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We present here comparative measurements by scanning electron microscopy �SEM� and field emission �FE�
of the mechanical resonances of singly clamped, batch-fabricated SiC nanowires as well as an extensive
theoretical description. The mechanical resonances of six nanowires, which were glued to the ends of tungsten
support tips, were electrostatically excited and detected visually in the SEM configuration and then by FE
microscopy image processing. The large tensions generated by electric field pulling in FE that tune the
resonance frequencies and the complex boundary conditions at both the free and clamped nanowire ends
complicate the interpretation of the resonance frequencies necessary for extracting intrinsic mechanical param-
eters. Our model fully takes into account these effects and results in an excellent agreement with the measured
resonance modes in both configurations. Analytical solutions with their validity conditions are given for the
low and high tension ranges and semianalytical solutions for the intermediary range. Viable estimates of
Young’s modulus are thus achieved for the ultra high vacuum �UHV� environment of FE. Progressive in situ
cleaning was performed in the FE-UHV configuration in the range of 600–1350 K, which increased the Q
factor of the first mechanical resonance by up to �100 and did not alter the value of the Young’s modulus
measured previously in the SEM configuration. The agreement between the SEM and FE techniques means
that we can now profit from their different strengths for better understanding the mechanics of nanowires and
nanotubes.
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I. INTRODUCTION

The increasing attraction of researchers for nanoelectro-
mechanical systems �NEMS� springs from the fact that their
extremely small dimensions make them highly sensitive to
external perturbations. As well their mechanical response can
exceed the quality of electrical signals from purely electronic
devices. The Q factor of macroscopic electronic oscillators is
rather poor �at most a few hundreds� and it becomes even
worse at the nanometric scale �Fig. 1�d� in Ref. 1�. Mechani-
cal oscillators have Q factors up to 109 at macroscopic scale2

and up to 105 at nanometric scale.3,4 This sensitivity has
created potential applications for them as mass sensors, ac-
tuators, frequency filters or multipliers, etc., and makes them
excellent systems for both fundamental physics and new
nanodevices.5 The study of the basic mechanical phenomena
in NEMS and how they can be best controlled by external
parameters is of prime importance in order to exploit their
possibilities in devices especially because new effects come
into play at the nanoscale that lead to both complications and
opportunities.

There are two categories of parameters that determine the
behavior of the NEMS. First, the parameters related to the
nanoresonator itself: Young’s modulus, dimensions, density,
and Q factor due to intrinsic energy dissipation. Second, the
parameters related to the environment of the resonator inside
the system, such as the electrical capacitance, the boundary
conditions of the NEMS movement within its environment,
and nonintrinsic energy loss mechanisms, such as nonperfect
contacts, Foucault currents, adsorption, and mechanical or

electromagnetical radiation. These two types of parameters
define the eigenfrequencies of the system, their tunability by
mechanical stress �for example, due to electrostatic forces
created by an applied voltage VA�, the widths of the reso-
nances, the threshold between linear and nonlinear response
to external excitation, etc.

NEMS that use mobile cantilevers mostly come in two
standard configurations: doubly and singly clamped. The
doubly clamped configuration has been more intensively
studied both experimentally and theoretically.6–9 Examples
of recent achievements are the realization of doubly clamped
carbon nanotube �CNT� NEMS with detection by a single
electron transistor,6 operating at frequencies up to 1.3 �Ref.
7� and 3.1 GHz �Ref. 8� with Q factors at most �100.9 The-
oretical models of this configuration have been realized,10

showing different ranges of frequency tuning by the applied
voltage. The influence of slack in the doubly clamped con-
figuration was also fully discussed by Üstünel et al. �Ref.
11�; they explained the apparition of supplementary eigen-
modes in this geometry.

The singly clamped configuration has been used to char-
acterize the mechanical parameters of nanotubes12 and
nanowires13 by transmission electron microscopy �TEM� or
scanning electron microscopy �SEM� and is explored for
applications in CNT switches both theoretically and
experimentally.15 This configuration is also ideal for field
emission microscopy �FEM� measurements of the mechani-
cal properties.16 The main advantages of FEM are �1� sim-
plicity of the experimental setup for excitation and detection,
�2� excellent UHV conditions with the possibility of a range
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of in situ treatments, �3� visualization of the apex motion in
two directions, �4� access to high electric field �i.e., capaci-
tive� tuning, �5� enhanced sensitivity to higher eigenmodes17

by image analysis, and finally �6� the FE current measure-
ment has no loss of sensitivity for detecting vibrations as the
size of the cantilever is reduced even down to single wall
carbon nanotubes. The FE current �without detection� has
been exploited in the detection of the resonances of top-
down NEMS cantilevers.18 Looking further ahead one can
imagine a new generation of time varying FE devices where
the modulation is directly at the source. Recently, this con-
figuration has been used to fabricate a “Nanotube Radio”
where the resonating-nanotube-field emitter serves as the an-
tenna, tuner, amplifier, and demodulator.19 A final example is
the observation and modeling of auto-oscillations of nano-
wires without external ac driving in this configuration, open-
ing the way for nanometric dc to ac conversion.20

At present an in-depth study of the resonance behavior of
the singly clamped configuration is now required to fully
understand the influence of external perturbations for appli-
cations such as those mentioned above. For example, the
large tensions generated by electric field induced mechanical
stress that tune the resonance frequencies, as well as the
complex boundary conditions at both the free and clamped
nanowire ends, complicate the interpretation of the reso-
nance frequencies necessary for extracting intrinsic mechani-
cal parameters in the FE configuration. The approach here
will be to develop analytical solutions as much as possible,
which lead to more in-depth understanding and avoid time
consuming and opaque numerical simulations.

In this paper, we both theoretically and experimentally
explore the resonance behavior of singly clamped SiC nano-
wires on W tips over a large range of applied static voltages.
We mostly address linear response in this paper. Comple-
mentary experiments have been realized both in the SEM
and FEM. We have focused on the electrostatic tuning in the
FEM for a correct determination of Young’s modulus, on the
Q-factor measurements and on the boundary conditions for
the nanowire’s movement. Parallel theoretical modeling is
given, with validity intervals for the different static voltage
ranges and for the influence of the boundary conditions. We
have experimentally and theoretically investigated the influ-
ence of the electrostatic stress direction on the eigenfrequen-
cies. An important result is that nanowire resonators glued on
tungsten tips in a bottom-up spirit and heat treated can have
higher quality factors than top-down fabricated nanoresona-
tors of the same volume.

The paper is organized as follows: Section II briefly de-
scribes our experimental setup �for more details see Ref. 17
or 20�. A theoretical analysis of our system is given in Sec.
III, and Sec. IV is dedicated to the presentation and the
interpretation of our results. A brief conclusion is given in
Sec. V.

II. EXPERIMENTAL SETUP

The samples studied here were monocrystalline SiC nano-
wires covered by nanometer-thick turbostratic amorphous
carbon layers �denoted as SiC@C; sometimes termed nano-

cable�. Details of the fabrication of the nanowires were given
elsewhere.21,22

In the SEM configuration, the tip with the nanowire is
positioned on a X-Y nanomanipulator �Fig. 1� at a dc voltage
Vdc with respect to the ground.14 An anode tip is placed in the
vicinity of the nanowire on a Z nanomanipulator at an ac
voltage Vac with respect to the ground. Those two voltages
polarize the tip and nanowire giving rise to electrical forces
between the nanowire and the anode. Natural mechanical
vibration modes of the singly clamped nanowire are excited
when there is a frequency match with Vac. The major advan-
tages of this configuration are direct visualization of the os-
cillations, control of the geometry, and the possibility to ex-
cite and observe oscillations in zero field. This last is
important because it gives the frequencies of the untuned
natural modes necessary for confirmation of the modeling.
As with FEM, we can also measure the resonance frequen-
cies as a function of the applied dc voltage, but over the
whole tuning range. Finally, the line mode of the SEM
�where the scan is only made along one horizontal line in-
stead of the whole screen� can be used for determination the
amplitude of the oscillation, although this is difficult due to
the slow time response �2 s/scan�. The disadvantages of this
configuration are the poorer vacuum, beam induced pollution
which is particularly perturbing for high Q and small volume
resonators, reduced sensitivity to the amplitude and the size
of cantilever, and lack of in situ treatments.

In the FEM configuration, the tip with the nanowire is
mounted on a heating loop inside an UHV chamber at
10−10 Torr �Fig. 2�. The tip temperature is controlled by pass-
ing a current through the loop and it is measured by a mi-
cropyrometer. The loop is polarized with a dc voltage Vdc
and electrons are field emitted from the nanowire’s apex
where the electric field is enhanced by the tip effect. This FE
current is amplified by a microchannel-plate �MCP� and cre-
ates fluorescence on a phosphor screen. Previous studies
showed that heat treatment could raise the Q factor of
top-down3 and bottom-up4 fabricated cantilevers by up to a
factor of 100. Measurements are made at room temperature
and after 5 min heating cycles of ever increasing tempera-

FIG. 1. Nanowire in SEM configuration. The position of the
excitation anode with respect to the nanowire can be changed in all
directions by steps down to 20 nm. Voltages Vac and Vdc can be
computer controlled.
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tures. These cycles progressively desorb surface adsorbates
and perhaps anneal the contact and the nanowire defects. A
more detailed study outside the scope of this paper must be
carried out to determine the interplay between these different
mechanisms. After a heating cycle, the nanowire’s tempera-
ture cools down to room temperature in less than a minute23

and then we have about 1 h before adsorbates recover the
surface. Four excitation anodes are arranged as a quadrupole
around the nanowire’s tip and polarized with an ac voltage
Vac. The nanowires are excited by the same mechanism as in
the SEM configuration and the resonances are detected by
the widening of the FE pattern on the MCP.16,17

The amplitude of the oscillations can be accurately and
sensitively determined even during frequency scans from the
image blurring.17 Our video camera functions at 25 Hz, giv-
ing only an averaged image of the oscillating emission pat-
tern. A minimum dc tension typically of a few hundred volts
is necessary to extract electrons and create the FE pattern.
We studied six SiC nanowires in these experiments, denoted
as SiC�1�-SiC�6�. The density of SiC is �=3200 kg /m3 and
the sizes of the nanowires are given in Table I.

III. THEORETICAL MODEL

We sketch here the physics of the motion of a singly
clamped rod even though it is a textbook problem24 because
this forms a necessary base for our study. This model is
completed with different elements concerning the free and
the clamped boundary conditions. We compute expansions
for the low and high applied voltage ranges with precise
ranges of validity that are useful for interpreting experimen-
tal data.

TABLE I. Radii and lengths of our nanowires.

Nano wire
Radius
�nm�

Length
��m�

SiC�1� 103 93

SiC�2� 143 128

SiC�3� 17.5 2.5

SiC�4� 135 243

SiC�5� 113 103

SiC�6� 104 32.5

FIG. 2. �Color online� FE con-
figuration �left� and SiC�3� apex
FEM images �right� out of �up�
and in �down� resonances. dc and
ac voltages can be computer con-
trolled. A LABVIEW® program ac-
quires and analyzes in-line the
camera image in order to extract
the amplitude of the oscillation.
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The resonances are determined by nontrivial solutions of
the equation of motion in the absence of external driving. We
consider only a symmetric nanowire-anode geometry when
at rest. This equation of motion can be easily expressed in
the limit of low angles of the rod with respect to the equilib-
rium position,

�
�2y

�t2 + ��
�y

�t
= − YI

�4y

�x4 + T
�2y

�x2 + f�x,y� , �1�

where x is the position along the nanowire, y�x , t� is the
lateral displacement, � is the density, �=�r2� is the mass per
unit length, I=�r4 /4 is the “area moment of inertia,” Y is
Young’s modulus, and � is the damping coefficient. The axial
stress T, due to electrostatic pulling, is assumed to be con-
stant along the nanowire. f�x ,y� is the transversal electric
force along the nanowire that exists when it is at a finite
amplitude away form the symmetric equilibrium position.
Electrostatic simulations of straight and tilted nanowires
show that a large charge is induced by capacitance at the
nanowire ends leading to a net pulling force T localized at
the nanowire’s apex. The charge induced forces on the sides
tend to cancel and the small net lateral force has a negligible
effect on the mode frequencies compared to T�2y /�x2.

Our Q factors are very high �Q=� /�	1000 and up to
160 000 �Ref. 4�� and thus damping can be neglected when
looking for solutions y�x , t�=y0�x�ei�t at the angular frequen-
cies �=2�f �it can be reintroduced simply by changing �2

with �2− i���. We get

�4y0

�x4 −

2

L2

�2y0

�x2 −
�2
2

c2L2 y0 = 0, �2�

with 
2=TL2 / �YI� and c2=T /�. The solution of this equa-
tion is

y0 = A cosh
qx

L
+ B sinh

qx

L
+ C cos

kx

L
+ D sin

kx

L
, �3�

with k and q found from

q2 = k2 + 
2, �4�

� =
cqk


L
. �5�

The constants A, B, C, and D can be calculated from the
boundary and initial conditions. At the extremities of the
nanowire, we assume no displacement and no slope for x
=0 and no torque and force equilibrium for x=L,

�y0�x=0 = 0, �6�

� �y0

�x
�

x=0
= 0, �7�

� �2y0

�x2 �
x=L

= 0, �8�

�− YI
�3y0

�x3 + �T
�y0

�x
�

x=L
= 0. �9�

The dimensionless constant � is a useful parameter that
allows us to take into account the fact that the electrostatic
force T may have a nonzero angle with the nanowire’s axis at
the apex �see Figs. 3�a� and 3�b��. If �=0, then T perfectly
follows the direction of the apex axis; if �=1, then T is fixed
along the direction of the straight nanowire axis. The exact
value of � depends both on the shape of the apex and on the
anode geometry �e.g., concavity of the anode� of the NEMS.
Analog problems can be found in fluid mechanics, where the
force acting on the end of a garden hose by reaction to the
water jet is not perfectly oriented by the direction of the
tube’s end.25 Determining � theoretically demands the te-
dious resolution of Laplace’s equation in three dimensions
for rods of varying tilts and bending. Instead, we have car-
ried out an experimental investigation of the � parameter,
which is presented at the beginning of the next section. Up to
the first order in � �tan �=�y /�x�, Eq. �1� is still correct.

The condition for existence of nontrivial solutions of Eq.
�2� satisfying boundary conditions �6�–�9� is

�2q2k2 + �
4�cosh q cos k + q4 + k4 − �
4

+ �2� − 1�qk
2 sinh q sin k = 0. �10�

Resonant frequencies are obtained by inserting values of k
and q obtained from Eqs. �4� and �10� into Eq. �5�. The
electric force T due to capacitance forces can be expressed as
a function of the electric field E at the surface of the nano-
wire,

T = �
wire surface


0E2

2
ndS , �11�

FIG. 3. �Color online� Boundary conditions on the nanowire: �a�
External forces acting on the nanowire. The different possible ori-
entations of T correspond to different values of �. �b� A zoom on
the nanowire’s apex. We have �=sin��−��� /sin �. �c� Zoom on the
nanowire’s clamped end. The elastic force R in the glue is canceled
by the restoring force in the nanowire F �F
= �−YI�3y /�x3+�T�y /�x�x=0� �see Sec. IV�.
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with n as the unit vector of the surface element dS and 
0 as
the vacuum dielectric permittivity. The electric field E is pro-
portional to the applied voltage VA and thus T�VA

2 . From
electrostatics E=�VA, with � as a constant, the geometrical
amplification factor. � is determined both by the environ-
ment, for example, through the distance between the nano-
wire and the anode, and by the nanowire itself through it’s
geometry �it scales roughly with the nanowire aspect ratio
L /r�. Since the electric field is very much enhanced at the
nanowire’s apex and forces on the sides do not play in the
tuning tension, the integral in Eq. �11� can be taken only on
the surface at the end of the nanowire, which allows us to
estimate T�
0�r2Emax

2 /2=
0�r2�max
2 VA

2 /2. A numerical
value is immediately found because FE occurs when the
maximum field satisfies 7	Emax	3 V /nm.

For convenience, we define VC to be the voltage giving
T=YI /L2 �
2=1�. Later in this section, we show that VC
allows us to define regions of low and high voltage behavior.
We have

T =
YI

L2

VA
2

VC
2 . �12�

When the geometry is changed, for example, if the nanowire
is placed further from the anode, it is enough to correct the
value of � �and thus VC� to obtain the new behavior of the
nanowire. In our geometry T is always positive because we
only have stress in our nanowire and never slack. This means
that supplementary eigenmodes described by Üstünel et al.11

do not exist.
The dependence of the first three eigenfrequencies on the

VA for different values of � is given in Fig. 4. We show in
Sec. IV that experiments give ��1, so we will use �=1 until
the end of this section. The figure shows one curious and
counterintuitive phenomenon for the more commonly used
boundary condition of �=0.0, which is that the first mode
decreases in frequency as the tension is increased �see expla-
nation caption in Fig. 4�. We have not found an experimental
confirmation of this phenomenon in the literature and in prin-
ciple it leads to a confusion in the identification of the modes
in FE experiments where T=0 is not accessible and thus in
the determination of Young’s modulus.

One can distinguish in Fig. 4 three distinct ranges: low,
intermediate, and high �linear�. Most of our experiments are
situated in the first range with low electrostatic pulling.
Sazonova26 already pointed out that in this low voltage
range,

�2 − ��0�2 � VA
2 , �13�

with ��0� the corresponding eigenfrequency for VA=0.
To intuitively understand the effect of T on the eigenfre-

quencies to first order, we can consider each eigenmode of
our nanowire as a harmonic oscillator with 1 degree of free-
dom. The theory of the harmonic oscillator tells us that
“�2=return force per unit displacement and per unit mass,”27

and since we have an elastic return force that gives ��0� and
an electrical perturbation force proportional to VA

2 , we get
Eq. �13�.

Sapmaz et al.10 already calculated the expansion for a
doubly clamped rod up to the first order in T �and thus VA

2�.
We have focused on the singly clamped configuration, where
the “free end” boundary conditions �8� and �9� significantly
change the resonance behavior of the rod. To check the va-
lidity interval of Eq. �13�, we computed the Taylor expansion
of �2 in VA

2 from Eqs. �4�, �5�, and �10�,

�n
2 = �n�0�2�1 + Xn

VA
2

VC
2 + Yn

VA
4

VC
4 + ¯ � , �14�

where n�N is the mode’s index, �n is the solution of
cos �n cosh �n=−1 inside the interval �n� , �n+1���, and

�n�0�2 =
YI�n

4

�L4 , �15�

Xn =
2 sinh �n + �n�cosh �n − �− 1�n�

�n
3�cosh �n + �− 1�n�

, �16�

FIG. 4. �Color online� Simulation of the resonant frequencies of
the first three eigenmodes as a function of VA in the FEM for �
=0 ���, �=0.2 ���, �=0.5 ���, �=1 ���, and �=1.5 ���. The
voltage is normalized to VC �Eq. �12�� and the frequencies fn are
normalized to 	YI /�L4 /2�. In the low voltage zone, with �=1
�VA�1.8VC for the first mode�, there is a linear dependence for
�2�VA

2� with ��0�2 the free coefficient �Eq. �14�� and in the high
voltage zone �VA	10VC for the first mode�, there is a linear depen-
dence ��VA� with −VC the root �Eq. �18��. In the intermediate zone,
both elastic and electrostatic contributions to �2 are important,
which means that the exact solution of Eqs. �4�, �5�, and �10� must
be used. The inset is a low voltage zoom for the first eigenmode
with �=0, �=0.05, and �=0.1. One can see that when � is precisely
zero �electrostatic stress completely oriented along the end axis�,
the frequency of the first mode converges to zero as VA→�. This is
because when at infinite tension the shape of the nanowire out of
equilibrium is a straight line, and thus, there is no return force. As
well the shapes and frequencies of the superior modes become iden-
tical with the doubly clamped configuration with the same T. For
low values of �, the first mode has a minimum eigenfrequency for a
nonzero voltage.
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Yn =
4�n�cosh2 �n + 1� − tanh �n���n

2 − 1�cosh2 �n + 1� + �− 1�n�8�n cosh �n + sinh3 �n − �n
2 sinh �n� − �n

3 sinh2 �n

2�− 1�n+1�n
6 tanh �n�cosh �n + �− 1�n�3 . �17�

We have shown that these formulas match numerical so-
lutions of Eqs. �4�, �5�, and �10�. For the first mode �n=0�,
�0�1.875, X0�0.376, and Y0�−0.01. This means that lim-
iting the expansion of �2 in VA

2 /VC
2 to first order is a good

approximation �within 3% of error� for ��VA��1.5��0�
�VA�1.8VC�. Our experiments were usually in this range of
frequency.

For higher modes �higher n and �n�, 
Xn
�1 /�n
2, and


Yn
�1 /�n
6, diminishing the relative contribution of the

higher order terms with respect to the first order term. This
means that for our experiments, usually situated in the low
voltage regime, we have a linear dependence of �2 on VA

2 ,
with ��0�2 the free term, which allows simple experimental
determination of Young’s modulus even in the FEM, where
��0�2 is not directly accessible.

In the high voltage limit �VA�VC�, we have a quasilinear
variation of the eigenfrequencies with VA,

�n =
2n + 1

2L2 	YI

�
�VA

VC
+ 1 +

4 + �2n + 1�2�2

8

VC

VA
+ ¯ 
 ,

�18�

where n�N and the first two terms were given in Ref. 16.
This range is not easy to experimentally obtain; one needs
VA	10VC in order to have the linear dependence at better
than 1.5% for the first mode, and this limit rises with the
mode index. Experimental determination of Young’s modu-
lus can only be made by using the free term of the linear
interpolation, as VC is unknown. Since extrapolation is made
quite far from the data �we want to determine � for VA=0 by
using � for VA�VC�, it is useful to include additional terms

from Eq. �18�. Interpolation with Eq. �18� on simulated data
with Eqs. �4�, �5�, and �10� between VA=8VC and VA
=10VC yielded Young’s modulus with 10% of error.

Field emission experiments are usually over a relatively
small voltage range compared to the full characteristic
�n�VA� curves �solutions of the Eqs. �4�, �5�, and �10��. This
means that experimental �n�VA� curves at first glance usually
look like straight lines, even if we are not in the high voltage
range where expansion �18� can be stopped at the linear and
constant terms �see Fig. 5�. This is enhanced because the
opposing signs in different terms of the expansions cause
��VA� to appear to be linear even though it converges ex-
tremely slowly to the solution ��VA� as VA→� �observe Fig.
5 closely�. An easy way to check in which range we are is to
use linear interpolation for the experimental data. Let VT be
the zero crossing of this linear interpolation �note VT�0�. If
the experiment is really in the linear range �e.g., VA /VC
	10�, then from Eq. �18� VT=−VC. If VA is smaller than
10VC, then the ratio of this applied voltage to 
VT
 is clearly
smaller than 10, since 
VT
	VC, as it can be seen in Fig. 4 if
we draw a tangent to the ��VA� curves. To summarize, one is
in the high voltage linear range if and only if VA / 
VT
�10
for the first mode. In retrospect, the measurements of Ref. 16
were probably not in the linear range.

For a given mode, the slopes of the ��VA� curves are fixed
by the value of VC, with small slopes for high VC and vice
versa. To calculate VC, one must calculate the geometrical
factor �, which is usually difficult because one must resolve
Laplace’s equation in the specific geometry. �It also varies
during the oscillation but this is quadratic due to symmetry
and we assume small oscillations.� However, it is clear that
VC increases with r and the distance to the anode and de-
creases with L. We have large slopes, and thus high NEMS
frequency tunability, for long thin nanowires situated close to
the anode. Experimental data for the slopes of the first mode
range from 10 to 105 Hz /V �see Fig. 9 and Ref. 28�.

The analysis can be pushed further to determine VC �and
thus �� from the experimental data. For example, VA /VC is
directly related to the ratios of the different eigenfrequencies.
These ratios taken from Fig. 4 are shown in Fig. 6. The
curves are universal for singly clamped rods of any uniform
cross section, satisfying boundary conditions �6�–�9� with �
=1. Mode ratios can also be checked to experimentally
verify the 2n+1 ratios in the high voltage regime, although
we need even higher VA than for the first mode. As an aside
this provides an independent measure of � that could in turn
be used to extract the work function � of the nanowire apex
from the slope of the Fowler–Nordheim plot, which gives
only �3/2 /�.

IV. RESULTS AND DISCUSSION

In this section, we show an extensive body of experimen-
tal measurements of the resonance frequencies of different

FIG. 5. �Color online� Example of experimental frequency-
voltage dependence ��� with exact theoretical interpolation �----�
giving VC=80 V. The dotted line �—� is a linear interpolation giv-
ing VT=−147 V. Although data seem to fall on a straight line, we
are not yet in the linear range given by the first two terms of ex-
pansion 18 since VT�−VC. We can see that 
VT
 is still bigger that
one-tenth of the experimental voltage.
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nanowires versus applied voltage and compare these results
to the theoretical model. The good agreement allows us to
determine Young’s modulus even in the FEM. Furthermore,
we study the Q factor as a function of heat treatment.

First, we present an experimental investigation of the
“force equilibrium” boundary condition �Eq. �9��. The value
of � should be influenced by the environment: a concave
extraction anode should decrease � and a convex one should
increase it. We made two f-V measurements on the first
mode of SiC�5� and we fit them with theoretical predictions
�Fig. 4� in order to extract the value of � �together with Y and
VC�. Experimental data �Fig. 7� is coherent with �=0.81 for
the concave configuration and �=1.2 for the convex configu-
ration �Fig. 8�. This means that the direction of the electro-
static stress T has only a small variation during the oscilla-

tion ���1� and this variation depends on the concavity of
the anode in front of the nanowire. The low dependence of
the eigenfrequencies on � for this range of values �Fig. 4�
and the rather close values of � measured for these extreme
configurations means that the use of �=1 in the previous
section was a good approximation. As well, the �	0.1
means that we will not observe a decrease in the frequency
of the first mode �n=0, see inset Fig. 4� and resolves the
problem of identifying the modes in FEM.

Young’s modulus can be determined from the measured
eigenfrequencies. Experiments usually lie in the low voltage
range, where Eq. �14� can be used. In the SEM, the measure-
ment of the zero voltage eigenfrequency is direct compared
to FEM where it has to be extrapolated from the linear
�2�VA

2� dependence �in FE, we always have VA�0 in order
to emit electrons�.

Our results are presented in Table II, showing a large
scatter in the measured values for the SiC Young’s modulus.
Those values are nevertheless compatible with results found
in the literature, differences being attributed to various allo-
tropic states of SiC and to different orientations of the eigen-
modes with respect to the crystalline planes.29–35 These
Young’s moduli confirm the high resolution TEM observa-
tions, which indicate that small and large size nanowires
have a better crystalline structure than the average size ones.

We have found that the dependence of the mode reso-
nances on VA for each nanowire fits more or less well the
simplest application of the theory presented above, and that
the data must be examined in detail in order to come to a full
understanding. For each nanowire, the ratios between the
zero voltage eigenfrequencies of different modes give us an
idea of the deviation of the nanowire from perfection and
hence in the error of the experimental Young’s modulus.
Comparison of the values in Table II to Fig. 6 shows a cor-
rect ratio for SiC�2� and SiC�6�, lower ratios for SiC�4� and
SiC�5�, and higher ratios for SiC�1�. SiC�3� was measured
only in its first mode.

SiC�2� was only studied in the FEM. The dependence of
the first two eigenfrequencies on VA is presented in Fig. 9.
We attribute the slight difference between the experimental
determination of the ratio of the frequencies of the first two
modes at zero voltage by extrapolation using Eq. �14� and its
theoretical prediction to small geometrical defects �for ex-
ample, small variations of the radius along the nanowire�.

FIG. 6. �Color online� Ratios of the second �bottom curve�, third
�middle curve�, and fourth �upper curve� mode eigenfrequencies to
the first mode eigenfrequency as a function of VA normalized to VC.
These curves are universal for prism shaped homogenous singly
clamped cantilevers satisfying boundary conditions �6�–�9� with �
=1. The values for zero voltage are 6.27, 17.55, and 34.39.

FIG. 7. �Color online� Experimental data on SiC�5� for concave
��� and convex ��� extraction anode configurations and fits to
theory �solid lines�. The VC value for the convex configuration is
inferior �and thus � is larger� to that of the concave one, making the
resonance more sensitive to VA. In the convex configuration, the
general formulas �4�, �5�, and �10� have to be used for interpolation
since VA	2VC. Interpolated values of � are close to 1.0 in both
cases �0.81, concave and 1.2, convex�, which means that the direc-
tion of the electrostatic stress is not much influenced by the shape of
the wall or by the position of the nanowire during the oscillation.

FIG. 8. SiC�5� in front of a concave �left� and convex �right�
wall. We placed the nanowire further from the concave wall to
compensate for the curvature radius which was bigger for the con-
vex wall.
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This small 3% difference yields a 6% difference in Young’s
modulus �see Table II�. SiC�6� was only studied in the SEM
configuration and yielded the correct ratio of the first two
eigenfrequencies ��0.5% difference with respect to the
theory� and Young’s modulus �see Table II� in the average
range of our nanowires and of the values found in literature.
SiC�4� was also only studied in the SEM configuration. It
showed ratios of first to second mode frequencies of 5.53
instead of the theoretical of 6.27 and first to third mode fre-
quencies of 14.91 instead of the theoretical of 17.55 �Fig. 6�.
We propose that this nanowire was not perfectly attached to
the tip and the glue coupling showed some elastic response.
Such a coupling has been modeled in a detailed way.36 We
present here a simpler model, with 1 additional degree of
freedom that can explain the observed behavior.

The glued part of the nanowire is much shorter than the
nanowire itself, which implies that the “no displacement”
boundary condition �6� is well respected even with a glue
having some elasticity. However, the tilt of the nanowire at
the tip contact �boundary condition �7�� is no longer negli-
gible and is to a first approximation the ratio between the
�very small� nanowire displacement in the glued part and the
�very small� length of this glued part. This displacement
gives rise to an elastic force �Fig. 3�c�� that must be canceled
by the elasticity inside the nanowire,

� �y0

�x
�

x=0
� �T

�y0

�x
− YI

�3y0

�x3 �
x=0

. �19�

We can rewrite Eq. �19� with a dimensionless constant �,

� �y0

�x
+ �L2�3y0

�x3 − �
2�y0

�x
�

x=0
= 0. �20�

Our measured eigenfrequencies for the first three modes of
SiC�4� are now very well described �better than 0.5%� with
the two free parameters, giving Y =534 GPa and �=0.0235.
The small value of � confirms that the elastic glue is a small
correction to the nanowire’s oscillation.

This shows that one must be very careful in order to ex-
tract accurate values of Young’s modulus from the eigenfre-
quencies. If we neglect the � correction for SiC�4�, Young’s
modulus as inferred from the first three eigenmodes would

TABLE II. Young’s moduli as extracted from the experimental
FE and SEM data. The two methods give very similar values �see
Fig. 1 below�. Frequencies correspond to the free �zero voltage�
eigenmodes. SiC�4�, SiC�5�, and SiC�6� were studied in SEM con-
figuration, SiC �2� and SiC�3� were studied in FEM configuration,
and SiC�1� was studied in both configurations.

Nano wire Mode
Frequency

�kHz�
Young modulus

�GPa�

SiC�1� 1 28.44 230

SiC�1� 2 213.47 330

SiC�1� 3 642.36 380

SiC�2� 1 22.36 268

SiC�2� 2 144.43 285

SiC�3� 1 11150 660

SiC�4� 1 7.76

534aSiC�4� 2 42.91

SiC�4� 3 115.73

SiC�5� 1 41.05
750a

SiC�5� 2 216.39

SiC�6� 1 318.95 429

SiC�6� 2 2007.0 432.5

aWith elastic contact correction �see text�.

FIG. 9. �Color online� �a� First and �b� second mode frequencies
as a function of applied voltage for SiC�2� measured in FEM. A
linear dependence of f2 versus VA

2 is observed, as predicted by Eq.
�14�. The free coefficient of the regression yields the zero voltage
eigenfrequency and thus Young’s modulus.

FIG. 10. �Color online� Square of the eigenfrequency of the first
mode as a function of VA ��� in the SEM. Fit with Eq. �14� ��� up
to the VA

2 term describes well our data with an asymmetry of 1.8 V.
Y and VC are extracted from the fit parameters.
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be respectively 471, 366, and 340 GPa. Observation of at
least two eigenmodes with a correct ratio for the eigenfre-
quencies or an � correction is necessary for a reliable result.

SiC�5� showed in the SEM configuration the same kind of
behavior, with a ratio of the first two eigenfrequencies of 5.3.
Application of the same model as for SiC�4� yielded a high
Young’s modulus �Y =750 GPa� and �=0.042. This matches
the highest value we have found in the literature for a bulk
single crystal of 748 GPa.33

The voltage dependence of the first eigenfrequency of
SiC�3� was only measured in FEM. Experimental data gives

a VC value of 313 V. Since our measurements were made in
the range of 260–320 V, we are still in the low voltage range
�Eq. �14��. The minimum measurable amplitude was around
5 nm for L=2.5 �m, making our FE imaging technique an
alternative to capacitive,38,39 magnetomotive,40,41 or
optical3,42,43 detection of small displacements.

We have also made comparative measurements of
Young’s modulus for SiC�1� in the SEM and FEM. A wide
range of positive and negative voltages were explored in the
SEM, as represented in Fig. 10. Although we have a qua-
dratic dependence of f2 in VA, as predicted by Eq. �14� for
the low voltage range, we observe a shift of the minimum by
1.8 V. We attribute this voltage to the difference of work
functions between the SiC and the tungsten of the excitation
anode, but further study must be made to precisely determine
this value.

We have good agreement between our two techniques for
Young’s modulus measurements �SEM and FEM�, as can be
seen in Fig. 11. Furthermore, no significant change in
Young’s modulus was found even after heating cycles to
1050 °C, even when we had a drop in the Q factor by a
factor of 30 �see below�.

For SiC�1�, the ratios of the superior mode eigenfrequen-
cies at zero voltage with respect to the first mode eigenfre-
quency are higher than predicted by Eq. �14� �Fig. 6�. This
difference is present in both SEM and extrapolated FE values
and is probably due to geometrical defects, more present in
SiC�1� than in SiC�6�, as we can see in Fig. 12. An elastic
glue cannot explain ratios higher than predicted, as it can for
the lower ratios of SiC�4� or SiC�5�. In principle, such geo-
metrical defects could also explain the behavior of SiC�4� or
SiC�5�, but the elastic glue model gives a very accurate de-
scription of the observed eigenfrequencies with only one ex-
tra parameter. This larger value of the eigenfrequencies ratios
gives different values for SiC Young’s modulus when they
are extracted from the different mode measurements, as it
can be seen in Fig. 11 or Table II. All those values are still
compatible with the literature.

Measurements of the mechanical Q factor are complicated
by the extreme sensitivity of our nanowires to external per-
turbation, which rapidly induces nonlinear mechanical re-

FIG. 11. �Color online� �a� f2�VA
2� curve for SiC�1� in the SEM

��� and FEM ��� for the first eigenmode. The SEM measurements
were made for both positive and negative voltages. The extracted
VC values are, respectively, 77.82 V �SEM� and 175.59 V �FEM�.
For this plot, the voltages of the FE data were normalized to have
the same VC as for the SEM configuration. With this condition, no
measurable difference can be found between the two curves, as it
can also be seen in graph �b�: Young’s modulus as extracted from
the first ���, second ���, and third ��� modes as a function of the
prior heating. Ambient temperature values �300 K� correspond to
the SEM measurements, the rest of the points were extracted from
FE data. No measurable difference can be seen between the two
configurations for a given eigenmode. The differences in Young’s
moduli extracted from the different modes is consistent with the
inferred ratio of the zero voltage eigenfrequencies and we attribute
them to geometrical defects.

FIG. 12. SEM image of SiC�1� �upper image� and SiC�6�
�lower�. SiC�1� shows variations of the radius, which cause depar-
ture from the singly clamped beam theory. The absence of defects
on SiC�6� gives good agreement between theory and experiment.
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sponses as the amplitude is increased. For reliable Q-factor
measurements, linear Lorentzian response is necessary, and
therefore we had to decrease our excitation to the minimum
detectable amplitudes.

We have studied for SiC�1� the dependence of the Q fac-
tor on the heat treatment prior to measurement in FEM. The
Q factor is measured by the response curve for a frequency
scan through the resonance. An example of such a scan is
given in Fig. 13 for SiC�3�. Values of the SiC�1� Q factor
after each heating cycle are given in Fig. 14. Damping is
diminished by more than a factor of 100 after a heating at
1280 K compared to no heating. Three mechanisms can be
proposed: removal of surface pollution, recrystallization of
internal defects, or hardening of the contact glue. A value of
the Q factor as high as 160 000 was achieved.4 We think that
heating at 1320 K changed the properties of SiC itself, since
the quality factor dropped by a factor of 30. Intensive heating
can significantly change the shape of the nanowire creating
dissipation zones, but these temperatures do not yet alter
Young’s modulus.

The SiC�4� Q factor was measured in the SEM without
prior heating, giving a value of about of 5000, in agreement
with the value for SiC�1� at the lowest heating in the FEM

�300 °C�. Measurements in the SEM were perturbed by the
interaction of the nanowire with the SEM’s beam when in
line mode.

Q-factor measurements in FEM were also made on SiC�2�
and SiC�3�. The values we found after heat treatment at
about 1000 K were, respectively, 36 000 for SiC�2� and 3500
for SiC�3�. Previous experimental studies show that the loga-
rithm of the Q factor linearly increases with the logarithm of
the resonator volume,5 as shown in Fig. 15. This supports the
argument that damping is mainly on the surface, because the
energy is stored in the volume and small objects have a big-
ger surface to volume ratio and thus lower Q factors. Figure
15 also shows that our bottom-up nanowires have greater Q
factors than top-down fabricated resonators of the same vol-
ume.

V. SUMMARY AND CONCLUSION

We have theoretically studied the mechanical resonances
of singly clamped rods subjected to strong electrical axial
pulling forces that are attainable only at the nanoscale and
that are of interest for NEMS. Simple expressions for the
dependence of the resonance frequencies on the applied volt-
age in the low stress and high stress limits were computed.
Validity ranges for those approximations were also pre-
sented. As well new boundary conditions were introduced in
the theory for nonaxial forces at the open end and for elas-
ticity in the contact fixation. These boundary conditions al-
low us to explain additional aspects of the resonance phe-
nomenon, for example, they explain the absence in
experiment of the predicted decrease in eigenfrequency of
the first mode by the simplest theory.

Corresponding experimental studies were made of the
resonances of different SiC nanowires in the FE and SEM

FIG. 13. �Color online� Response curve for SiC�3� in FEM and
Lorentzian interpolation giving a Q factor of 3500.

FIG. 14. �Color online� Quality factor at room temperature of
SiC�1� as a function of the heat cleaning temperature. Measure-
ments without any prior heating treatment were not possible be-
cause of the instability of the field emission.

FIG. 15. �Color online� Q factor of resonators as a function of
their volume in log-log plot �Ref. 5�, with recent results from �Ref.
3�. Experimental data “LaHaye’ 04” was corrected with the value
taken from the original paper �Ref. 38�. Our room temperature val-
ues, 160 000 for SiC�1�, 36 000 for SiC�2�, and 3500 for SiC�3�, are
on or above the straight line that best describes the dependence of
log Q as a function of log �volume�. Some measurements of other
authors used in this diagram were made at low temperature �includ-
ing LaHaye�, which increases the Q factor �Ref. 37�.

PERISANU et al. PHYSICAL REVIEW B 77, 165434 �2008�

165434-10



configurations and these measurements were analyzed with
the developed theory. The nanowires studied were shown to
mostly be in the low tension regime contrary to our previous
assumptions. The ��VA� curves gave excellent agreement be-
tween theory and experiment as well as between the two
experimental configurations of SEM and FEM.

The technique can be used in any voltage range if we
replace the simple dependence in Eq. �14� with the more
complicated solution of the Eqs. �4�, �5�, and �10�. Compari-
son to SEM measurements shows no measurable difference
between the two techniques �Fig. 11�. Influence of the
boundary conditions on the nanowire’s movement and more
specifically on the extracted Young’s modulus value were
discussed.

We have showed that in situ heat cleaning can multiply
the Q factor of a nanowire by 100, which allowed our
“bottom-up” fabricated SiC nanowires to reach the highest
measured Q factor range for a given volume. Excessive heat-
ing can strongly affect the Q factor of a SiC nanowire with-
out inducing a measurable difference in Young’s modulus,

indicating that changes occur in a rather small volume such
as the glue that attaches the nanowire to the tip or the nanow-
ire’s external atomic layers.

In conclusion, this theoretical structure now allows one to
use FEM detection of mechanical resonances, which have
many advantages, as an alternative technique to the SEM or
TEM for measuring Young’s modulus of individual nano-
wires and nanotubes. These measurements show that each
individual nanowire has it’s own Young’s modulus, Q factor,
and contact fixation even when they come from the same
batch and are nominally mounted by the same technique. As
well these parameters can be tuned over a wide range by
applying in-situ treatments.

ACKNOWLEDGMENTS

This research has been carried out within the Lyon Nano-
tube and Nanowire Working Group. M.C. thanks the Leba-
nese CNRS for financial support.

*pascal.vincent@lpmcn.univ-lyon1.fr
1 Z. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G.

Rinzler, J. Tang, S. J. Wind, P. M. Solomon, and P. Avouris,
Science 311, 1735 �2006�.

2 D. F. Mcguigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H.
Douglass, and H. W. Gutche, J. Low Temp. Phys. 30, 621
�1978�.

3 J. Yang, T. Ono, and M. Esashi, Appl. Phys. Lett. 77, 3860
�2000�.

4 S. Perisanu, P. Vincent, A. Ayari, M. Choueib, M. Bechelany, D.
Cornu, and S. T. Purcell, Appl. Phys. Lett. 90, 043113 �2007�.

5 K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101
�2005�.

6 V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T. A. Arias, and
P. L. McEuen, Nature �London� 431, 284 �2004�.

7 H. B. Peng, C. W. Chang, S. Aloni, T. D. Yuzvinsky, and A.
Zettl, Phys. Rev. Lett. 97, 087203 �2006�.

8 D. Garcia-Sanchez, A. San Paulo, M. J. Esplandiu, F. Perez-
Murano, L. Forró, A. Aguasca, and A. Bachtold, Phys. Rev. Lett.
99, 085501 �2007�.

9 B. Witkamp, M. Poot, and H. S. J. van der Zant, Nano Lett. 6,
12, 2904 �2006�.

10 S. Sapmaz, Ya. M. Blanter, L. Gurevich, and H. S. J. van der
Zant, Phys. Rev. B 67, 235414 �2003�.

11 H. Üstünel, D. Roundy, and T. A. Arias, Nano Lett. 5, 523
�2005�.

12 P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science
283, 1513 �1999�.

13 Z. L. Wang, R. P. Gao, P. Poncharal, W. A. de Heer, Z. R. Dai,
and Z. W. Pan, Mater. Sci. Eng., C 16, 3 �2001�.

14 M. F. Yu, G. J. Wagner, R. S. Ruoff, and M. J. Dyer, Phys. Rev.
B 66, 073406 �2002�.

15 S. Axelsson, E. E. B. Campbell, L. M. Jonsson, J. Kinaret, S. W.
Lee, Y. W. Park, and M. Sveningsson, New J. Phys. 7, 245
�2005�.

16 S. T. Purcell, P. Vincent, C. Journet, and V. T. Binh, Phys. Rev.
Lett. 89, 276103 �2002�.

17 S. Perisanu, P. Vincent, A. Ayari, M. Choueib, D. Guillot, M.
Bechelany, D. Cornu, P. Miele, and S. T. Purcell, Phys. Status
Solidi A 204, 1645 �2007�.

18 D. V. Scheible, C. Weiss, J. P. Kotthaus, and R. H. Blick, Phys.
Rev. Lett. 93, 186801 �2004�.

19 K. Jensen, J. Weldon, H. Garcia, and A. Zettl, Nano Lett. 7,
3508 �2007�.

20 A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire,
M. Bechelany, D. Cornu, and S. T. Purcell, Nano Lett. 7, 225
�2007�.

21 M. Bechelany, D. Cornu, and P. Miele, Patentn Application No.
WO 2006/067308 �pending�.

22 M. Bechelany, D. Cornu, F. Chassagneux, S. Bernard, and P.
Miele, J. Optoelectron. Adv. Mater. 8, 638 �2006�.

23 S. T. Purcell, P. Vincent, C. Journet, and V. Thien Binh, Phys.
Rev. Lett. 88, 105502 �2002�.

24 See, for example, F. S. Tse, I. E. Morse, and R. T. Hinkle, Me-
chanical Vibrations �Allyn and Bacon, 1978�, Chap. 7.

25 M. P. Païadoussis and G. X. Li, J. Fluids Struct. 7, 137 �1993�.
26 V. Sazonova, Ph.D. thesis, Cornell University, 2006.
27 See, for example, Frank S. Crawford, Jr., Berkeley Physics

Course: Waves �McGraw-Hill, New York, 1968�, p. 4.
28 unpublished data on carbon nanotube from our group.
29 http://www.knovel.com �search for SiC, go to Physical Proper-

ties of Semiconductors, then Young’s Modulus, Poisson Ration
and Similar�.

30 http://www.memsnet.org/material/siliconcarbidesic
31 http://www.allmeasures.com/Formulae/static/materials/159/

youngs_modulus.htm
32 http://www.ioffe.ru/SVA/NSM//Semicond/SiC/mechanic.html
33 Gmelins Handbuch der Anorganischen Chemie: Sillicium, 8th

ed. �Chemie GmbH, Weinheim, 1959�, Pt. B.
34 E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971

MECHANICAL PROPERTIES OF SiC NANOWIRES… PHYSICAL REVIEW B 77, 165434 �2008�

165434-11



�1997�.
35 G. L. Harris, in Properties of Silicon Carbide, EMIS Data-

reviews Series No. 13, edited by G. L. Harris �Institution of
Engineering and Technology, London, 1995�, p. 8.

36 X. Chen, S. Zhang, G. J. Wagner, W. Ding, and R. S. Ruoff, J.
Appl. Phys. 95, 4823 �2004�.

37 X. L. Feng, C. A. Zorman, M. Mehregany, and M. L. Roukes,
Solid-State Sensors, Actuators, and Microsystems Workshop,
Hilton Head Island, 4–8 June 2006 �unpublished�.

38 M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science
304, 74 �2004�.

39 K. Schwab, Appl. Phys. Lett. 80, 1276 �2002�.
40 A. B. Hutchinson, P. A. Truitt, K. C. Schwab, L. Sekaric, J. M.

Parpia, H. G. Craighead, and J. E. Butler, Appl. Phys. Lett. 84,
972 �2004�.

41 A. N. Cleland and M. L. Roukes, Appl. Phys. Lett. 69, 2653
�1996�.

42 D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M.
Parpia, Appl. Phys. Lett. 75, 920 �1999�.

43 G. M. Kim, S. Kawai, M. Nagashio, H. Kawakatsu, and J. Brug-
ger, J. Vac. Sci. Technol. B 22, 1658 �2004�.

PERISANU et al. PHYSICAL REVIEW B 77, 165434 �2008�

165434-12


