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Structural properties relevant for the low-temperature dynamics of short-range Ising systems are compara-
tively analyzed for spin glasses and disordered ferromagnets. The key elements, disorder and frustration,
induce different topologies in the state space, going from funnel-like landscapes in the case of disordered
ferromagnets to trapping landscapes for spin glasses. An efficient tool, dynamically relevant sequence, is
introduced, which directly extracts the low-temperature dynamics.
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During the past years, disordered Ising spin systems such
as spin glasses �SGs� and disordered ferromagnets �DFs�
have become prototypical for many, rather different, fields
of research. Among these are, for instance, the relaxation
of ultrafast cooled atomic clusters,1 the protein folding
problem,2 and learning and adaptation in neural networks,3

as well as the evolution of financial markets.4 Key features,
such as disorder and frustration, present in such complex
systems provide the typical roughness in the potential energy
landscape5 of the state space. Its structure governs the dy-
namical properties, ranging from highly focusing landscapes
�e.g., proteins� to antifocusing �e.g., spin glasses� with re-
spect to reaching the ground state.

Recently, the similarity between the protein folding prob-
lem and the relaxation of a disordered ferromagnet has been
established.6,7 Proteins are alike systems with low levels of
frustration, having funnel-like potential energy landscapes,8,9

which allows them to perform the biological function of
folding in rather short times. In the view of Ising spin sys-
tems, this process can be regarded as a low-temperature re-
laxation toward the ground state, i.e., here, the dynamics
concerns global kinetic properties.

The features of low-temperature spin glass dynamics are
reflected in several aging experiments:10–12 upon rapid cool-
ing below the glass transition temperature, the system re-
mains far from equilibrium on long experimental time scales.
Similar behavior is exhibited by disorder ferromagnets,13–15

although the observed relaxation is faster than in the spin
glass case. Furthermore, some theoretical ferromagnetic
models16 even claim the existence of a glass transition.

This Brief Report presents a comparative study of the
structural properties for both spin glass and disordered ferro-
magnet systems, which are relevant for describing low-
temperature dynamics. Among the most important tools that
have been used to quantitatively determine the dynamics of
many complex systems, such as atomic clusters, proteins, or
Ising spin systems for which no analytical solution is known,
are kinetic Monte Carlo simulations, matrix multiplication
techniques, or the graph transformation approach17 to extract
the mean first passage time, which are much more efficient
for large systems than direct diagonalization of the transition
matrix. On the other hand, the Monte Carlo Metropolis
�MCM� approach becomes highly inefficient at very low
temperatures. Although some improvements have been done

in the past in the form of dynamical �i.e., temperature depen-
dent� Monte Carlo algorithms,18 here we make use of struc-
tural properties in order to directly extract the low-
temperature dynamics. The analysis is restricted to the
smallest barriers only �i.e., saddle points�, which have the
major influence on the dynamics, as it will be shown in the
following. This has the advantage that the time-consuming
task of sampling the state space is performed once and then
the results for different low temperatures are obtained with
negligible effort.

The system consists of an N-dimensional hypercubic Ising
lattice with short-range interactions and periodic boundary
conditions. The Hamiltonian of the system is given by

H = − �
�i,j�

Jijsisj , �1�

where the sum is to be performed over all pairs of neighbor-
ing spins s, which can have only the values +1 or −1. The
distribution of interaction constants P�Jij� is uniform, with
zero mean and standard deviation equal to one in the case of
a spin glass, resulting in the maximum interaction value
Jmax=�3 and supp�P�= �−�3,�3�. For the disordered ferro-
magnet, we take again a uniform distribution with the sup-
port �0,Jmax�.

The state spaces of both SG and DF systems are collec-
tions of all possible configurations of spins �states�, leading
to the cardinality of 2Ns, where Ns is the number of spins.
One defines a certain neighborhood relation �move class� as
follows: two states are neighbors if they differ by one spin
flip only. Thus, the state space takes the form of an
Ns-regular graph �hypercube�.

Typically, such landscapes contain a great number of local
minima. In these discrete state spaces, a local minimum is a
state which has all neighboring states with higher energy.
Going from one local minimum to another using the move
class indicated above, one has to pass through states of
higher energies. Among all possible paths Pij, the one that
has the smallest increase in energy provides the saddle point
or barrier state between the two local minima i and j, which
is the state with the highest energy in that particular path,
i.e., its energy is given by
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Eij
B = min

Pij

max
k�Pij

Ek, �2�

where k is the state index in a path Pij.
In order to extract the low-temperature dynamics from the

state space topology, we collect monotonic sequences19

�MSs�, which are characterized by the set of decreasing local
minima energies �Ei

LM� and barrier state energies �Ei
B�, where

i defines the step index in the sequence. They are obtained in
an exact manner using a landscape flooding algorithm: water
pours from the current escaping a local minimum and a por-
tion of the landscape is flooded �i.e., neighboring states be-
come submerged on a minimum energy basis� until a lower
local minimum is found. In a second step, we define a dy-
namically relevant sequence �DRS� from the original MS,

which is given by the new sets �Ẽi�
LM� and �Ẽi�

B �: starting with
the first local minimum and barrier state after the quench, we

set Ẽi�=0
LM =Ei=0

LM and Ẽi�=0
B =Ei=0

B ; then, we increment the index

i� and set Ẽi�
LM=Ei

LM and Ẽi�
B =Ei

B whenever the current bar-
rier in MS, Bi=Ei

B−Ei
LM, exceeds the current barrier in the

DRS, B̃i�= Ẽi�
B − Ẽi�

LM. This is schematically described in Fig.
1, where we assumed Bi+1�Bi and Bi+2�Bi. The sequence
has dynamical relevance, being able to accurately reproduce
the low-temperature Metropolis dynamics, which is taken as
reference: all moves are trialed with equal probability
and then accepted with the Metropolis probability
Pmn=min�1, exp	−�Em−En� /T
�, where n is the current state
and m is the attempted neighbor.

The system preparation is typical for analyzing slow-
relaxation phenomena: initially at high temperature �T→��,
it is quenched in zero-temperature limit. In a first step, a
rather rapid relaxation occurs, the system following a down-
ward path toward a local minimum. In this model, it corre-
sponds to a random state being chosen, then a random neigh-
boring state with lower energy is selected �T=0� until a local
minimum is reached. Then, fixing a certain low but finite
temperature, a phase of slow relaxation occurs, the system
successively escaping from local minima into lower ones.
The DRS method gives the time scales for the energy relax-

ation using the Arrhenius law, �i��exp�B̃i� /T�, as the system
progresses toward the ground state. This construction intro-

duces the monotonic barrier sequence �B̃i��, which elimi-
nates the smaller barriers �skipped barriers� that follow a
larger one, since the time scales to overcome them are much
shorter and the system travels to lower energies in the largest
time scale so far, until an even higher barrier is reached.

More specifically, we relate the time scale � to overcome

a barrier B̃ in the DRS by

��B̃� � 2�0 exp�B̃/T� , �3�

where �0 is the microscopic time scale for one spin flip. The
factor 2 accounts for removing the barrier states in the tran-
sition matrix, which would lead to a twice as fast relaxation
in the low-temperature limit, compared to the reference Me-
tropolis dynamics.

We collect monotonic sequences of local minima for dif-
ferent sample sizes for both systems, SG and DF, for the
two-dimensional case �N=2�, since it is computationally less
expensive. Samples for the case N=3 were also computed
and the key features remain valid as well. In order to account
for interaction randomness, we have taken 1024, 256, 64,
and 16 realizations for the considered sizes of 8�8,
16�16, 32�32, and 64�64 spins, respectively. For each
sample size, ten monotonic sequences are determined within
the limit of 107 states to reach a lower local minimum from
the current one.

Following the rapid quench, both systems are trapped in
local minima. Their energy distribution in the infinite system
limit, scaled with E0�Ns�=JmaxNs, is concentrating around the
values of −0.656 and −0.745 for SG and DF, respectively. By
applying a branch and cut algorithm,20 the ground states for
the SG system are exactly determined for different system
sizes, resulting in an average value of −0.79. For the DF
case, the infinite volume ground state is obviously −1.0.

Figure 2�a� depicts the local minima energy averaged over
disorder, which was reached by crossing a certain monotonic
barrier for the SG system in comparison to the DF case �in-
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FIG. 1. Schematic of a monotonic sequence �thin line�. The
local minima and barrier states are represented by filled and empty
circles, respectively. The dashed line indicates the DRS.
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FIG. 2. �a� Average local minima energy vs monotonic barrier
for different sample sizes: 8�8 �circles�, 16�16 �squares�,
32�32 �triangles up�, and 64�64 �triangles down�. The symbols
for higher sample sizes overlap and cannot be clearly distinguished.
The inset contains the DF case, starting with the sample size of
16�16. �b� Scaling of the decaying slope � for the sample sizes
considered.
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set�. It basically gives the time dependence of the mean en-
ergy in the slow-relaxation process for low temperatures, if

one relates the time scale � on the monotonic barrier B̃. The
data show a simple scaling of the mean energy with
the number of spins Ns at least up to a time scale, giving
the possibility to extrapolate the dynamical behavior
of the infinite volume system in both cases. In a first order

approximation, we take �Ẽ�=e1E0�Ns�−��B̃�, where

e1=−0.656, −0.745 and �Ẽ��−0.75, −0.90 for SGs and DFs,
respectively. The decaying slope � almost linearly increases
with the system size and the average values ��� /E0�Ns� are
approximately 0.10 �SG� and 0.15 �DF� 	Fig. 2�b�
. This
rather good scaling behavior is a consequence of the fact that
the two-dimensional Ising systems analyzed here are short-
range systems.

In order to establish the accuracy of the method at low
temperatures, we have compared the results obtained with
DRS against the reference MCM procedure. Figure 3 shows
the mean energy of 16�16 SG systems, averaged over dis-
order, against the logarithm of time. The starting point after
the quench, i.e., the first local minimum in each monotonic
sequence or Monte Carlo run, respectively, is the same for
both procedures. In the MCM approach, each spin is selected
at random and flipped with the Metropolis acceptance prob-
ability, while the time is given by �=�0Nsteps

MC /Ns, where Nsteps
MC

is the number of Monte Carlo steps. For the microscopic
time scale, we set �0=1. Good accuracies are achieved for
temperatures up to T�0.3.

To show the structural differences between the two sys-
tems, SG and DF, we have plotted in Fig. 4 three quantities
�averaged over disorder� that present a high degree of corre-
lation against the escaping local minimum energy: barriers,
hamming distances �dH�, and number of states �Nstates� vis-
ited in order to reach the barrier state from a certain escape
of a local minimum. The rather comparable magnitude of the
barriers 	Fig. 4�a�
 in both systems is due to the identical
value for the maximum interaction Jmax and a similar disor-
der introduced by the interaction distribution function. Quali-
tatively, one can observe a decrease in the average barrier for

DF as the system goes beyond a certain energy, which is
different in the SG case. Moreover, the rate of reaching the
ground state is about 82% for DFs, while for SGs, it is under
1% and in this latter case, not all of the highest barriers are
found. Also, an important feature in the state space topology
of both systems is the statistical increase in barrier heights
with lowering the mean energy. This is not a pure dynamical
effect due to our construction but indeed a structural property
of the state space of the considered short-range Ising sys-
tems. The ratio of skipped barriers in the DRS is less than
25% for the sample size of 16�16 for the SG case. This
feature was also observed in other systems19 and is consis-
tent with spin glass experiments as well, in particular, aging
phenomena.13 Here, it is found that the system becomes
stiffer as the age grows, i.e., the relaxation becomes slower
with time and, at the same time, with decreasing energy. A
similar behavior can also be observed in Figs. 4�b� and 4�c�:
the lower the escaping local minimum energy, the higher the
hamming distances and the number of states associated with
the escaping local minimum for the frustrated SG system,
while DFs indicate a more focusing energy landscape. From
the sizable structural difference in the number of states asso-
ciated with the escaping local minimum, it follows that for a
low but finite temperature, the escaping time into a lower
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local minimum is considerably larger, the precise value de-
pending also on the temperature and the distribution of states
inside a valley.

It is well known that kinetic accessibility of the ground
state is much lower in the case of a spin glass than in a
disordered ferromagnet. This aspect is further analyzed in
Fig. 5, where the hamming distance d0

H between the current
local minimum in a sequence and one of the ground states is
mapped against the local minimum energy for 1000 realiza-
tions, with 10 monotonic sequences each. The trajectory
maps in the �d0

H ,ELM� space very clearly show the funnel-
like state space of the DF system. Differently, although the
lowest energies reached during the relaxation by the SG sys-
tems are very close to the ground states, the systems are far
away from reaching the global minimum. The SG system is
trapped in low local minima that are close to the ground state
energy, although far away in terms of hamming distances.
The maps introduced in Fig. 5 clearly illustrate, on one hand,
how the DF system is driven toward one of the ground states
and, on the other hand, how the SG system becomes trapped
roughly midway between the two ground states.

In conclusion, we have analyzed structural properties of
the state space in both SG and DF systems, which are rel-
evant to the relaxation dynamics. By introducing the DRS as
a tool to directly relate topological information to the low-
temperature dynamics, the two major features, disorder and
frustration, are separately explored: the first is mainly re-
sponsible for the barrier structures and their magnitudes,
while the latter reduces the funnel-like state space of DFs to
a trapping landscape of SGs, reflected in a clear increase in
the number of states per valley as well as high hamming
distances between the low energy states, which are dynami-
cally relevant and the global minimum. Due to the short-
range character of the considered Ising spin systems, good
self-averaging properties for the mean energy were found, at
least up to a time scale at which half of the energy journey is
achieved, allowing infinite volume predictions. The analysis
is based only on the topology of the state space and it is in
quantitative agreement with low-temperature Monte Carlo
Metropolis runs and in qualitative agreement with experi-
ments.
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