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Relaxation volume tensors quantify the effect of stress on diffusion of crystal defects. Continuum linear
elasticity predicts that calculations of these parameters using periodic boundary conditions do not suffer from
systematic deviations due to elastic image effects and should be independent of the supercell size or symmetry.
In practice, however, calculations of formation volume tensors of the �110� interstitial in Stillinger–Weber
silicon demonstrate that changes in bonding at the defect affect the elastic moduli and result in system-size
dependent relaxation volumes. These vary with the inverse of the system size. Knowing the rate of conver-
gence permits accurate estimates of these quantities from modestly sized calculations. Furthermore, within the
continuum linear elasticity assumptions, the average stress can be used to estimate the relaxation volume tensor
from constant volume calculations.
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I. INTRODUCTION

As semiconductor device dimensions decrease to the na-
nometer scale, high doping concentrations and very abrupt
doping profiles are required to keep resistances low.1 Precise
control of dopant diffusion during processing is necessary,
and at the nanometer scale, stress effects become increas-
ingly important.2 Significant and complex stress states can
arise from strain engineering,3,4 lattice and thermal expan-
sion coefficient mismatch, growth stresses, and defect
concentrations.5,6 Stress-affected dopant diffusion has been
observed in many systems,6–16 and a thermodynamic formal-
ism has been developed6,17 relating the stress-affected free
energy for the formation and migration of diffusion-
mediating defects to the volume changes associated with
those processes. Differences between hydrostatic and biaxial
stress effects indicate that a full tensorial formulation for the
volume change is necessary.6 Because experimental mea-
surements are difficult, atomistic calculations have found a
significant role in determining diffusion mechanisms,18–22

explaining experimental results23 and parametrizing process
models.24

In purely atomistic calculations, a defect is introduced
into material with either free boundary conditions �FBC� or
periodic boundary conditions �PBC�. The atomistic system is
allowed to relax and after mechanical equilibrium is reached,
the resulting energy and volume change are measured. For
the finite sizes currently tractable, calculations using FBC
can have significant finite-size and surface effects. Calcula-
tions using PBC do not have those problems, but instead the
periodic supercell creates an infinite array of defects which
may interact with each other. We will use the term “super-
cell” for both the infinite periodic system and the finite com-
putational cell which is repeated. It is typically assumed that
for calculations using zero average stress PBC, the energy
and volume of the supercell in the large supercell limit ap-
proach the value for an isolated defect in an infinite medium
at zero pressure. In ab initio calculations, there are many
different factors that influence energy convergence, including
the basis set, Brillouin-zone integration, electronic interac-

tions due to the supercell shape and size, and inelastic and
elastic ionic relaxations.25,26 Most of these can be dealt with
by using more detailed calculations, i.e., a larger basis set,
more integration points, or a larger simulation cell, to elimi-
nate electronic interactions and inelastic relaxations. Knowl-
edge of the convergence rate can be used to predict values in
the infinite cell size limit,27 and correction schemes28–30 for
electrostatic interactions have been proposed to increase the
convergence rate.

Elastic effects, particularly related to determining volume
changes and therefore stress effects, have received less atten-
tion. Potentially significant are �1� elastic image effects from
the interaction of the elastic fields of periodically repeated
defects, �2� the size and symmetry of the system and the
anisotropy of the defect, and �3� changes in the elastic
moduli due to bonding changes at the defects. An ab initio
study by Windl et al.31 has found the bulk modulus to con-
verge as the inverse of supercell volume, but within the ac-
curacy of the calculations, no effect on the formation vol-
umes was shown. Castleton and Mirbt27 progressively
increased the number of atoms around the defect that were
allowed to relax and found that the volume change, which
they defined by the defect’s nearest neighbors, converged as
the inverse of the volume of the region allowed to relax. By
keeping atoms at the boundaries of the supercell fixed, elas-
tic image effects were removed, but this prevents the calcu-
lation of the thermodynamically relevant volume change of
the entire supercell. Probert and Payne25 suggested relaxing
the volume to avoid symmetry effects on structure conver-
gence and advised that displacement differences between
successive shells of atoms be less than some appropriate tol-
erance before reaching the periodic boundaries to ensure suf-
ficient supercell size.

Our approach is to use continuum linear elasticity to
quantify the effects of periodic images, supercell size, and
symmetry and to use atomistic calculations employing the
Stillinger–Weber empirical potential for silicon to consider
the bonding effects on the elastic moduli. An empirical po-
tential does not calculate defect parameters as accurately as
ab initio methods, but it is useful for studying elastic effects
because there are no electrostatic interactions, and it allows
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us to simulate large systems approaching the far field. In a
previous paper,32 we used symmetry to show that, according
to linear elasticity, PBC at zero average stress do not affect
the calculated relaxation volume tensor of an isotropic defect
and demonstrated this by calculating the formation energy
and volume of a vacancy in Stillinger–Weber silicon. Here,
we formally prove that, according to linear elasticity, there
are no elastic image effects on the calculated relaxation vol-
ume tensor for any anisotropic defect in any shape or size
supercell. When the supercell is not allowed to fully relax,
linear elasticity shows that the average stress can be used to
calculate the relaxation volume tensor. We verify linear elas-
ticity’s predictions in the far field of atomistic calculations by
calculating the formation energy and volume tensor for the
�110� interstitial in Stillinger–Weber silicon. Finally, we
show that in atomistic calculations, bonding changes affect
the convergence of elastic moduli with system size. There-
fore, the relaxation volume tensor is not independent of sys-
tem size as predicted by linear elasticity but rather converges
as the system size increases.

II. CONTINUUM LINEAR ELASTICITY CALCULATIONS

The dependence of the Gibbs free energy needed for for-
mation or migration of a defect, Gf ,m, as a function of stress
�kl is defined as the formation or migration volume,6

−
�Gf ,m

��kl
� Vkl

f ,m. �1�

In the case that the defect is a vacancy or self-interstitial, the
formation volume is the total change in the system’s volume
when one of the internal atoms is removed from the bulk to
the surface or vice versa, and thus

Vkl
f = Vkl

r �
1

3
��kl, �2�

where Vkl
r is the relaxation volume, �+ /−� is for a �vacancy/

interstitial� defect, � is the atomic volume, and �kl is the
Kronecker delta. The last term follows from an assumption
that it is equally likely for the defect to form from any sur-
face.

In order to determine the predicted continuum linear elas-
tic effect of PBC on atomistically calculated relaxation vol-
umes of anisotropic defects, we first review our previous
derivation that relates the observed volume change to the
surface tractions. We use a slight notation change in com-
parison to our earlier work32 to clarify the distinction be-
tween the observed volume change and the boundary
condition-independent relaxation volume tensor. We model
the point defect as a center of expansion or contraction via a
force dipole Dij in a finite elastic body B. The equilibrium
equation for the center of expansion or contraction is

�� jm

�xm
+ Djm

���x − x��
�xm

= 0. �3�

The dipole causes a strain field �kl, and for any boundary
conditions, the observed tensorial volume change from the
original defect-free state, �Vkl, is

�Vkl = �
B

�kldV . �4�

From the stress-strain relation, this is

�Vkl = Sklij�
B

�ijdV , �5�

where Sklij is the constant compliance tensor. Note that Eq.
�5� is not directly comparable to atomistic calculations be-
cause �ij is the continuum stress field and contains a singu-
larity, which does not exist in atomistic calculations. To
evaluate the effect of boundary conditions, we wish to use
the divergence theorem to relate this to a surface integral.
Therefore, we write Eq. �5� as

�Vkl = Sklij�
B
� ��xi�mj�

�xm
− xi

��mj

�xm
�dV . �6�

It will become useful to divide the domain into a region D
enclosing the center of expansion or contraction, and a re-
gion surrounding it, B−D, so we write

�Vkl = Sklij	�
D
� ��xi�mj�

�xm
− xi

��mj

�xm
�dV

+ �
B−D

� ��xi�mj�
�xm

− xi
��mj

�xm
�dV
 .

Substituting in Eq. �3� gives

�Vkl = Sklij	− �
D

xiDjm
���x − x��

�xm
dV

+ �
B

��xi�mj�
�xm

dV − �
B−D

xi
��mj

�xm
dV
 . �7�

We evaluate the first term using the standard result for the
spatial derivative of the Dirac-delta function, and the second
term using the symmetry of the stress tensor and the diver-
gence theorem. The third term drops out due to the fact that
�mj is divergence-free over B−D. Using these three results in
Eq. �7�, we obtain a modified version of our previous result,

�Vkl = − SklijDij + Sklij�
Surface

xi� jmnmdA . �8�

With FBC, the surface integral vanishes and the volume
change defines the relaxation volume tensor

Vkl
r � − SklijDij . �9�

The difference in �Vkl between FBC and arbitrary boundary
conditions can be determined by evaluating the integral in
Eq. �8�. However, in atomistic calculations with PBC, it is
more convenient to compare to a volume integral. Therefore,
we rewrite the second term of Eq. �8� using a stress field �̄ jm,
such that �̄ jm=� jm in B−D, and �̄ jm is nonsingular and
divergence-free in D. We then use the fact that �̄ jm so-
defined is divergence-free over all of B to obtain the expres-
sion
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�Vkl = Vkl
r + Sklij�

B

�̄ijdV . �10�

The field �̄ij is a good model for an atomistic stress field
since it is nonsingular and divergence-free over B and is
equal to the elastic field in B−D. In what follows, we will
use the virial formulation for �̄kl.

To compare Eq. �10� to atomistic calculations with PBC,
we note that supercell relaxation occurs by changing the
magnitude and the direction of the vectors that define the
supercell. The change in these vectors defines an average
strain relative to the perfect structure, so we find

�Vkl = Vref�kl
av. = Vkl

r + Sklij�ij
av.Vref. �11�

The stress �ij
av. is the average over B, as would be measured

using the virial formulation, and since Eq. �11� is derived
using the assumptions of linear elasticity theory, the integral
is carried out over the entire undeformed volume, Vref. This
result shows that there are no elastic image effects, and it
holds for defects of any anisotropy, and supercells of any
shape or size. The observed volume change in atomistic cal-
culations is the relaxation volume plus a correction term that
arises if the system is not allowed to fully relax. For PBC
with zero average stress, linear elasticity predicts that the
observed volume change is exactly the relaxation volume.
For self-equilibrated stress states in parallelepiped-shaped
supercells, the average surface stress must equal the resolved
virial stress, so Eq. �11� is equally valid if �ij

av. is measured
from the forces crossing the supercell boundaries. Using this
fact, Eq. �11� can also be derived for PBC by evaluating the
surface integral in Eq. �8�. We include the derivation in Ap-
pendix A.

Given arbitrary boundary conditions, we also want to cal-
culate the effect on defect formation energies. From the con-
tinuum elasticity point of view, a constant volume �CV� cal-
culation can be viewed as a two-step process. The first step
consists of inserting a defect into a supercell and allowing it
to relax to zero mean stress. The second step is a transfor-
mation that returns the supercell to the constant volume
shape and size. The relaxed supercell and the constant vol-
ume supercell are both parallelepipeds, so the stress/strain
field, �ij

CV=Sijkl�kl
CV, which performs the return transforma-

tion, is uniform. Since the average stress in the relaxed su-
percell is zero, the average stress measured in the constant
volume supercell is �ij

av.=�ij
CV. In order to determine the

zero-stress formation energy of the defect Ef, we must sub-
tract the work done on the body in the return transformation
from the formation energy found in the constant volume su-
percell,

Ef = Ef ,CV − �
B

1

2
�ij

CV�ij
CVdV ,

Ef = Ef ,CV − Vref1

2
�ij

av.Sijkl�kl
av.. �12�

This gives the finite-crystal strain energy. As we previously
showed,32 the finite-crystal strain energy converges to the

infinite-crystal strain energy as E�−Efinite	N−1, with N being
the number of atoms.

The results of this section are a validation that the super-
cell approach does not introduce any systematic errors due to
elasticity. In Sec. III, we perform atomistic calculations to
show that, in practice, system size does affect the observed
volume change. FBC introduce surfaces and PBC an infinite
array of defects that change the elastic moduli and result in
deviations from elasticity’s prediction at small cell sizes.

III. ATOMISTIC CALCULATIONS

We calculated the formation energy and volume tensor of
a �110� dumbbell interstitial in Stillinger–Weber silicon by
energy minimization using the conjugate gradient method.
The Stillinger–Weber potential is a commonly used empiri-
cal potential for silicon,33,34 and as such, it is not as accurate
as ab initio calculations near the defect, but is useful for our
purposes since the decreased computational costs allow us to
use the large system sizes necessary to check the predictions
of continuum linear elasticity in the far field.

A. Methods

We calculated the formation energies and volumes for cu-
bic systems ranging in size from 64 to 110 592 atoms. The
�110� dumbbell interstitial was constructed by displacing an
atom near the center of the simulation cell by �−0.162,
−0.162, +0.1325� unit cells and adding an interstitial that is
displaced �+0.162, +0.162, +0.1325� from the first atom’s
original position. Upon relaxation, the atoms composing the
dumbbell relax in the z direction away from the neighboring
atoms in the �110� chain, so to speed convergence, the dumb-
bell atoms were given the initial z displacement indicated
above. The sign of the z displacement depends on which
atomic site the dumbbell is located.

The �110� dumbbell interstitial in Stillinger–Weber silicon
was found to have two different configurations with nearly
equal formation energy, as shown in Fig. 1. The major dif-
ference between the two is that the lower energy configura-
tion, which we call �A�, had nonzero Vxz

f and Vyz
f , while for

the higher energy configuration, which we call �B�, Vxz
f and

Vyz
f are zero. As can be seen in Fig. 1, the nonzero Vxz

f and
Vyz

f are locally manifested by the dumbbell tilting and break-
ing the symmetry about the �100� plane. Both structures

maintain symmetry about �11̄0�. For both FBC and PBC, an
initially perfect crystal with a defect, small random displace-
ments, and less than 512 atoms relaxed to �A�, with 512
atoms, the crystal relaxed to �A� or �B�, and with greater than
512 atoms, the crystal became stuck in configuration �B�. We
attempted several schemes of increasing complexity to en-
sure minimization to the lower energy configuration �A� at
large system sizes, and the successful method involved tak-
ing a relaxed �A� configuration at one system size and adding
atoms at the surface to construct the next largest system size.
The new atoms were positioned according to the final aver-
age strain state of the previous system.

Three boundary conditions were used: FBC, PBC at con-
stant pressure �PBC CP�, and PBC at constant volume �PBC
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CV� equal to the volume of the relaxed defect-free system.
We check that there are no elastic image effects by compar-
ing the FBC and PBC calculations and check the second
term in Eqs. �11� and �12� by comparing PBC CP and PBC
CV calculations. We also imposed small random initial dis-
placements of approximately 1% of the atomic spacing on all
the atoms and created ten samples for each system size. The
energy of the system was then minimized from this starting
configuration using the conjugate gradient method. The mini-
mization was considered complete when 14 sequential itera-
tions each resulted in less than a 1 neV reduction in energy,
with the last seven sequential iterations also producing less
than a 10−4 Å3 change in volume.

As noted in Sec. II, at mechanical equilibrium with the
parallelepiped-shaped computational cells used, a relaxation
to zero surface traction is identical to relaxation to zero av-
erage volumetric stress as measured by the virial formula-
tion. However, in practice, we found it preferable to use the
virial stress for two reasons. First, in diamond cubic silicon,
before mechanical equilibrium is reached, the xy shearing
results in a state of alternating positive and negative stresses
between �001� planes as the interpenetrating fcc lattices at-
tempt to relax internally relative to each other. If the stress is
only calculated at a single boundary, this gives an inaccurate
measurement of the overall stress state and impedes conver-

gence to zero average stress. Second, given the same nomi-
nal stress convergence criteria, the virial stress is stricter be-
cause it averages over the entire cell while the boundary
stress only averages over the boundary. At cell sizes from 64
up to 219 52 atoms, the energies and volumes measured us-
ing the zero virial stress condition matched the energies and
volumes resulting from using the zero average surface trac-
tion condition in the periodic case or relaxation in the ab-
sence of constraints for free surface boundary conditions.
However, the spread in values was reduced when the zero
virial stress condition was employed. For these reasons, we
used the virial formulation to calculate an average stress ten-
sor in the computational cell and zero average stress
��10−2 Pa� was maintained by scaling atomic positions and,
if present, periodic boundaries. The elastic moduli of
Stillinger–Weber silicon were used to adjust the strain on the
system in order to maintain zero average stress during the
relaxation process. In the FBC case, after the energy was
minimized in this way, rescaling toward the zero average
stress condition was discontinued and the energy was again
minimized to reach a zero surface traction condition. We
found that this method reduced scatter in the formation vol-
ume of FBC samples.

B. Measurements

As previously discussed, formation volume measurements
are straightforward for periodic boundary conditions. Strain
is defined by the position of the periodic boundaries, and
each component of the relaxation volume is determined by
multiplying the corresponding strain component by the per-
fect reference volume

Vij
r = �ij

av.Vref. �13�

Then, the formation volume is

Vij
f = �ij

av.Vref �
1

3
��ij . �14�

For FBC, the volume change of an elastic body must be
determined from the displacement of the surface of the
sample, according to32

Vij
f = �

S

1

2
�uinj + ujni�dA �

1

3
��ij , �15�

where u is the displacement and n is the surface normal. In
an atomistic simulation, this is a finite sum of individual
atomic displacements and the differential area is the average
surface area per surface atom. This method is not appropriate
for PBC because it does not take into account strain between
atoms on either side of the periodic boundary, which is small,
but significant when multiplied over the area of the bound-
ary.

We calculated elastic moduli for defect-free Stillinger–
Weber silicon by using a single perfect unit cell with periodic
boundaries. The bulk modulus K was calculated by measur-
ing the volume change under hydrostatic pressures of
�h=−100 MPa and �h=100 MPa. Then,

FIG. 1. Structure of the relaxed Si �110� dumbbell interstitial
with displacements scaled by 3
 for clarity. In configuration �A�,
the dipole tilts and breaks the symmetry about the �110� plane,
resulting in a slightly lower energy than in configuration �B�. Both

�A� and �B� maintain symmetry about the �11̄0� plane.
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K =
��h

�V
V�� = 0� . �16�

Additionally, �xy was measured for �xy =�yx=0.001 so that
C44 could be calculated,

C44 =
�xy

2�xy
. �17�

The diamond cubic structure can be thought of as two inter-
penetrating fcc lattices, which can relax internally and pro-
duce an internal strain. We measured C44 with internal strain
because it does occur after a defect is introduced. We also
calculated the bulk and shear moduli as a function of system
size for both FBC and PBC systems with an interstitial.
These systems were created for N=216 to 110 592 atoms
without any random initial displacements and tested as
above, except stress control had to be used for the FBC case.
In this case, the strains were calculated using a relaxed sys-
tem with an interstitial and the same number of atoms as a
reference state.

C. Atomistic results

As predicted by continuum linear elasticity, the formation
energies and volume tensors calculated with FBC and PBC,
at both constant pressure and volume, converge to the same
value in the large-size limit, as shown in Figs. 2 and 3. The
64 atom FBC samples underwent surface reconstructions and
are not included in the plots or analysis. No other samples
underwent surface reconstructions, and in the Stillinger–
Weber potential, the equilibrium distance and angle are not
coordination dependent, so surface stress is not a factor in
these results.

The formation energy converges more rapidly with PBC
than FBC, as seen in Fig. 2. As predicted by continuum
linear elasticity, and shown in Fig. 4, formation energy con-
verges in the large-size limit, with the error decreasing as
1 /N,

log�Ef�N� − Ef ,�� = const − log�N� . �18�

The converged formation energies Ef ,� were determined
from the formation energies at a given system size, Ef�N�, by
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FIG. 2. In the large-size limit, the formation energy of an iso-
lated �110� interstitial �A� in Stillinger–Weber silicon converges to
ESiI,�110�,�A�

f ,� =4.7091 eV for all measurements: FBC; PBC at con-
stant pressure �PBC CP�; PBC at constant volume equal to the
reference volume with the energy correction �Eq. �12�� for elastic
stress �PBC CV�; PBC at constant volume equal to the reference
volume �PBC CV uncorrected�.
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FIG. 4. The formation energy converges in the large-size limit to
ESiI,�110�,�A�

f ,� =4.7091 eV, with the error decreasing as the inverse of
the system size, N, for all boundary conditions: FBC; PBC at con-
stant pressure �PBC�; PBC at constant volume equal to the refer-
ence volume with the energy correction �Eq. �12�� for elastic stress
�PBC CV�; PBC at constant volume equal to the reference volume
�PBC CV uncorrected�.
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fitting the data to Eq. �18�. The converged energies are
ESiI,�110�,�A�

f ,� =4.7091 eV and ESiI,�110�,�B�
f ,� =4.7122 eV, with

uncertainty no greater than 10−4 eV.
The formation energies are in agreement with the values

calculated elsewhere for the Stillinger–Weber potential.34–37

Some of the literature seems to confuse the �110� dumbbell
and what is generally called the “extended” interstitial. The
extended interstitial has lower energy than the �110� dumb-
bell in empirical calculations,35,38 but was found to be meta-
stable in an ab initio calculation.39 No other Stillinger–Weber
results are known for the full �110� formation volume tensor.

Contrary to the prediction of continuum linear elasticity,
the formation volume tensor was also found to converge with
system size, with the error decreasing as 1 /N, as shown in
Fig. 5. The trace of the formation volume tensor converges
much more rapidly with PBC than FBC. The convergence of
each component of the volume tensor is not shown but simi-
lar. The converged values of the formation volume tensor
were determined similarly to the formation energies and are

V̄̄SiI,�110�,�A�
f ,� =  9.585 7.972 �2.176

7.972 9.585 �2.176

�2.176 �2.176 − 5.493
� Å3,

and

V̄̄SiI,�110�,�B�
f ,� = 8.871 7.296 0

7.296 8.871 0

0 0 − 4.849
� Å3,

with uncertainty in the components of V̄̄ f ,� no greater than
10−3 Å3. The ��� for �A� indicates that it is physically
equivalent for the tilt to be in either direction since the sign
of shear strains is arbitrary.

The principle axes of the �110� �A� formation volume
tensor are tilted 7.5° off the �001� plane. We are not aware of
another report of the tilted �110� interstitial. This may be due
to a focus on the energy of the defect rather than on the
structure of the relaxation in the previous Stillinger–Weber
studies. In a recent ab initio study,40 there was not any tilting
in the �110� interstitial, despite allowing the full relaxation of
the supercell, indicating that the tilt is likely to be an artifact
of the Stillinger–Weber potential.

Continuum linear elasticity’s inability to predict the for-
mation volume tensor convergence with system size is due to
its assumption that the elastic moduli are constant. The slow
convergence of the formation volume tensor with FBC is
caused by the slow convergence of elastic moduli, as shown
in Fig. 5. Decreased coordination of surface atoms results in
decreased stiffness. The similarity to the formation volume
convergence is apparent. Note that Fig. 5 plots only the ab-
solute values of the convergence, therefore the direction of
the convergence cannot be determined from Fig. 5. We ob-
served that in systems with FBC, the elastic moduli increase
with system size, matching the observed decrease with sys-
tem size in the magnitude of the volume relaxation. In other
words, as the moduli increase with system size, the outward
relaxation around the interstitial decreases in order to reduce
the strain energy in the surrounding system. In systems with

FIG. 5. �a� The convergence of the formation volume to

tr�V̄̄SiI,�110�,�A�
f ,� �=13.677 Å3 depends on ��b� and �c�� the conver-

gence of the moduli. The �b� bulk modulus and �c� shear modulus of
systems with a �110� interstitial converge to the values �Kinf

=1.0826
1011 Pa and C44,inf=6.0256
1010 Pa� in defect-free
Stillinger–Weber silicon in the large-size limit. The under coordina-
tion of surface atoms makes the convergence much slower in the
FBC than in the periodic boundary case with either constant pres-
sure �PBC CP� or constant volume �PBC CV�.
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PBC, due to bonding changes at the defect, there is a slight
decrease in the bulk modulus and a slight increase in the
shear modulus with increasing system size. The trace of the
formation volume tensor shows an increase in the magnitude
of the relaxation around the interstitial with increasing sys-
tem size, which corresponds to the decrease in the bulk
modulus. Thus, the convergence of the elastic moduli in the
system with a defect to the elastic moduli of the defect-free
system is an indication of the convergence of the formation
volume tensor and a 1 /N form for the error can be expected.
The elastic moduli convergence is in agreement with the re-
sults of Windl et al.31 and suggests that either the limited
precision of those calculations or electrostatic effects are hid-
ing the associated formation volume convergence. Similar to
the approach of Castleton and Mirbt,27 we can use the con-
vergence rate to estimate the final converged formation vol-
ume tensor. At this convergence rate, with formation volume
calculations for systems with N1 and N2 atoms, the estimated
formation volume in the large-size limit is

Vf ,��N2� =
N1Vf�N1� − N2Vf�N2�

N1 − N2
. �19�

Figure 6 shows how this estimate converges with system
size, which allows us to estimate the converged formation
volume within the accuracy of the measurements, 10−3 Å3,
by extrapolating from the N1=512 and N2=1728 systems.

Finally, the agreement between calculations with PBC CP
and PBC CV in Figs. 2 and 3 demonstrates that correction
terms calculated using linear elasticity do hold, at least to a
good approximation. When the system is not allowed to fully
relax, we can adjust the formation volume tensor by using
Eq. �11�, and we can adjust the formation energy to account
for elastic strain energy by using Eq. �12�. At small system

sizes, Figs. 2 and 3 show that there are small differences
between PBC CP and PBC CV which can be attributed to
using the elastic moduli of a perfect system in Eqs. �11� and
�12�, rather than the actual moduli of the system with a de-
fect, to strain dependence of the moduli, or strain depen-
dence of the defect’s strength. As the system size increases,
these effects decrease and the calculations converge in the
large-size limit.

A nonlinear elasticity theory might be parametrized to
model the convergence of the volume tensors with cell size.
Finite strains that occur in the near field of the defect are
rapidly varying and are strongly dependent on the type of
defect. Therefore, a nonlinear elasticity model, most of
which have only a small number of free parameters, would
need to be fit afresh for each type of defect. The predictive
capability of commonly used nonlinear elasticity models
therefore is somewhat limited in the near field of defects.
Rather than try to predict the convergence rate and extrapo-
late from fully atomistic calculations, it might be simpler to
use a “hybrid” method that links a fully atomistic calculation
around the defect to a continuum mechanics description of
the surrounding material.41 Currently, hybrid methods using
accurate density functional theory descriptions of the atom-
istic region are limited to metals,42 and semiempirical tight
binding is used for nonmetals.43 The size dependence of the
elastic constants is also a reminder that defect density affects
elastic constants and that changes in elastic constants affect
formation volume tensors. At high defect concentrations,
continuum simulations of defect formation and diffusion
may need to take this into account using data from calcula-
tions at high defect densities.

IV. CONCLUSIONS

We have validated the supercell approach for calculating
relaxation volume tensors by formally showing that, accord-
ing to linear elasticity, the calculated relaxation volume ten-
sor of any anisotropic defect in any shape or size supercell is
not affected by PBC at zero average stress. This rigorously
demonstrates why the supercell approach can provide accu-
rate calculations of relaxation volume tensors. When the su-
percell is not allowed to fully relax, the average stress can be
used to calculate the relaxation volume tensor. Atomistic cal-
culations verify linear elasticity’s predictions in the far field
for an anisotropic �110� interstitial in Stillinger–Weber sili-
con and show that, in practice, bonding changes at the defect
result in elastic moduli changes. The observed 1 /N decrease
in the error of the relaxation volume tensor is due to the
convergence of the elastic moduli. Knowledge of this con-
vergence rate allows for accurate estimation of the relaxation
volume tensor with relatively modest simulation sizes.
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APPENDIX A

As a more complicated alternative, we can also derive Eq.
�11� for PBC from Eq. �8� by evaluating the surface integral
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FIG. 6. The formation volume converges to tr�V̄̄SiI,�110�,�A�
f ,� �

=13.677 Å3 with error decreasing as 1 /N, the system size, shown
above with �. Knowing this convergence rate, we can estimate a
converged value from the two largest systems calculated using Eq.
�19�. This estimate, which is shown above with 
, is as converged
at N=1728 as the N=21 952 calculation.
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as follows. Consider a periodic array of simulation cells,
each enclosing a point defect of arbitrary anisotropy, and
defined by the lattice vectors v1, v2, and v3 which are defined
in the Cartesian coordinate system. It is common to perform
atomistic simulations with periodic supercells defined by a
coordinate system that is not orthogonal, typically bcc or fcc
systems, so we do not restrict the lattice vectors to be or-
thogonal. Let �k

l and �k
r be a pair of boundaries with area Ak,

which are parallel to each other, and bounding one cell. For
example, A1 is the bounding area defined by v2 and v3. Let nk
be the unit outward normal vector to �k

l and �k
r. Traction

continuity at the periodic boundaries gives the condition
� jm

+ nm
+ =−� jm

− nm
− , where ���� denotes the limiting values of a

quantity as � is approached from either side. The surface
integral in Eq. �8� becomes

�
Surface

xi� jmnmdA = �
k=1

3 �
�k

l ��k
r
xi� jmnmdA �A1�

=�
k=1

3 ��
�k

l
xi

−� jm
− nm

− dA + �
�k

r
xi

+� jm
+ nm

+ dA� .

�A2�

By nm
+ =−nm

− and traction continuity, this is

�
Surface

xi� jmnmdA = �
k=1

3 �
�k

r
�xi

+� jm
+ nm

+ − xi
−� jm

+ nm
+ �dA �A3�

=�
k=1

3 �
�k

r
�xi

+ − xi
−�� jm

+ nm
+ dA . �A4�

The quantity �xi
+−xi

−�, the ith component of the displacement
between positions with traction continuity on the opposite
boundaries, is simply the ith component of vk, giving

�
Surface

xi� jmnmdA = �
k=1

3 �
�k

r
vki� jmnkmdAk. �A5�

The quantities vk and nk are constants, so the integrals are
equal to the average stress on the boundary multiplied by the
area. In mechanical equilibrium, the average traction on each
face is equal to the resolved volumetric mean stress,

=�
k=1

3 �vki��
m=1

3

� jm
av.nkm�Ak� �A6�

= �
m=1

3 �� jm
av.��

k=1

3

Akvkinkm�� , �A7�

which by symmetry of the stress tensor and the identity
shown in Appendix B is

=V�ij
av.. �A8�

As before, we note that Eq. �8� is derived using the assump-
tions of linear elasticity theory. This means that the integral
is carried out over the surface of the undeformed volume and
thus the volume in Eq. �A8� is the undeformed reference
volume. Therefore,

�
Surface

xi� jmnmdA = Vref�ij
av., �A9�

and combining Eqs. �8� and �A9�, we obtain Eq. �11�.

APPENDIX B

Since A1n1=v2
v3, A2n2=v3
v1, and A3n3=v1
v2,

�
k=1

3

Akvkinkm = v1 � �v2 
 v3� + v2 � �v3 
 v1�

+ v3 � �v1 
 v2� . �B1�

With Eq. �B1� and the following theorem, we get the result in
the text. We are not aware of a previous proof of this theorem
in the literature.

Theorem. If a , b , c are three linearly independent, but
otherwise arbitrary vectors, then the matrix A=a � �b
c�
+b � �c
a�+c � �a
b� satisfies A=a · �b
c�I, where I is
the 3
3 identity matrix.

Proof: Let a�=a / �a� , b�=b / �b� , c�=c / �c�. Note that

a� · Aa� = a� · �a � �b 
 c� + b � �c 
 a� + c � �a 
 b��a�

= �a · a���b 
 c� · a� = a · �b 
 c� . �B2a�

Likewise,

b� · Ab� = a · �b 
 c� , �B2b�

c� · Ac� = a · �b 
 c� . �B2c�

Also,

a� · Ab� = b� · Aa� = �a · �b 
 c���a� · b�� , �B3a�

b� · Ac� = c� · Ab� = �a · �b 
 c���b� · c�� , �B3b�

c� · Aa� = a� · Ac� = �a · �b 
 c���c� · a�� . �B3c�

Now, since any vector u has a unique decomposition as u
=uaa�+ubb�+ucc

�, it follows from direct substitution of Eqs.
�B2a�–�B2c� and �B3a�–�B3c� that u · �A−a · �b
c�I�u=0.
Since u is arbitrary, the result follows.
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