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Anisotropic ideal strengths and chemical bonding of wurtzite BN in comparison
to zincblende BN
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The ideal strengths, electronic density of states, and charge density difference of wurtzite w-BN had been
calculated by ab initio density functional theory and compared to zincblende c-BN. Both polymorphs show a
different stacking of lattice planes but have comparable anisotropic strengths, which are due to the similar
bonding of three-dimensional sp® covalent networks, comparable bond lengths, and charge transfer between

the boron and nitrogen atoms.

DOI: 10.1103/PhysRevB.77.172103

Among many polymorphs of boron nitrides, two dense
BN phases with zincblende (c-BN) and wurtzite (w-BN)
structures possess interesting properties such as extreme
hardness, high melting point, high thermal conductivity, low
dielectric constant, large band gap, etc., which are very use-
ful in many technical applications."> The ¢-BN is stable un-
der high pressure and high temperature, whereas the w-BN
coexists with c-BN at a lower temperature. The Vickers hard-
ness of single crystal ¢c-BN is about 48-50 GPa, which is
lower than that of diamond (70-100 GPa).>* The wurtzite
boron nitride has been investigated to a lesser extent than
c-BN because of its difficulty to prepare a pure phase. It is
formed together with c-BN during the high-pressure transfor-
mation of #-BN at a somewhat lower temperature of about
1800-2200 K and a pressure of 16-20 GPa.>® Both c-BN
and w-BN have an sp*-bonded structure and their Madelung
constants are almost identical. Recently, Dubrovinskaia et al.
reported a synthesis of superhard boron nitride nanocompos-
ites with a load-invariant hardness of 85 GPa.>® The origin
of the hardness enhancement by a factor of about two in the
nanocomposites consisting of a mixture of c-BN and w-BN
with an average crystallite size of 14 nm has been attributed
to the “nanosize effect” and two-phase compositions.’ In this
Brief Report, we present a comparative study of the ideal
tensile and shear strengths, and the bonding nature of both
polymorphs by means of ab initio density functional theory
(DFT) in order to check if the w-BN component phase may
contribute to the observed hardness enhancement.

The ideal decohesion and shear strengths of about
(ys-Eyldy)®> and G-b/(27-dy)=0.1-G, respectively’s
(where G and Ey are the shear and Young’s modulus, 7s is
the surface energy, b is the interatomic distance in the shear
direction, and d,, is the interplanar spacing), represent the
upper limit of strength that a real material can achieve. It
correlates with the onset of dislocation formation and plastic
deformation in an ideal crystal.>~!! The strength of engineer-
ing materials is limited by flaws such as dislocations, micro-
cracks, grain boundaries, and others, and it is usually orders
of magnitude smaller than the ideal one.!>!3 The anisotropic
ideal strength, i.e., the maximum stress at which a perfect
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crystal becomes mechanically unstable under a given ho-
mogenous deformation, can, nowadays, be obtained from ab
initio calculations.'*'® However, care has to be exercised
when correlating ideal strength with hardness because the
latter depends in a complex manner on many factors such as
flaws in real materials and the type of loading during the
hardness measurement.”-

The present ab initio DFT calculations were done by
means of the VASP code!” with the projector augmented wave
method employed to describe the electron-ion interaction and
the generalized-gradient approximation for the exchange-
correlation term. The integration in the Brillouin zone has
been done on special k points of 9X9X9 grids for the
phases that were under consideration, which were deter-
mined according to the Monkhorst—Pack scheme, the energy
cutoff of 600 eV, and the tetrahedron method with Blochl
corrections for the energy and smearing methods for the
stress calculations. The verification of the reliability of our
calculations has been done by calculating the total energies,
equilibrium lattice parameter, and bulk modulus of ¢-BN,
and comparing them to the published data,'® as described in
our earlier papers that are also for other systems.'”

Here, we describe the calculations of the stress-strain
relationships.!411° First, the atomic basis vectors of a given
crystal cell were projected onto the Cartesian coordinates (R)
with one axis vector being parallel to the imposed strain
direction for the tension. For the shear, one axis vector was
perpendicular to the slip plane and another one was parallel
to the slip direction in the plane. Afterwards, the crystal has
been incrementally deformed by transforming the unstrained
atomic basis vector matrices R to the strained ones R’ using
the deformation matrices
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where e,=¢,,, e,=¢,,, e3=¢_, e,=e  +e,, es=e, te,, and
eg=ey+e,, are the strain components in the Voigt notation.
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FIG. 1. (Color online) Crystallographic stacking sequence in a
redefined orthorhombic cell for (a) ¢-BN with [110], [112], and

[111], and (b) for w-BN with [1210], [1010], and [0001], as the cell
axes vectors, respectively.

The diagonal strain components e,,, e,,, and e, represent the
tension while the off-diagonal components represent the
shear. In order to keep the crystal under a stress state of
uniaxial tension or shear, the strained cell has been relaxed
for both the atomic basis vectors and for the atom coordi-
nates inside the unit cell by keeping the applied strain com-
ponent fixed and relaxing the other five strain components
until their conjugate stress components (i.e., Hellmann—
Feynman stresses) reached negligible values. To ensure that
the strain path is continuous, the starting position at each
strain step has been taken from the relaxed coordinates of the
previous strain step. In the instance of having a large strain,
the crystal symmetry may be changed and the Brillouin zone
significantly deformed and so, we verified the convergence
of the calculations of the stress-strain curves by using two
different meshes with 9X9X9 and 11X 11X 11 k points.
The calculated stress-strain curves in the tension along the
(111) direction were identical within less than 1%, and the
ideal strength of 55.258 GPa has been obtained for both
meshes. Furthermore, we repeated the calculation for the
(111) tension using a higher cutoff energy of 800 eV and
obtained a value of 55.04 GPa, which is only about 0.4%
lower than the above mentioned one. Our calculated stress-
strain curves for TiN and SizN, were also in reasonable
agreement with the previous calculations."

The structural relationship between ¢-BN and w-BN is
given by different stacking sequences ABCA... along the
[111] direction and ABA... along the [0001] direction, re-
spectively (Fig. 1). Thus, the (111), (110), and (112) direc-
tions of ¢-BN are chosen to compare to (0001), (1210), and
(1010) directions of w-BN. Note that the direction indicated
in a bracket (hkl) means that, if for a given [hkI] direction,
the lattice symmetry exists with respect to the opposite di-
rection [hki], the calculated stress-strain curve also applies
for the opposite direction.

Figure 2 shows the stress-strain relationships for c-BN in
comparison to those for w-BN. The ideal tensile strengths
[Fig. 2(a)] for w-BN in the (1210) direction and for ¢-BN in
the (110) direction are about 90.6 and 84.1 GPa, respec-
tively, which is much larger than for the two other orthogo-
nal directions. The anisotropy ratio of ideal tensile strengths
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FIG. 2. (Color online) Stress-strain relationships calculated by
ab initio DFT method for both dense BN polymorphs: (a) tension
and (b) shear. Note that with consideration of the crystallographic
similarity (see Fig. 1), the lattice directions of (0001), (1210), and
(1010) for w-BN were chosen to be compared to (111), (110), and
(112) for ¢c-BN, respectively.

for w-BN is 0'(1_21_0>:906 GPa: 0'<1()1_0>=65.7 GPa: T(0001)
=54.1 GPa=1.67:1.21:1, which is similar to that of ¢c-BN
of U'<11_0>=841 GPa: 0'<I1_2>=603 GPa: 0'<111>=55.3 GPa
~1.53:1.09:1. The weakest direction in w-BN is (0001)
with an ideal tensile strength of 54.1 GPa, which compares
to the lowest tensile strength of 55.3 GPa for ¢-BN along the
(111) directions.

The plastic deformation occurs in the shear. Therefore, in
order to understand the strength of both polymorphs, one has
to determine the ideal shear strengths in the relevant slip
systems, as well as the bonding nature.'®!® The lowest shear

strength of 62.1 GPa for w-BN is found in the (0001) (1010)
slip systems [Fig. 2(b)]. This value is slightly higher than the

58.3 GPa found for the (111) [112] slip system of c-BN.
However, in accord with the previous studies,'*'® the shear

deformations of ¢-BN along the (111) [112] slip system are
asymmetric with respect to the opposite shear direction (111)

[112], as seen in Fig. 2(b). This is due to the three-layers
stacking (ABCA...) in the (111) direction, which is asym-
metric for the shear deformation. The shear modulus is im-
portant in the modeling of crystal plasticity.!>!3 From Fig.
2(b), we estimate its average value from the slope of the
stress-stain curves for a small strain of about 327 +3 GPa
for both polymorphs.
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FIG. 3. (Color online) Total and partial electronic density of
states for (a) c-BN and (b) w-BN, and valence charge density dif-
ference with respect to the orthorhombic cells of (¢) ¢-BN in the
(110) plane and (d) w-BN in the (1210) plane, respectively. The
color scale of the valence charge density difference in (c) and (d) is
in units of [electrons/bohr?].

A further understanding of the properties of both poly-
morphs yields the electronic density of states (DOS) and
charge density difference (CDD), which were calculated and
are shown in Fig. 3. The total DOS for both dense BN poly-
morphs presents three regions: The lower part of the valence
bands is dominated by N 2s states, and the upper part by
N 2p-, and B 2s- and 2p-like states. Both the ¢-BN [Fig.
3(a)] and the w-BN [Fig. 3(b)] are wide band gap semicon-
ductors with calculated band gaps of about 4.6 and 5.2 eV,
respectively, which can reasonably compare to the theoretical
values of 5.18 and 5.81 reported in Ref. 20. There are no
experimental data of the value of the band gap for w-BN
because of the difficulties in preparing high quality samples.
Our value for ¢-BN is smaller than the experimental one of
about 6 eV reported in Ref. 1 but this applies to all the
theoretical results calculated by the ab initio methods (e.g.,
the already mentioned value of 5.18 eV reported in Ref. 20
and the even lower value of 4.5 eV calculated by MacNaugh-
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ton et al.?"). The valence bandwidth of ¢-BN of about 11 eV,
which is dominated by the overlapping of N 2p-, and B 2s-
and 2p-orbitals, is close to that of w-BN whose width is
about 10.5 eV.

The bond strength and charge transfer can be further char-
acterized by CDD, as shown in Figs. 3(c) and 3(d), for the
c-BN and the w-BN, respectively. The CDD is defined as the
difference between the calculated total charge density of the
crystal and the superposition of the charge densities of neu-
tral atoms. A positive value (red color and solid contours)
means an increase in the negative charge while a negative
value (blue color and dotted contours) means its decrease, as
compared to the neutral atoms. The strong directional bonds
between B-N pairs can be seen as the significant charge ac-
cumulation [red color regions in Figs. 3(c) and 3(d)] between
the B-N bond pairs. One can clearly see that the difference of
the valence charge density distribution is almost indistin-
guishable for both polymorphs; thus, confirming that the B-N
bond strengths are similar. This is further supported by the
fact that the B-N bond length of 0.15693 and 0.15827 nm
that were calculated for c-BN and w-BN, respectively, differ
only by 0.8%.

Because the difference of ideal strengths and shear moduli
are small for both dense BN polymorphs and their chemical
bonding is similar, the difference of the intrinsic mechanical
and electronic properties of both polymorphs cannot explain
the significant hardening for the w-BN/c-BN nanocompos-
ites reported by Dubrovinskaia et al.’> The hardness enhance-
ment of the c-BN/w-BN nanocomposites by a factor of two
can be easily explained in terms of a decreasing dislocation
activity with a decreasing crystallite size before the “inverse
Hall-Petch” due to grain boundary sliding becomes signifi-
cant (for reviews, see Refs. 4 and 22). This is in agreement
with the earlier phenomenological (Ref. 23), numerical (Ref.
24), and recent analytical models of the “strongest size”
(Ref. 25). The possible contribution of the quantum confine-
ment, as suggested in Ref. 5, requires further study.

In conclusion, we studied the structural, mechanical, and
electronic properties of two dense BN polymorphs by means
of ab initio DFT calculations. The comparable ideal
strengths, shear modulus, and the similar nature of covalent
bonds show that both polymorphs are intrinsically strong sol-
ids.
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