ��r� is the spherically symmetric electron density a
distance r from an atom. The parameter �0 is defined by

�0 = �
j�i

��rij� �3�

in a perfect lattice at the equilibrium lattice spacing, so that
for the equilibrium structure, �̄i=1 for all atoms. This form is
used in many similar potentials, including Finnis-Sinclair
potentials,12 effective medium theory,13 and “glue”
potentials.14 Typically, these potentials are fitted to a number
of parameters, including cohesive energy, surface and defect
energies, and elastic constants. The parameters may be fitted
to either experimental data, first-principles calculations, or a
combination of these.

In certain research problems, it may be useful to choose a
parametrized potential and examine the behavior as a func-
tion of the parameters. This is intermediate between the
above approaches. The Lennard-Jones potential has two pa-
rameters; however, these essentially simply define the energy
and length scales of the problem. In contrast, the Morse po-
tential may be expressed in terms of natural energy and
length scales, plus an additional parameter that determines
the interaction range of the potential. This allows for a direct
study of the effect of interaction range on the properties.

In a similar way, Baskes15 constructed a method for sys-
tematically going from a pair potential such as Lennard-
Jones to a many-body form. The interaction is constructed
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such that, within a nearest-neighbor approximation, the co-
hesive energy, lattice constant, and bulk modulus are unaf-
fected by the many-body terms. Thus, the many-body effects
may be examined while keeping several important param-
eters fixed. Two parameters are introduced: one controls the
strength of the many-body potential and one controls the
range of the electron density function ��r�. By varying these
parameters, a number of different lattice structures may be
stabilized.

The present work generalizes the work by Baskes, in par-
ticular, extending the work beyond the nearest neighbor. This
is important for considering potentials that stabilize struc-
tures other than face-centered cubic �fcc�, including the
body-centered cubic �bcc� phase considered here. We par-
ticularly treat the modified Johnson pair �MJ� potential for
Fe,16 which stabilizes the bcc phase over the fcc phase by
having a longer ranged potential such that the second-nearest
neighbors significantly contribute to the lattice stability. In
effect, the six next-nearest-neighbor atoms in the bcc system
are only 2�3�−1/2�1.15 times as far as the eight nearest
neighbors, and if the attractive interaction decays sufficiently
slowly, this makes for 14 effective neighbors, compared to
12 for the fcc lattice.

The modified Johnson potential was chosen because of
prior studies examining undercooled liquid and glass
properties.16 The potential is not particularly accurate for Fe,
but has reasonable properties. It is also much more harmonic
than the Lennard-Jones potential, which is frequently used
for simulation of liquids and glasses. The Lennard-Jones po-
tential has a Grüneisen constant of 4.5 and is too anharmonic
for metals. For metallic glasses, there has been considerable
interest in the effect of the Poisson ratio on the properties of
glasses, including their fragility17 and their ductility.18 For an
isotropic material, such as a glass, the Poisson ratio may be
defined in terms of the bulk modulus K and the shear modu-
lus G:

� =
3K − 2G

2�3K + G�
=

3 − 2�G/K�
2�3 + �G/K��

. �4�

Thus, the Poisson ratio is directly related to the ratio G /K.
Therefore, we are interested in developing a potential such
that the cohesive energy, lattice parameter, and bulk modulus
are fixed, so that relevant length and energy scales are invari-
ant, while the Poisson ratio varies. The potential of Baskes15

does precisely this, within a nearest-neighbor model. How-
ever, a straightforward extension of this to second-nearest
neighbors results in a model where the bulk modulus signifi-
cantly depends on the parameters.19

Therefore, the present work develops a model that in-
cludes second neighbors, maintains cohesive energy and lat-
tice parameters, and minimally affects the bulk modulus. The
paper is organized as follows: In Sec. II, the particular form
of the potential is shown and the properties of the extension
are developed. The effects of the parameters on bcc lattice
properties, including elastic constants and phase competition
with the fcc phase, are shown. In Sec. III, we specifically
apply this to the modified Johnson potential. In particular, we
examine the T=0 properties of the bcc and fcc lattices, in-
cluding cohesive energies, lattice parameters, and elastic

constants. The cohesive energies and elastic properties of
quenched amorphous structures are also examined to show
that the Poisson ratio of the amorphous system can be sig-
nificantly tuned, from ��0.25 for the original potential to
�	0.38 with the appropriate choice of many-body param-
eters.

II. FORM AND PROPERTIES OF THE MANY-BODY
EXTENSION

Following Baskes,15 we assume that the embedding en-
ergy in Eq. �1� has the form

F��̄� =
A

2
F0�̄�ln �̄ − 1� . �5�

The parameter A determines the strength of the many-body
potential; in the limit that A=0, the system will reduce to a
pair potential. Note that Eq. �5� differs from the Baskes equa-
tion, in that we have a parameter F0 that remains to be de-
termined, instead of the number of nearest neighbors Z0. In
Eq. �1�, the pair term has the form

��r� = �pair�r� −
2

F0
F„��r�… . �6�

Here, �pair�r� is the original pair potential. The electron den-
sity function around an atom is chosen to have the following
form:

��r� = exp�− �
 r

r0
− 1�� , �7�

where r0 will be determined later. In the case considered by
Baskes, or any nearest-neighbor only model, the parameter r0
will be equal to the nearest-neighbor distance and we recover
the normalization �0=Z0.

Thus, Eqs. �2�, �5�, and �7� above introduce five additional
parameters. The parameters A and � control the strength and
range of the many-body term and are the only “true” param-
eters, as the others are determined from these. The parameter
r0 will be chosen such that the many-body term does not
alter the near-neighbor separation, as described below, and is
therefore dependent on the value of �. Similarly, the values
of F0 and �0 are also dependent on �. The value of �0 is
determined by Eq. �3�.

For convenience, we rewrite the total energy in terms of a
pair contribution and a many-body contribution that we will
examine in detail as follows:

E = EMB + Epair. �8�

The many-body term will vanish in the limit that A=0. The
pair term is simply

Epair =
1

2�
i

�
j�i

�pair�rij� , �9�

while the many-body term is

EMB = �
i
�F��̄� +

1

2�
j�i

��rij�� . �10�

We have introduced the notation
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��r� = −
2

F0
F„��r�… . �11�

Thus, the expression for the many-body energy also includes
a pair term.

We now wish to choose the parameters F0 and r0 so that
the equilibrium energy and lattice spacing a0 do not change
as the many-body potential is introduced. This implies that

EMB�a0� = 0 �12�

and

EMB� �a0� = 0, �13�

where EMB�a0� is the energy of a perfect lattice with lattice
constant a0. Thus, there are two equations and two unknown
quantities. Equation �12� may be satisfied if the parameter F0
is defined by

F0 = − �
j�i

��r��ln ��r� − 1� . �14�

Again, in the case of a nearest-neighbor model, the param-
eter F0 reduces to the near-neighbor coordination number Z0
used by Baskes. With this choice, if the local charge density
at atom i is �̄i=1+��, the contribution to the many-body
energy in Eq. �10� is only second order in ��; the first-order
contribution vanishes.

To satisfy Eq. �13�, we must also choose a form of ��r�
that satisfies

�
j�i

rij ln ��rij����r� = 0. �15�

From the form of ��r� given in Eq. �7�, we can satisfy Eq.
�15� in a nearest-neighbor model simply by choosing r0=1
�in units of the near-neighbor distance�. However, for addi-
tional neighbor shells, a more general choice must be made
that depends on the neighbor distribution and the parameter
�. The value of r0 that satisfies Eq. �15� may numerically be
found in a straightforward manner.

We note that the condition for the bulk modulus to be
independent of the many-body potential may be written as
�analogous to Eqs. �12� and �13��

EMB� �a0� = 0. �16�

Again, for near-neighbor models, this is immediately satis-
fied by the above choices for F0 in Eq. �14� and by choosing
r0=1 �in units of the near-neighbor distance�. However, for
multiple neighbors, it is not generally possible to choose a
value of r0 that satisfies both Eqs. �15� and �16�.

A. Example: The bcc lattice

In the above analysis, we have not used anything specific
to any lattice or to any number of neighbors. As indicated
above, in the case of only near neighbors, we recover F0
=�0=Z0, the number of nearest neighbors, as well as r0=1
�in units of the near-neighbor separation�. These limits also
apply for large values of �, where the contribution of ��r�
past the near-neighbor shell is negligible. In the case where �

is small, in which the contributions of all neighbors consid-
ered are essentially equal, the values of F0 and �0 go to the
total number of neighbors.

To demonstrate these properties, we consider a bcc lattice
and include interactions involving two neighboring shells of
atoms. For a given value of �, r0 is determined by numeri-
cally solving Eq. �15� �utilizing the Newton-Raphson
method�. We then calculate the parameters F0 and �0 by us-
ing Eqs. �3� and �14�. The resulting values are shown in Fig.
1. In this figure, the value of r0 is given in units of the
nearest-neighbor distance. The above limiting behavior is ob-
served: for large �, only the eight nearest neighbors contrib-
ute to F0 and �0, and Eq. �14� is satisfied with r0=1. For
small �, all 14 nearest and next-nearest neighbors contribute
equally to F0 and �0. The value of r0 in this limit is simply
the average distance over all 14 atoms.

Note that r0 does not dramatically change over the entire
range of values of �. It is then tempting to replace r0 by
some intermediate value between the large and small limits,
which is independent of �. However, such a replacement
generally fails to satisfy Eqs. �12� and �13�; the equilibrium
lattice constant will then rapidly change as the many-body
term is changed through the parameter A.

B. Effect of many-body terms on the elastic constants

The many-body terms will, of course, affect the elastic
constants. For a pair potential, the elasticity tensor is given
by
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FIG. 1. Parameters r0, F0, and �0 as a function of �. The pa-
rameter r0 is in units of the nearest-neighbor distance; F0 and �0 are
dimensionless.
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C��,�	
� =

1

V
�
�ij

� 1

rij
2 ����r� −

���r�
r

�x�x�x�x	

+
���r�

r
x�x����� . �17�

In the original work by Baskes, for fcc materials, the bulk
modulus B and the elastic anisotropy, defined as the ratio of
c44 to c�= 1

2 �c11−c12�, were shown to be independent of the
many-body terms, while the many-body term contributed a
term to c44 and c� given by

c44
MB = 2c�MB = −

1

2

A�2



, �18�

where 
 is the volume per atom. For any nonzero value of A,
the elastic constants do not satisfy the Cauchy relation c44
=c11−c12. The fact that the bulk modulus is independent of
many-body terms in the near-neighbor approximation is due
to the fact that in this approximation, the many-body contri-
bution to the energy satisfies Eq. �16� in addition to Eqs. �12�
and �13� above. With the inclusion of the second-nearest-
neighbor interaction, we cannot, in general, satisfy Eq. �16�
as well, although we expect the effect on many-body inter-
actions to be small.

For the bcc system, while all many-body contributions to
the elastic constants scale as −A /
, the dependency on � is
slightly different, due to the dependence of F0 and �0 on �.
We show the many-body contribution to the elastic constants
c44, c�, and K in Fig. 2, in units of A�2 /
. Most importantly,
the change in the bulk modulus is small for all values of �,
particularly at values greater than 1. Thus, while the bulk
modulus K depends on the many-body potential, the effect
on the two shear moduli is at least 2 orders of magnitude
larger. The contribution to c� is seen to vanish in the large �
limit, but is larger than for c44 in the small � limit.

C. Effect of many-body term on fcc vs bcc phase stability

The inclusion of the many-body term will change the rela-
tive energetics of the fcc vs bcc lattice. Here, we briefly
examine this. The many-body contribution to the bcc lattice
energy is zero at the equilibrium lattice spacing. In Fig. 3, we
show the many-body energy per atom for a fcc lattice as a
function of the nearest-neighbor spacing �relative to that in
the bcc lattice�. We have assumed that the potential is trun-
cated so that it includes only first-nearest neighbors in the fcc
lattice. Of course, at small nearest-neighbor spacings, this
assumption will break down.

For values of � less than a critical value �c near 9, the
many-body term adds stability to the fcc lattice, relative to
the bcc lattice, with the magnitude of the difference mono-
tonically decreasing with increasing lattice spacing. Thus, in
this range, we would expect that the many-body term will
both increase the fcc phase stability and decrease the nearest-
neighbor spacing. The latter effect is not surprising, as the
potential will try to maintain the value of �i close to that of
the bcc lattice, despite fewer neighbors contributing. It will
do so by pulling the 12 nearest neighbors closer. The value of
�c occurs close to where �0��� in the bcc lattice is close to
the number of fcc neighbors �12�, so that the total charge
densities in the fcc and bcc lattices are comparable at similar
near-neighbor distances. For � near �c, the many-body con-
tribution to the stability of the fcc lattice is nearly zero. For
larger values of �, the many-body contribution to the fcc
lattice is positive, which stabilizes the bcc phase.

Note that in Fig. 3, it appears that for a given value of
��9, the fcc lattice will prefer to go to very small spacings.
This is due to the fact that we are only treating the many-
body contributions; the original pair potential will presum-
ably have a repulsive term that will stabilize the nearest-
neighbor spacing close to that in the bcc lattice. Also, the
results shown in Fig. 2 only include the nearest fcc neigh-
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bors, and second-nearest neighbors are excluded. If the lat-
tice spacings were sufficiently small, then the additional
neighboring shells would have to be included as well.

To demonstrate how including second-nearest neighbors
affect the fcc energy, we have calculated the fcc energy by
assuming the same nearest-neighbor distance as in the bcc
equilibrium lattice as a function of �. Figure 4 shows this
energy in the nearest-neighbor approximation and also in-
cluding second-nearest neighbors. The inclusion of second-
nearest neighbors makes the many-body contribution posi-
tive for all values of �, with a minimum near �=�c.
However, this is calculated without “relaxation”—the fcc lat-
tice parameter is not optimized in this case. At large values
of �, the curves coincide because the value of � effectively
provides a cutoff distance for ��r�. Thus, the data shown in
Figs. 3 and 4 should be taken to show trends only, and unless
� exceeds �10, the competition between the bcc and fcc
phases will depend on how and where ��r� is truncated. The
phase stability will have to include the truncation for the bcc
and fcc lattices in a consistent manner.

III. APPLICATION TO THE MODIFIED
JOHNSON PAIR POTENTIAL

We now demonstrate the application of the above ap-
proach with a specific application. The potential we choose is
the modified Johnson potential,16 which is a simple pair po-
tential that stabilizes the bcc phase over fcc at T=0. This
model is chosen over Lennard-Jones because it is more
harmonic and exhibits better glass forming ability. At
low temperatures, the Lennard-Jones system nucleates very
quickly, essentially without a barrier.20 The Johnson potential

is defined at interatomic distances 1.9 Å�r�3.44 Å as fol-
lows:

��r� =��
i=0

4

ai�r − 2.4�i, 1.9 � r � 2.4,

b2�r − 3.115 829�3 + b1r + b0, 2.4 � r � 3.0,

�
i=0

5

ci�r − 3.0�i, 3.0 � r � 3.44,�
�19�

where the constants are a0=−0.200 210 8, a1=−0.504 774 7,
a2=1.372 738, a3=−15.096 18, a4=−12.900 21, b0=
−1.581 570, b1=0.477 871, b3=−0.639 230, c0=
−0.146 963 6, c1=0.452 142 6, c2=0.222 124 1, c3
=1.725 326, c4=−12.910 63, and c5=14.671 11. An expo-
nential repulsive term A0e−Br is added to the potential in Eq.
�19� for r�1.9 Å, and the constants are A0=8752.934 and
B=4.572 488, which are chosen to have continuous ��r� and
���r� at r=1.9 Å. The units are such that r is in Å and the
energy ��r� is in eV. A plot of the potential is shown in
Fig. 5.

To make the calculations more definite and to demonstrate
some of the effects of the many-body term, we also consider
the above potential with additional many-body terms as de-
scribed above for �=6, �=9, and �=12. We truncate ��r�
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and ��r� by multiplying these by a cutoff function as fol-
lows:

fcut�r� = �
1, r � rn,

�1 − 
 r − rn

rc − rn
�2�2

, rn � r � rc,

0, r 
 rc.
� �20�

This form ensures that the potentials are unaltered for r
�rn and go smoothly to zero at rc
rn. The derivatives are
smooth at rn and rc. We have chosen rc=3.44 Å to coincide
with the cutoff of the Johnson potential, and rn=3.0578 Å.

It is difficult to get an intuitive feeling for the many-body
potentials; however, an effective, density-dependent pair po-
tential may be defined21 as follows:

�eff��̄;r� = ��r� + ��r� + 2F���̄���r� + F���̄��2�r� . �21�

This effective potential is evaluated by using the average
density �̄. By construction, the average density is �̄=1 in the
bcc T=0 phase and F���̄=1�=0; therefore, the first-order
term in ��r� vanishes. The effective potentials along with the
original Johnson potential are shown in Fig. 5 for three
choices of the many-body potential. We have chosen �=6, 9,
and 12 for demonstration. The values of A=0 and A
=0.08 eV were chosen to demonstrate the effect of the
many-body term on the potential. The many-body effective
potentials are not as deep as the original potential: near the
minimum of the original potential, the many-body contribu-
tion is positive. This does not affect the cohesive energy, as
there is a compensating term F��̄� that does not appear in the
effective pair potential. The many-body term also softens the
repulsive portion of the potential, particularly for larger val-
ues of �. For �=6, there is a slight positive value of the
effective potential near 3.3 Å. The bottom of the figure
shows the contribution from the many-body addition, scaled
by the strength A. As can be seen, this contribution to the
effective potential has a value of A at the near-neighbor dis-
tance and is positive but smaller for all distances greater than
this. The negative curvature can create a problem if the
strength of this term is too large. If A is made too strong,
then the many-body term dominates the original pair poten-
tial: in particular, the effective interaction will have a nega-
tive curvature in the region of the nearest-neighbor distance,
as can be seen for �=12, and a second local minimum in the
pair potential may occur. If A is sufficiently large, this mini-
mum can be deeper than the original minimum of the pair
potential. In this extreme limit, the many-body contribution
is no longer a perturbative extension of the pair potential:
while the original stable lattice structure is still locally stable,
it may not be the true ground state of the full potential.

It is important to note that the effective potential is not a
complete description; in fact, it misses several of the key
properties. If an effective pair potential would suffice, then
there would be no point in adding a many-body term. Some
properties calculated with the effective pair potential would
significantly differ from those calculated by using the full
many-body potential, because the effective pair potential is
defined by assuming a fixed value of �̄. However, most dis-
tortions will change this value. As an example, the elastic

properties calculated by using the effective pair potentials
will have properties characteristic of all pair potentials: the
Cauchy relations give c44=c12=c11−c12 �and, therefore, also
give a Poisson ratio of 1 /3�. In contrast, the full many-body
potential has a more complex �and realistic� behavior, as
shown in Fig. 2.

As indicated above, the competition between fcc and bcc
phases is complex, depending on truncation. Here, we exam-
ine this in detail for the pair potential and its many-body
potential. Figure 6 shows the energy vs volume for the bcc
and fcc phases, for the same parameters as in Fig. 5. The bcc
curves are essentially identical for all parameters, so only the
value for the pair potential �A=0� is shown. The fact that the
minima of these curves coincide demonstrates that the cohe-
sive energy and lattice constant are the same by construction.
However, as indicated above, there is no guarantee that the
curvature of these �proportional to the bulk modulus� are the
same. The fact that the curves are nearly identical reflects the
near cancellation of terms in the bulk modulus. In contrast,
the fcc curves are quite distinct and reflect the trends shown
in Fig. 5 for the nearest-neighbor contributions: for smaller
values of �, the many-body term stabilizes the fcc phase. For
larger values, the additional term favors the bcc lattice. As
predicted, for �=9, the fcc phase is nearly unchanged.

In the original work by Baskes15 on the effects of the
many-body extension of the Lennard-Jones potential, a map
of the lowest energy crystal structure was shown as a func-
tion of A and �. For larger values of these, structures with
lower coordination numbers may be stabilized, including
simple cubic and diamond cubic structures. In the present
work, we also see such effects. In Fig. 7, the energies of the
bcc, fcc, simple cubic, diamond cubic, and linear chain struc-
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FIG. 6. �Color online� Energy vs volume for the bcc and fcc
lattices, for the Johnson potential �A=0� and for many-body ver-
sions with A=0.08 eV and �=6, 9, and 12. For the bcc lattice, the
many-body results are indistinguishable with the A=0 curve.
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tures are shown as a function of the near-neighbor distance,
both for the original Johnson potential �A=0� and for A
=0.08 eV and �=9 and 12. For A=0, the bcc and fcc phases
are much lower in energy than the other structures. For A
=0.08 eV and �=9, this is still the case; however, at small
separations, the diamond structure and linear chain are sig-
nificantly lowered in energy. In the case of �=12, there is an
instability: the energy becomes arbitrarily low as the spacing
becomes small. This is due primarily to the additional pair
term given in Eq. �11�. When A becomes sufficiently large,
this term dominates the repulsive term in the original pair
potential. While there is a range of values of A that stabilizes
the low coordinated structures, this is due to the competition
between the original potential and the additional term. The
instability may be avoided either by keeping A small �par-
ticularly for large �� or by strengthening the repulsion term
at small distances.

A. Elastic properties of the many-body potential

There are two distinct volume conserving strains that de-
termine the elastic constants C44 and C�� 1

2 �C11−C12�. The
first may be found by considering the strain tensor22

�
1 � 0

� 1 0

0 0
1

1 − �2
� , �22�

which results in a strain energy density of

U��� = 2C44�
2 +

1

4
A4�4 +

1

6
A6�6 + O��8� . �23�

The parameters A4 and A6 are higher-order elastic constants
beyond linear elasticity. Only even order terms appear due to
the symmetry under the operation �→−�. The energy per
atom for a bcc lattice is shown in Fig. 8 for the MJ potential
and for the many-body version with A=0.08 eV and �=6, 9,
and 12, as before. A strain up to �=0.1 was considered. As
can be seen, there is significant softening of the lattice in the
presence of the many-body term, particularly at higher val-
ues of �. For this choice of the many-body strength A and
this pair potential, the plot demonstrates that for sufficiently
high �, the C44 elastic constant becomes negative, which
indicates a lattice instability. For �=12, there is a different
minimum that develops, which indicates a transformation to
a different crystal structure. �Note that the crystal phase as-
sociated with the minimum of the plot may not be stable:
additional relaxations have not been allowed, so this is an
upper bound to the energy of the different crystal phase.� The
energies vs strain have been fitted to the form above, and the
fitted values are given in Table I. The table demonstrates that
both C44 and the higher-order term A4 are sensitive to the
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FIG. 7. �Color online� Energy vs near-neighbor distance for
various crystal structures, for the Johnson potential �A=0� and for
many-body versions with A=0.08 eV and �=9 and 12. As A and �
are increased, the low coordination structures become more stable,
which can lead to an instability at small separations.
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many-body term, while the term A6 is essentially unchanged.
Also given in the table is the contribution to C44 that arises
from the many-body term, which is in units of A�2
. The
values compare well with Fig. 6.

Similarly, the value of C� may be found by applying a
homogeneous strain22 as follows:

�
1 + � 0 0

0 1 + � 0

0 0
1

�1 + ��2
� . �24�

The energy density under this homogeneous deformation is

U��� = 6C��2 +
1

3
A3�3 +

1

4
A4�4 + O��5� . �25�

The calculated energy per atom is also given in Fig. 8. Im-
mediately, it is apparent that the many-body term affects this
strain energy much less than for the �44 strain. No instability
develops over this range of �. The fitted parameters are
given in Table I. All parameters depend on �, yet the domi-
nant term C� is only weakly dependent. Again, this is con-
sistent with the calculations in Fig. 2. By considering the

entire range of � in Fig. 2, C� varies more widely than C44;
however, over the range 6���12, C44 is more sensitive.
Again, the many-body contributions to C� are consistent with
Fig. 2.

The elastic constants for the bcc phase are summarized in
Table II. The value of the bulk modulus B was determined by
fitting the energy vs volume shown in Fig. 6 to a fifth degree
polynomial in the volume strain �vol= �
 /
0�−1, where 
0
is the volume that minimizes the energy. Included in this
table are the values of C11, C12, and C44, which are all inde-
pendent components of the elasticity tensor for cubic sym-
metry. We also express the Poisson ratio, which is given by

� =
C12

C11 + C12
, �26�

as well as the anisotropy �C44 /C��. The Cauchy relations
give �=1 /3 for the pure pair potential. The table demon-
strates that the dominant change is in the values of C44 as a
function of �. Thus, the anisotropy is strongly dependent on
�. This is in striking contrast to the results for the nearest-
neighbor fcc system, where the many-body addition does not
change the elastic anisotropy.15 The Poisson ratio exhibits
nonmonotonic behavior as a function of �, but only changes
by a few percent over the range of parameters considered
here.

IV. DISCUSSION

In this paper, we present a way to add a many-body term
to an existing pair potential without changing the cohesive
energy or lattice parameter of the reference crystal structure.
This generalizes previous results that relied on a near-
neighbor calculation.15 Two additional adjustable parameters
are introduced: the strength A of the many-body term and a
parameter � that relates to the range of the effective charge
density term ��r�. The approach is specifically demonstrated
for a bcc system, including second-nearest neighbors. We
demonstrate that, in general, the bulk modulus is not inde-
pendent of the many-body term, unlike the nearest-neighbor
version; however, for parameter ranges of particular interest,
the bulk modulus is negligibly affected.

The many-body term is specifically applied to the Johnson
potential, which is a pair potential that stabilizes the bcc
lattice at T=0. For a series of parameters, the bcc energy vs
volume curve is essentially unchanged: not only is the bulk
modulus unchanged, but also the higher-order terms in the
expansion. In contrast, the shear moduli C44 and C�= 1

2

TABLE I. Fit parameters for the distortions shown in Fig. 6 for
A=0 and for A=0.08 eV and �=6, 9, and 12. The fits are to the
forms given in Eqs. �23� and �25�. The elastic constants �including
the nonlinear terms Ai� are given in GPa. The many-body contribu-
tion is given in terms of the many-body terms A and �, and the
volume per atom 
.

�44 strain

� C44 A4 A6 C44
MB �A�2 /
�

N/A 95.2 −23.19 71060 N/A

6 69.1 10.24 71151 −0.66

9 34.2 74.60 71130 −0.69

12 −9.8 182.34 69872 −0.67

�� strain

� C� A3 A4 C�MB �A�2 /
�

N/A 48.4 104.8 −322 N/A

6 45.4 56.1 −514 −0.075

9 52.5 15.2 −1533 0.046

12 62.1 77.2 −3948 0.086

TABLE II. Elastic constants for the bcc phase, for A=0 and for A=0.08 eV and �=6, 9, and 12. Note that
for �=12, the bcc system is mechanically unstable, which results in a negative C44 and anisotropy C44 /C�.

A �
B

�GPa�
C�

�GPa�
C11

�GPa�
C12

�GPa�
C44

�GPa� � Anisotropy

0 �MJ pair� N/A 126 48.4 191 94.2 95.2 0.333 2.0

0.08 6 126 45.4 187 96.2 69.1 0.340 1.5

0.08 9 126 52.5 196 91.0 34.2 0.317 0.65

0.08 12 126 62.1 209 84.8 −9.8 0.289 −0.16
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�C11−C12� are both changed by the many-body term. The
energy vs �44 strain is particularly sensitive to the many-
body addition; a sufficiently strong addition �and large value
of �� can result in an instability. The relative stability of the
fcc lattice is sensitive to the value of � in a nonmonotonic
way. The many-body term can either stabilize or destabilize
the fcc lattice relative to the bcc phase.

In a subsequent paper, we will show results on disordered
structures, both liquid and glass properties. These include
finite-temperature properties, particularly the melting tem-
perature of the bcc and fcc lattices, as well as the energy,
structure, and elastic properties of the amorphous phases.
The present results provide a basis for examining, in a sys-
tematic way, the effects of the potential on the stability of

liquid and amorphous phases while preserving the T=0 crys-
tal structure, density, cohesive energy, and bulk modulus.
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