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By using a two-step homogenization approach, we derive analytical formulas of effective mass density �e

and effective bulk modulus Be for two- and three-dimensional acoustic metamaterials of Helmholtz resonators
�HRs� in fluid. A negative Be is found at certain frequencies due to the monopolar resonance, leading to a
low-frequency acoustic band gap. A unified picture is presented for metamaterials of HRs and three-component
metamaterials of negative �e. Our work supports recent observations in a one-dimensional array of HRs
�N. Fang et al., Nat. Mater. 5, 452 �2006�� and presents important high-dimensional extensions for exploring
more fascinating phenomena.
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Recently, acoustic and/or elastic metamaterials �artificial
structured materials1,2� have received considerable interest
due to their exotic acoustic and/or elastic properties.3–17 In
particular, their effective mass density and modulus can be
singly or simultaneously negative,3–13 allowing intriguing
phenomena for sound waves such as low-frequency band
gaps,3–10 negative refraction, and superlensing.1,12–14

Negative effective mass density or modulus can occur at
certain frequencies if an appropriate resonance is included
into the structures.3–13 A famous example is the three-
component phononic crystal with locally resonant
structures,3 which exhibits a negative effective mass density
�e due to a dipolar resonance.4,5 Very recently, a low-
frequency band gap was demonstrated in a one-dimensional
�1D� array of Helmholtz resonators �HRs�.6 By using further
retrieval analysis of wave-scattering coefficients,7–9 a nega-
tive effective bulk modulus Be was confirmed in the 1D
metamaterials of HRs.9 Unlike other designs for negative Be
using air bubbles or soft-rubber spheres,12,13 this metamate-
rial consists of a rigid body but still possesses a sizable
working frequency range. However, high-dimensional
metamaterials of HRs, which are essential for more fascinat-
ing phenomena,6,14,15 remain unexplored.

In this Brief Report, we study two-dimensional �2D� and
three-dimensional �3D� acoustic metamaterials consisting of
cylindrical and spherical HRs in fluid �such as water or air�,
respectively. By using a two-step homogenization approach,
we can derive analytical formulas for the �e and Be within
coherent-potential approximation �CPA�.18 The accuracy of
these formulas is confirmed by accurate retrieval results us-
ing multiple-scattering techniques. We show that our
metamaterials of HRs can exhibit a negative Be at certain
frequencies due to a monopolar resonance. Systematic analy-
ses are done for the frequency range of negative Be and the
low-frequency-limit behavior. Based on our derivations, a
unified picture is presented for metamaterials of HRs and
three-component metamaterials of negative �e.

Our HRs are cylindrical and/or spherical rigid shells with
uniformly distributed slits and/or holes, as shown in Fig.
1�c�. The inner and outer radii of the shells are r2 and r1,
respectively. The background fluid has a mass density �0 and
bulk modulus B0. Our HR becomes a conventional HR if
only a single slit and/or hole exists in the shell. It has been
shown that for acoustic waves of long wavelength ��0�, a
rigid-body slab with small slits and/or holes �with a size �
�d /4 and period d��0 /4� is effectively equivalent to a uni-
form slab of a thickness h /n, density �0n2, and bulk modulus
B0, where h is the thickness of the rigid-body slab, n=1 / f ,
and f is the filling ratio of slits and/or holes �f =d /� for
slits�.17 In the following, we will use this conclusion and
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FIG. 1. �Color online� �a� A rigid-body slab with periodic slits
�holes� and �b� its equivalence of a two-layer slab. The slabs have a
thickness h and are extending in the X-Z plane. The slits and/or
holes have a size �, period d, and filling ratio f �f =d /� for slits�.
The top layer has a thickness h−h /n but the same fields at their two
surfaces, and the bottom layer has a thickness h /n, density ��
=�0n2 with n=1 / f , and modulus B�=B0. The background fluid has
a density �0 and modulus B0. �c� A 2D �3D� HR of rigid cylindrical
�spherical� shell with uniformly distributed slits �holes� and �d� its
equivalence of a two-layer shell made of the slabs in �a� and �b�,
respectively.
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replace the wall of the HR by its equivalence of a two-layer
shell,19 where the inner layer has a thickness �r1−r2� /n, den-
sity ��=�0n2, and modulus B�=B0, and the outer layer has a
thickness �r1−r2��1−1 /n� but the same fields at its two sur-
faces. Here, we introduce the outer layer to make the total
wall thickness unchanged.

We first consider a 2D metamaterial consisting of a square
array of above cylindrical HRs in fluid, as shown in Fig.
2�a�. The filling ratio of HRs is fs=�r1

2 /a2, where a is the
lattice constant. Set r= �x ,y�= �r ,�� in the plane perpendicu-
lar to the axes of HRs. For harmonic acoustic waves with
angular frequency 	, the pressure field P�r�ei	t obeys the
two-dimensional Helmholtz equation,

��2 + k2�P = 0, �1�

which is subjected to continuities of P and 1
��P /�r at the

layer interfaces of each HR �set r=0 at the center of HR�.
The wave numbers in the background and inner walls of HRs
are given by k0=	��0 /B0 and k�=	��� /B�=nk0, respec-
tively.

Then, we derive analytical formulas for the �e and Be of
HRs by the CPA method.18 We consider a “circular unit cell”
�coated HR� of radius R=r1 /�fs and replace the metamate-
rial outside by a uniform effective medium of �e, Be, and
ke=	��e /Be �see Fig. 2�b��. The pressure field P can be
decomposed into incident and scattering cylindrical waves
�represented by Bessel �Jm� and Hankel �Hm� functions, re-
spectively�: PI=�mGmJm�k0r�eim� when r�r2, PII

=�m�EmJm�k�r�+FmHm�k�r��eim� when r2�r�r��r2+ �r1
−r2� /n, PIII=�m�CmJm�k0r�+DmHm�k0r��eim� when r1�r
�R, and PVI=�m�AmJm�ker�+BmHm�ker��eim� when r
R.
For the outer layer of HR, the fields will be the same at its

two surfaces so that PII�r��= PIII�r1� and 1
��

�PII�r��
�r = 1

�0

�PIII�r1�
�r .

Combining PI�r2�= PII�r2�, 1
�0

�PI�r2�
�r = 1

��

�PII�r2�
�r , PIII�R�

= PVI�R�, and 1
�0

�PIII�R�
�r = 1

�e

�PVI�R�
�r , the mth order scattering co-

efficient Bm /Am of the coated HR can be obtained and
Bm /Am=0 �which “defines” the effective medium� when

−

1

�0
k0Jm� �k0R� − Jm�k0R�

1

�e
keJm� �keR�/Jm�keR�

1

�0
k0Hm� �k0R� − Hm�k0R�

1

�e
keJm� �keR�/Jm�keR�

= −

1

�0
k0Jm� �k0r1� − Jm�k0r1�Um

1

�0
k0Hm� �k0r1� − Hm�k0r1�Um

, �2�

where

Um =
1

��
k�

Jm� �k�r�� + Hm� �k�r��Pm

Jm�k�r�� + Hm�k�r��Pm

and

Pm = −

1

��
k�Jm� �k�r2� − Jm�k�r2�

1

�0
k0Jm� �k0r2�/Jm�k0r2�

1

��
k�Hm� �k�r2� − Hm�k�r2�

1

�0
k0Jm� �k0r2�/Jm�k0r2�

.

We note that the first and second terms in Eq. �2� and Pm are
just the mth order scattering coefficients of a cylinder with
radius R, �e, and Be in a matrix of �0 ,B0, the HR, and the
core cylinder, respectively. If we only consider the scattering
of cylindrical waves of the two lowest orders m=0 and 1, �e
and Be can be numerically calculated after solving
1
�e

keJ0��keR� /J0�keR� and 1
�e

keJ1��keR� /J1�keR� from Eq. �2�.
Under the approximation of long wavelength �k0a ,kea

�1, thus k��r�−r2�=k0�r1−r2��1� and small slit size �n
=1 / f �1�, Eq. �2� becomes20

1

Be
=

1

B0
�1 − fs +

fsr2/r1

1 − 	2/	R
2 	 for m = 0, �3�

�e = �0�1 + fs/�L − 1��/�1 − fs� for m = 1, �4�

where L=2 in the 2D case and the resonant frequency is
given by

	R = 
0
�L/�nr2�r1 − r2�� . �5�

Here, 
0=�B0 /�0 is the sound velocity in the background
fluid. If only a single slit exists in the wall of HR �n

2�r2 /�, where � is the slit width�, Eq. �5� will become
the conventional HR frequency in 2D, namely, 	R

=
0
�� / ��r2

2�r1−r2��.21 For the case without slits �n→��,
	R will approach zero and Eq. �3� will reduce to the formula
of Be for rigid rods in fluid �where �e is still given by Eq.
�4��,16 namely,

Be = B0/�1 − fs� . �6�

From Eq. �3�, we can see that the Be of HRs depends on
frequency. At the low-frequency limit �	→0�, the effective
bulk modulus is given by

Be = B0/�1 − fs + fsr2/r1� . �7�
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FIG. 2. �Color online� �a� A 2D �3D� acoustic metamaterial con-
sisting of a square �simple cubic� lattice of the cylindrical �spheri-
cal� shells in Fig. 1�d� and �b� a coated shell in an effective medium
of ��e ,Be�.
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Here, Be will be zero at the resonant frequency 	R. For a
frequency range above 	R �	R�	�	+�, Be becomes nega-
tive, where the upper frequency edge is given by

	+ = 	R
�1 + fsr2/�r1�1 − fs�� . �8�

Since the effective density �e will always be positive �by Eq.
�4��, an acoustic band gap �with an imaginary ke� will be
formed in the frequency range with negative Be.

Similar CPA derivations can also be done for 3D metama-
terials consisting of HRs of spherical shells with uniformly
distributed holes. In 3D,22 the Bessel �Jm� and Hankel �Hm�
functions in Eq. �2� should be replaced by spherical Bessel
�jm� and Hankel �hm� functions, respectively. Under similar
approximation, Eqs. �3�–�8� will also be obtained where fs

becomes the volume ratio of spherical HRs �fs= 4
3�r1

3 /a3 in a
simple cubic lattice� and L=3 in the 3D case. For HRs of
single hole �n
4�r2

2 /Sh, where Sh is the area of the hole�,
Eq. �5� will become the conventional formula of HR fre-
quency, namely, 	R=
0

�Sh / � 4
3�r2

3�r1−r2��.21 When no holes
exist in the shells �n→��, 	R will approach zero and Eqs.
�4� and �6� can be obtained for rigid spheres in fluid.

To check the validity of the above analytic formulas, we
apply the multiple-scattering or Korringa-Kohn-Rostoker
�KKR� method �including high-order cylindrical waves�23 to
simulate normal incidence of a plane wave on a slab of
above 2D acoustic metamaterial �in Fig. 2�a��. Then, the ef-
fective parameters �Be ,�e� can be retrieved from the trans-
mission and reflection coefficients.7–9 The retrieving is easy
for a one-layer slab but the results will be the same for more
layers. In Fig. 3, we show the accurate KKR results of
�Be ,�e� and those from Eqs. �2�–�4� for a square lattice of
cylindrical HRs in fluid where r1=0.36a, r2=0.32a, and

f =6.39�10−3 �thus, n=156.5, r�=0.320 256a, ��=2.45
�104�0, and B�=B0�. A frequency range �	̃�	0a / �2�
0�
� �0.154,0.2�� with a negative Be and positive �e can be
found above the resonant frequency. As a result, a low-
frequency stop band can be observed in the transmission
spectrum for a metamaterial slab �see Fig. 3�c��. We note that
the transmission dip at 	̃=0.170 corresponds to a peak of
�e=9.77− i4.45 �with Be=−0.194− i0.09 which will not bring
a gain or loss; KKR results�. This peak of �e cannot be cap-
tured by Eq. �4� with the long-wavelength approximation and
it is usually understood as a result of band folding. However,
we find that this feature can still be obtained by numerically
solving Eq. �2� for the lowest 2 orders of cylindrical waves.
For higher frequencies �	̃
0.25�, the scattering of high-
order cylindrical waves will be important and more accurate
KKR calculations are needed.

Figure 4 shows the �e and Be at the low-frequency limit
�	r1 /
0�1� and the frequency edges of negative Be with
varying the filling fraction fs of HRs. The frequency range of
negative Be is found wider with increasing the filling ratio of
HRs. Excellent agreement is found between our analytical
formulas and KKR results. Recently, a better impedance
match and higher refractive index were found in 2D HRs
than rigid rods by finite-difference time-domain simulations.7

This result was explained by a smaller Be of HRs �Be=B0�
than rods. We note that our new Eq. �7� can present a better
understanding for this phenomenon.20

By now, we have shown that our metamaterials of HRs
exhibit a negative effective bulk modulus at certain frequen-
cies due to a monopolar �m=0� resonance. For the HR, the
fluid inside the heavy shell ���=�0n2��0� will retain a cy-
lindrical and/or spherical shape. However, its volume can
still periodically vary �since B�=B0� giving rise to the mo-
nopolar resonance. Strong monopolar resonances can also
exist in air bubbles11,13 or soft-rubber spheres12 in water,
leading to a negative Be.

12,13 Such monopolar resonances can
still survive even when a solid matrix is used �e.g., water-
coated air bubbles in solid�.13 So if a solid-based structure
with a negative Be is desired, fluid-coated HRs in a solid
matrix can be similarly applied. By combining our HRs with
the metamaterials of a negative �e, a double negative
metamaterial can be constructed,13 enabling negative refrac-
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FIG. 3. �Color online� �a� The effective mass density and �b�
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tion and superlensing of acoustic waves. We note that our
HRs can also exhibit an arbitrary positive Be �0�Be
�B0 / �1− fs+ fsr2 /r1� or Be
B0 / �1− fs�� but normal �e �by
Eq. �4�� at certain frequencies �	�	R or 	
	+�. When an
additional metamaterial with an anisotropic �e but normal Be
is provided, a fascinating acoustic cloaking may also be
realized.15

A coated-cylinder and/or coated-sphere structure exists in
our acoustic metamaterials of HRs and the locally resonant
sonic materials with soft rubber.3 However, a negative effec-
tive mass density was found in the latter.4,5 To present a
unified picture for these two metamaterials, we mathemati-
cally consider metamaterials of soft shells in fluid �by using
B�=B0 /n2�B0 and ��=�0 in Fig. 1�d��. Under the long-
wavelength approximation �k0a ,kea�1, thus k��r�−r2��1�,
Eq. �2� becomes20

1

Be
=

1

B0
�1 + fs�Ln − 1��1 −

r2

r1
	� , �9�

�e − �0

�e + �0
= − fs + fs

Lr2/�r1 + r2�
1 − 	2/	R�

2 , �10�

for m=0 and 1, respectively, where the resonant frequency is
given by

	R� = 
0
��L − 1 + r1/r2�/�nr1�r1 − r2�� . �11�

From Eq. �10�, a negative effective mass density can be seen
due to a dipolar �m=1� resonance, which agrees with recent
explanations.4,5 For the soft shell, the fluid inside will retain
the shape and volume and will vibrate in a certain direction,
giving rise to the dipolar resonance.

In summary, we have proposed a two-step homogeniza-
tion approach to derive analytical formulas of �e and Be for
2D and 3D acoustic metamaterials of HRs in fluid. A nega-
tive Be was found at certain frequencies due to the monopo-
lar resonance, leading to a low-frequency acoustic band gap.
A unified picture was also presented for metamaterials of
HRs and three-component metamaterials of negative �e. Our
work supported recent observations in 1D array of HRs and
presented important high-dimensional extensions for explor-
ing more fascinating acoustic phenomena.
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