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We present a theoretical study on magnetic field driven spin transitions of electrons in coupled lateral
quantum dot molecules. A detailed study of spin phases of artificial molecules composed of two laterally
coupled quantum dots with N=8 electrons are presented as a function of magnetic field, Zeeman energy, and
detuning by using a real space Hartree–Fock configuration interaction technique. A microscopic picture of a
quantum Hall ferromagnet corresponding to zero and full spin polarization at filling factors �=2 and �=1, and
ferrimagnetic phases, resulting from coupling of the two dots, is presented.
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I. INTRODUCTION

The application of a spin of electrons in quantum dots for
the generation of electron entanglement and quantum infor-
mation processing in solid state devices is of current
experimental1–11 and theoretical interest.14–20 Controlling the
spin of electrons in single quantum dots by tuning the
external magnetic field, the confining potential, the number
of electrons, and the Zeeman coupling has been
demonstrated.2–7 It was shown that in a strong magnetic
field, electrons form a spin singlet quantum Hall droplet at a
filling factor �=2. Increasing the magnetic field leads to the
spin-flip transitions until the spin polarized filling factor �
=1 droplet is reached.2 Spin flips beyond the first spin flip
are associated with correlated states such as spin biexcitons,
which are identified and observed experimentally.5 Quantum
dot molecules offer an additional possibility of coupling and
controlling spin transitions by tuning the tunneling barrier,
which controls the interdot coupling.14,18–21 The recently
demonstrated time dependent control of the tunneling barrier
height and confining potential,6 and the quantum state of the
electron spin by applying an oscillating magnetic field �Rabi
oscillations�,7 resulted in a coherent manipulation of two
electron spins in coupled quantum dot molecules. Recent ex-
periments by Pioro-Ladriere et al. in Ref. 3 suggested that in
a strong magnetic field, electrons are expected to form a
quantum Hall droplet in each quantum dot. The edge states
of each droplet can be coupled in a controlled way by using
barrier electrodes and, at filling factor �=2, effectively re-
duce the many-electron double dot system to a two-level
molecule.3 When populated with one electron each, one ex-
pects to have singlet-triplet transitions of two valence elec-
trons in the background of core electrons of the spin singlet
�=2 droplets. With increasing magnetic field, transitions to
higher spin polarized states is expected, where coupled quan-
tum dots resemble artificial magnetic molecules.

In this paper, we investigate the effect of the interdot tun-
neling and electron-electron interactions on the evolution of
the total spin of electrons in a quantum dot molecule as a
function of electron numbers and magnetic field. We study
the many-body effects in the spin-flip transitions by system-
atically incorporating the interdot and intradot electron-
electron Coulomb interactions using real space Hartree–Fock

configuration interaction �HF-CI� technique. We find quan-
tum Hall droplets with zero and full polarization, which are
identified as �=2 and �=1 quantum Hall droplets14 in
analogy to single quantum dots and quantum Hall
ferromagnetism.22 Between these two states, we find a series
of continuous transitions among partially spin polarized
phases. These partially polarized phases correspond to spin
flips. A simultaneous spin flip in each isolated dot must lead
to an even number of spin flips in a double dot. Recently, we
have found partially polarized phases that correspond to an
odd number of spin flips. In Ref. 23, we have identified these
correlated states as quantum Hall ferrimagnets.

A coherent superposition of two single-particle �SP� lev-
els in a double well potential in the form of symmetrical and
antisymmetrical states is a textbook example in quantum me-
chanics, which demonstrates a coherent charge oscillation
between localized states of electron on two protons in H2

+

molecules and a coherent oscillation between left handed and
right handed amino acids.24 Recent works based on this ef-
fect include a coherent control of Rabi oscillations of elec-
tron spin in quantum dots7 and a macroscopic quantum reso-
nance in the Cooper pair box problem in the mesoscopic
superconducting grains.25 The quantum Hall ferrimagnetic
states or spin unbalanced phases26,27 are also a direct mani-
festation of coherent quantum mechanical tunneling and in-
terdot electronic correlations. These states can be described
in terms of linear combinations of spin excitons localized in
left and right dots, which in turn lead to coherent spin oscil-
lations, e.g., spin counterpart of coherent charge oscillations
in H2

+ molecules.
The paper is organized as follows: in Sec. II, we review

the Hamiltonian of electrons confined in the lateral gated
quantum dots. In Sec. III, the computational methods of
single-particle configuration interaction �SP-CI� and unre-
stricted Hartree–Fock configuration interaction �URHF-CI�
are summarized. To differentiate the spin transitions of quan-
tum dot molecules and two isolated dots with zero interdot
interaction, we briefly present the spin phase diagram of
single dots in Sec. IV. The microscopic picture of spin exci-
tations in coupled quantum dots are discussed in Secs. V and
VI. The interpretation of spin excitations in terms of
electron-hole excitations allows us to attribute the excitations
with total spin S=1 and S=2 as spin exciton and
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biexciton.28,29 Pairing of excitons and the formation of biex-
citons due to strong interdot interaction is discussed. To elu-
cidate the quantum Hall ferrimagnetic states, the real space
representation of excitons is introduced. The paper is sum-
marized in Sec. VII.

II. HAMILTONIAN

We describe electrons confined in quasi-two-dimensional
quantum dots in a uniform perpendicular magnetic field by
the effective mass Hamiltonian

H = �
i=1

N

�Ti + EiZ� +
e2

2�
�
i�j

1

�r�i − r� j�
, �1�

where

T =
1

2m*
��

i
�� +

e

c
A�r���2

+ V�x,y� �2�

is the single electron Hamiltonian in a magnetic field. Here,

�r��= �x ,y� describes electron position, A�r��= 1
2B� �r� is the

vector potential, B is the external magnetic field, and V�r�� is
the quantum dot confining potential. m* is the conduction-
electron effective mass, e is the electron charge, and � is the
host semiconductor dielectric constant ��=12.8 in GaAs�.
EiZ= 1

2g�B�izB is the Zeeman spin splitting, g is the host
semiconductor g factor �g=−0.44 in GaAs�, �B is the Bohr
magneton, and � is the Pauli matrix. In what follows, we
present the numerical results in effective atomic unit �in
GaAs effective Bohr radii a

0
*=9.79 nm and effective Ryd-

berg Ry*=5.93 meV�.
The single-particle eigenvalues ��i� and eigenvectors ��i�

are calculated by discretizing T in real space and diagonaliz-
ing the resulting matrix using conjugate gradient
algorithms.20 The details of this calculation can be found in
Ref. 33.

III. MANY-BODY SPECTRUM

To calculate the spectrum of interacting electrons, de-
scribed by a Hamiltonian H in Eq. �1�, we employ either the
real space single-particle or unrestricted Hartree–Fock
�URHF� states in configuration interaction techniques.33 In
the first SP-CI approach, single-particle levels are used to
construct many-electron configurations, which are the basis
of a configuration interaction �CI� Hamiltonian. By denoting
the creation �annihilation� operators for electrons in a nonin-
teracting SP state ���� by c��

† �c���, the Hamiltonian of an
interacting electron system in second quantization can be
written as

H = �
�

�
�

��c��
† c��

+
1

2 �
�	
�

�
���

V��,	��,
��,��c��
† c	��

† c
��c��, �3�

where the first term is the single-particle Hamiltonian, and

V��,	��,
��,��=�dr��dr�� �
��
* �r���

	��
* �r�� � e2

��r�−r�� �
�
���r�

� �����r�� is

the two-body Coulomb matrix element. In the configuration
interaction method, the Hamiltonian of an interacting system
is calculated on the basis of a finite number of many-electron
configurations. The total number of configurations �or Slater
determinants participating in CI calculation� is determined
by

NC = 	 Ns!

N↑!�Ns − N↑�!

	 Ns!

N↓!�Ns − N↓�!

 . �4�

Here, Ns is the number of single-particle levels, and N↑ and
N↓ are the number of spin up and spin down electrons. This
Hamiltonian is either exactly diagonalized for small systems
or low energy eigenvalues, and eigenstates are approximately
extracted for a very large number of configurations.33 With
increasing number of single-particle levels Ns, the number of
configurations NC grows very fast, yet a large number is
needed to accurately account for the direct and exchange
interaction and electronic correlations. To improve the con-
vergence of CI method, we incorporate direct and exchange
contributions into the basis states by replacing SP states with
states obtained by the URHF-CI. This implies expressing the
new creation �annihilation� operators for URHF quasiparti-
cles by ai�

† �ai��, with the index i representing the URHF
orbit quantum numbers. The URHF basis can be expanded in
a linear combination of SP states. In terms of SP creation
�annihilation� operators, we write

ai�
† = �

�=1

Nl

���
�i� c��

† . �5�

The transformation coefficients, ���
�i� , satisfy the self-

consistent Pople–Nesbet equations20,30,31,33 as follows:

�

=1

Nl ����
� + �
�,	=1

Nl �V��	
�
��

�
j=1

N��

�
���
*�j�

�	��
�j�

− V��
	�
��

�
j=1

N��

�
���
*�j�

�	��
�j� ��,�����
�

�i� = �i�
HF���

�i� , �6�

where �i�
HF are the URHF eigenenergies. The N-lowest energy

URHF levels form a Slater determinant occupied by
Hartree–Fock �HF� quasielectrons, which corresponding to
the HF ground state. The rest of the orbitals with higher
energies are outside of the HF Slater determinant �unoccu-
pied HF levels�, contribute to electronic correlations, and can
be used for CI calculation. The many-body Hamiltonian of
the interacting system in the URHF basis can finally be writ-
ten as

H = �
�

�
ij


i��T�j��ai�
† aj�

+
1

2�
ijkl

�
�

�
��

Ui�,j��,k��,l�ai�
† aj��

† ak��al�, �7�

where Ui�,j��,k��,l� are the Coulomb matrix elements in the
URHF basis. Here,
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i��T�j�� = �i�
HF�ij − 
i��UH − UX�j�� , �8�

where UH and UX are the Hartree and exchange operators


i��UH�j�� = �
�	��=1

Nl

V��
	�
��
*�i�

�
�
�j��

��
�
k=1

N��

�
���
*�k�

�	��
�k� ,


i��UX�j�� = �
�	��=1

Nl

V��	
�
��
*�i�

�	�
�j� �

k=1

N�

�
��
*�k�

�
�
�k� .

The resulting CI Hamiltonian matrix constructed on the basis
of URHF configurations is either exactly diagonalized for
small systems or low energy eigenvalues and eigenstates are
approximately extracted for a very large number of
configurations.33 The details of the calculation and the con-
vergence of the results as a function of the number of basis
and configurations, and comparison between SP-CI and
URHF-CI methods can be found in Ref. 33.

IV. SPIN TRANSITIONS IN SINGLE DOTS

We describe a single dot by an isotropic Gaussian confin-
ing potential V�x ,y�=V0e−�x2+y2�/
2

. The single-particle
eigenenergies of such a quantum dot as a function of cyclo-
tron frequency �c=eB /m* are shown in Fig. 1.

States with spin up �down� are shown by bold �dashed�
lines. For illustration, a very large g factor is introduced. We
note in Fig. 1 that with an increasing magnetic field the en-
ergy of spin up �bold� levels decrease. These levels, and their
spin down partners, correspond to the levels of the lowest
Landau level �LLL�. We now populate the lowest energy
states with a number of electrons. From a previous work,5

the minimum number of electrons that exhibit all nontrivial
phenomena in the spin evolution of a single quantum dot is
N=4. The N=4 configurations which minimize the kinetic
energy are shown in Fig. 1. Due to the crossing of spin up
and down levels, there are three different configurations: Sz

=0, Sz=1, and Sz=2. These configurations illustrate increas-
ing spin polarization of the electronic droplet with increasing
magnetic field. With very small Zeeman energy, the increas-
ing spin polarization in quantum dots is driven by electron-
electron interactions. Hence, we turn off the Zeeman cou-
pling and turn on electron-electron interactions.

We start with the lowest energy configuration built with
SP LLL states, the Sz=0 spin singlet �=2 configuration
��=2�. The spin excitations with S=1 and S=2 are con-
structed by removing electrons from occupied states and put-
ting into unoccupied states, and can be described in terms of
single exciton �X� and biexciton �XX� configurations, as
shown in Fig. 2. By neglecting the mixing between configu-
rations, we calculate the energy of each spin configuration.
The result of this calculation is shown in Fig. 2. We chose
the energy of the S=0,�=2 state �E�=2� as the reference
energy. As shown in Fig. 2, with increasing magnetic field
even without Zeeman energy, both the first and second spin-
flip transitions occur at �c=1.6 and �c=2.75 due to electron-
electron interactions.

The effect of correlations on the evolution of spin of elec-
trons in a single quantum dot obtained by the URHF-CI
method is shown in Fig. 3. Here, the spin unpolarized
�Sz=0� URHF states have been constructed out of Nl=30 SP
states. Ns=8 HF levels have been taken to construct a CI
Hamiltonian, which results in NC=784 configurations. At
zero magnetic field, we find S=1 triplet due to Hund’s rule
for electrons in a half-filled p shell. With increasing magnetic
field, the single-particle energy gap opens up, which leads to
a suppression of the S=1 triplet state and the formation of
the �=2 �S=0� singlet state. The first spin-flip S=1 state
appears at around �=3, followed by the second spin-flip spin
polarized S=2 state at �=4.5. The flipping of the second
spin is interrupted by a low-spin S=0 strongly correlated
state. This state was previously identified with the formation
of a spin singlet biexciton.5 The first and second spin-flip
states can be obtained for the noninteracting electrons and in
Hartree–Fock approximation, while the formation of a spin
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FIG. 1. �Color online� Single-particle spectrum as a function of
cyclotron frequency �c for a Gaussian single dot with strength V0

=−10 Ry*, and 
=2.5a
0
* in the presence of Zeeman splitting. Ar-

rows represent spin of electrons. For illustration purposes, a very
high Zeeman coupling g=−9 is used.
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FIG. 2. �Color online� The energy of spin configurations shown
in the boxes, ��=2�, �X�, and �XX� with total spins S=0, S=1, and
S=2, using LLL orbitals, and EZ=0. E�=2 �S=0� is the reference of
energy. The arrows surrounded by circles represent the holes.
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singlet biexciton is a result of electronic correlations in a
quantum dot.

V. SPIN TRANSITIONS IN QUANTUM DOT MOLECULES

We now turn to study the spin transitions of laterally
coupled quantum dots. We describe the molecule by electron
�NL ,NR� and ground state spin numbers �SL ,SR� of isolated
left �L� and right �R� dots. The spin phase diagram turns out
to depend on electron numbers in each dot. Here, we will
focus on molecules built out of identical dots with NL=NR.
For a given number of electrons, the magnetic field will be
used to tune their individual spin SL=SR. The goal will be to
determine the total spin of the molecular system. The mo-
lecular coupling will be controlled by the height of the tun-
neling barrier. To illustrate the physics, we will discuss in
detail the quantum dot molecule �4, 4� with four electrons
each and contrast its properties with a single N=4 quantum
dot discussed in a previous section.

A. One-electron spectrum of a quantum dot molecule

We parametrize quantum dot molecule potential in
terms of a sum of three Gaussians V�x ,y�
= VL exp�− �x+a�2 + y2


2 � + VR exp�− �x−a�2+y2


2 �+Vp exp�− x2


Px
2 − y2


Py
2 �.

Here, VL and VR describe the depths of the left and right
quantum dot minima located at x=−a, y=0 and x= +a, y
=0, and Vp is the central plunger gate potential the controls
the tunneling barrier. The confining potential is parametrized
as VL=VR=−10, 
=2.5, a=2, 
Px=0.3, and 
Py =2.5 in
effective atomic units. The single-particle eigenvalues and
eigenfunctions are numerically calculated by a discretization
of the Schrödinger equation with the quantum dot molecule
potential. The parameters of the confining potential consid-
ered in this work are chosen to represent weakly coupled
quantum dots. At zero magnetic field, the SP levels of

the electrons exhibit well separated s, p, and d electronic
shells and, at high magnetic field, they form molecular shells
of closely spaced pairs of bonding-antibonding orbitals. The
half-filled molecular shells correspond to electron numbers
�NL=2k−1,NR=2k−1� and filled shells correspond to
�NL=2k ,NR=2k� configurations �k is integer�. The resulting
single-particle spectrum as a function of magnetic field has
been presented recently in Fig. 1 of Ref. 23. To understand
and visualize the spectrum in a high magnetic field, we
expand the confining potential in the vicinity of each
minimum. This gives a parabolic potential V�r�=m*�0

2r2 /2
with the strength �0=2��V0 � /
2. The low energy spectrum
of each dot corresponds to two harmonic oscillators
with eigenenergies �nm=�+�n+1 /2�+�−�m+1 /2�. Here,
��=��0

2+�c
2 /4��c /2, �c is the cyclotron energy, and n,

m=0,1 ,2 , . . .. With increasing magnetic field, the �− de-
creases to zero, while �+ approaches the cyclotron energy
�c, and the states �m ,n� evolve into the nth Landau level. In
a high magnetic field, the corresponding wave functions ad-
mit a description in terms of localized LLL orbitals.20 In this
limit, linear combinations of the LLL orbitals m from left
and right dots form molecular shells of closely spaced
symmetric-antisymmetric pairs with eigenenergies approxi-
mately expressed as

�m�� = �−�m +
1

2
� − �


m

2
−

1

2
�
�c. �9�

Here, EZ=
�c is the Zeeman energy, �= +1�−1� corre-
sponds to spin ↑ �↓�, 
=m*g, and � is the pseudospin index:
the symmetric �antisymmetric� orbitals are labeled by �=
+1�−1�, which is the parity of the molecular orbitals. 
m is
the symmetric-antisymmetric gap. The Zeeman coupling in-
duces spin splitting with increasing magnetic field. This has
been illustrated in Fig. 1 of Ref. 23. We now populate the
quantum dot molecule with N=8 electrons. This is an ex-
ample of electronic configurations corresponding to filled
molecular shells. Figure 1 of Ref. 23 shows the evolution of
the lowest energy states of noninteracting electrons, with the
corresponding total spin S states separated by vertical lines.
We find S=0, 2, and 4 phases with even S, which correspond
to simultaneous spin flips in each isolated dot.

However, we also find odd S phases. The first odd spin
state with S=1 occurs between magnetic fields correspond-
ing to �

c1
* �3.25 and �

c2
* �3.9, where �m=2,�=↑,�=+1

=�m=1,�=↓,�=−1 and �m=2,�=↑,�=−1=�m=1,�=↓,�=+1. The odd spin
flip is related to the splitting of energy levels due to tunnel-
ing. By using single-particle eigenenergies given by Eq. �9�,
we find the first spin flip at the value of the magnetic field B1
as follows:


�c�1� = �−�1� −

2�1� + 
1�1�

2
, �10�

where the Zeeman energy is equal to the single dot level
splitting minus the average symmetric-antisymmetric gap for
the two levels involved. The second spin flip takes place at
�c�2� such that

0 1 2 3 4 5
ω

c
[Ry*]
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3

4
S

X ν=2 X XX XX

S=1 S=0 S=1 S=0 S=2

FIG. 3. �Color online� The spin evolution of the ground state of
a single quantum dot as a function of magnetic field by using the
URHF-CI method with Ns=8 HF levels, which correspond to NC

=784 configurations.
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�c�2� = �−�2� +

2�2� + 
1�2�

2
. �11�

Hence, the difference in the magnetic fields corresponding to
first and second spin flips is a direct measure of the tunneling
splitting as follows:


„�c�2� − �c�1�… =

2�2� + 
1�2�

2
+


2�1� + 
1�1�
2

.

�12�

From the spectrum of Fig. 1 of Ref. 23, we observe that the
states with odd spins S=1 and S=3 are stable within a nar-
row range of magnetic fields due to spin-flip transitions
among the electrons that occupy the levels with energy sepa-
ration proportional to the interdot tunneling amplitude. This
is in contrast to the first spin-flip transition in single dots
�compare with Fig. 1�, which is stable in a wide range of
magnetic fields. For this reason, the existence of odd spin
states in the spin phase diagram of quantum dot molecules
can be interpreted as the measure of interdot interaction.

B. Many-electron quantum dot molecule spectrum

In this section, we present an analysis of spin transitions
driven by electron-electron interaction. We focus on the tun-
nel coupled lowest Landau level orbitals m. By denoting the
creation �annihilation� operators for an electron in a nonin-
teracting SP state �m��� by cm��

† �cm��� �with � as spin label�,
the Hamiltonian of an interacting system �Eq. �1�� can be
written as

H = �
m�

�
�

�m��cm��
† cm��

+
1

2 �
�m,��

�
���


m1�1�,m2�2���V�m3�3��,m4�4��

�cm1�1�
† cm2�2��

† cm3�3��cm4�4�. �13�

The single-particle states of coupled quantum dot molecules
in a magnetic field are labeled by the orbital quantum num-
bers m and the pseudospin index �. The first term in Eq. �13�
is the single-particle Hamiltonian, and V�	�� is the two-body
Coulomb matrix element. Here, �� ,	 ,� ,�� represent the
states with quantum numbers �m ,� ,��. We now turn to the
construction of the relevant configurations.

C. S=0, �=2 state

The �=2 state of a quantum dot molecule with N elec-
trons and total spin S=0, shown in Fig. 4, is the product of
electron creation operators

�� = 2� = �
m=0

N/4−1

�
�=1,2

�
�=↑,↓

cms�
† �0� . �14�

The energy associated with this state

E�=2 = �
m=0

N/4−1

�
�=�1

�
�

��m�� + ��m,�,��� �15�

can be expressed in terms of self-energy ��m ,� ,�� as fol-
lows:

��m,�,�� = �
m�=0

N/4−1

�
��=�1

�2
m�,m����V�m���,m��

− 
m�,m����V�m�,m����� . �16�

D. S=1 spin exciton

The S=1 spin-flip excitation is constructed by removing
an electron from an occupied �=2 state and putting into an
unoccupied state as follows:

�Xj→i� = ci
†cj�� = 2� , �17�

where j��m ,� , ↓ � and i��m� ,�� , ↑ �. By denoting quasi-
particle energy levels �electrons dressed by interaction� by
�i=�i+��i�, the energy of one exciton is as follows:


EXj→i
= �i − � j − 
i, j�V�j,i� , �18�

where 
EXj→i
=EXj→i

−E�=2 is the energy of an exciton rela-
tive to the �=2 state energy. The last term in Eq. �18� is the
electron-hole Coulomb attraction. The lowest energy states
of the single exciton, which correspond to the first spin-flip
state, are depicted in Fig. 4. We classify the single excitons
based on their parity with respect to the parity of the �=2
state. A pair of states �XSS ,XAA� describes the transitions be-
tween pairs of levels with the same parity and so parity is
conserved by these transitions. In contrast, spin-flip transi-
tions represented by �XSA ,XAS� do not conserve parity as they
describe transitions between pairs of levels with opposite
parities. We identify �XSS ,XAA� and �XSA ,XAS� by their parity
quantum numbers �= +1 and �=−1, respectively. It is im-
portant to note that Coulomb interactions do not mix exci-
tons with different parities and the CI Hamiltonian con-

ν=2 X
AA

X
SS X

AS
X

SA XX

∆1

∆2

FIG. 4. �Color online� The basis of spin configurations in high
magnetic fields. The first spin transition states S=1 identify with
two independent sets: �XSS ,XAA� and �XSA ,XAS�. In the former, the
electron-hole transitions occur between the states with the same
symmetry and, hence, they do not mix with the latter, which exhib-
its the process of electron-hole excitations between states with op-
posite parities.
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structed on the basis of spin excitons is block diagonal.
These pairs of independent excitons are shown inside the
boxes in Fig. 4.

In real space, single excitons can be expressed in terms of
a linear combination of excitons localized in each dot. This
basis is shown in Fig. 5. In each isolated dot, at a critical
field, a transition from the S=0 singlet to the S=1 triplet
state takes place. This configuration, which corresponds to
XRR and XLL in Fig. 5, is equivalent to a localized electron-
hole excitation in one dot in the presence of a background of
electrons in the other dot. Because of the geometrical sym-
metry associated with the electron-hole excitation, the
ground state of the system without external bias and interdot
tunneling has double degeneracy: the state with �SL=0,SR
=1� has exactly the same energy as the state �SL=1,SR=0�.
The many-body wave function of such a molecular state can
be expressed as a linear combination of degenerate states
�SL=0,SR=1� and �SL=1,SR=0�. We identify these pairs of
molecular states with quantum Hall ferrimagnets. For a range
of magnetic field, these two states are separated from another
pair of single excitations XLR and XRL with �SL=1 /2,SR
=1 /2� by an energy gap due to Coulomb interactions. In
general, in the case of filled shells, molecular states with odd
total spin S correspond to quantum Hall ferrimagnets. Our
analysis of spin transitions in real space is presented in
Sec. VI.

E. S=2 spin biexciton

With increasing magnetic fields, a higher polarized state
with S=2 �SL=1,SR=1�, which is equivalent to a spin biex-
citon state, appears. A biexciton is constructed by removing a
pair of electrons from occupied states and putting them into
unoccupied states �see Fig. 4� as follows:

�XXj→i,k→l� = ci
†cl

†cjck�� = 2� . �19�

The energy of a biexciton can be decomposed into the energy
of two single excitons plus their interaction,


EXXj→i,k→l
= 
EXj→i

+ 
EXk→l
+ �V , �20�

where 
EXj→i
has been defined in Eq. �18�. �V is the binding

energy between two excitons, which accounts for the
electron-electron, electron-hole, and hole-hole interactions,
as follows:

�V = 
l,i�V�i,l� − 
l,i�V�l,i� − 
l, j�V�j,l� − 
k,i�V�i,k�

+ 
j,k�V�k, j� − 
j,k�V�j,k� . �21�

F. First versus second spin flip in a quantum dot
molecule

Unlike in a single quantum dot, the first spin-flip state S
=1 is not an eigenstate of the coupled quantum dot Hamil-
tonian. There are two possible spin excitons for a given par-
ity and they are coupled by Coulomb interactions. We use
two distinct single exciton bases �XSS ,XAA� and �XSA ,XAS�,
labeled by parity �= +1 and �=−1, to construct the two 2
�2 Hamiltonians. We denote by 
EXSS+XAA

, 
EXSA+XAS
the

lowest eigenenergies of these Hamiltonians.
Figure 6�a� shows the numerically calculated energies of

odd parity spin excitons as a function of magnetic field. The
energy 
EXAS

of spin exciton XAS is positive for magnetic
fields shown, but the energy 
EXSA

of spin exciton XSA be-
comes negative at �c=3.8, i.e., the XSA spin-flip state be-
comes the lower energy state than the �=2, S=0 state. How-
ever, in stark contrast to a single quantum dot �Fig. 2�, we
find that the second spin-flip state XX becomes the ground
state at a lower magnetic field �c=2.1. Hence, unlike in a
single quantum dot, we find a transition from a spin singlet
S=0 state directly to a S=2 second spin-flip state. This is a
transition corresponding to even total spin numbers, as if the
two dots were simultaneously flipping their spins. However,
correlations or mixing of the two spin excitons XAS and XSA
lower the energy of the spin exciton. The energy 
EXSA+XAS
of the correlated single spin state is significantly lower and is
equal to both the energy 
EXX of the second spin-flip biex-
citon and of the �=2, S=0 state at �c=2.1. At this value of
the magnetic field, the energy of the biexciton and of the
exciton are almost identical and, we might expect that for
larger number of configurations, correlations will stabilize
the single spin-flip exciton even further. The effect of corre-
lations on the even parity excitons XAA and XSS is shown in
Fig. 6�b�. We see that a mixing of the two even parity exci-
tons lowers the energy 
EXSS+XAA

of the correlated single
spin state. This energy is equal to both the energy 
EXX of
the second spin-flip biexciton and of the �=2,S=0 state at
�c=2.1. By a comparison with Fig. 6�a�, we see that the
value of �c=2.1 also corresponds to the change in parity of
the single spin exciton S=1 state.

As illustrated in Fig. 6, with a mixing of single exciton
configurations, the energy of a quantum dot molecule exhib-
its a fourfold degeneracy at �

c1
* , where S=0 and S=2 and

two different parity S=1 states become the lowest energy
states. The S=1 states show stability in a narrow range of
magnetic field, within the accuracy of our numerical results.
With a further increase of magnetic field, single excitons

X
RR

X
LL

X
RL

X
LR

FIG. 5. �Color online� The lowest energy excitons in real
space �XRR�= �X�1,R,↓�→�2,R,↑��, �XLL�= �X�1,L,↓�→�2,L,↑��, �XRL�
= �X�1,R,↓�→�2,L,↑��, and �XLR�= �X�1,L,↓�→�2,R,↑��. The magnetic order-
ing of these states can be described by means of ferrimagnetic cou-
pling �SL=0,SR=1� for XRR and �SL=1,SR=0� for XLL, and ferro-
magnetic coupling �SL=1 /2,SR=1 /2� for XRL and XLR.
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condense into pairs of excitons forming biexcitons. The ex-
istence of single, odd, spin excitons is hence a signature of
electronic correlations. These states do not exist at the
Hartree–Fock level.

To support the assertion that correlations are responsible
for the existence of odd spin excitons, we employ the
URHF-CI calculation. From the solution of the Pople–
Nesbet equations, we obtain HF eigenenergies, shown in Fig.
7�a�, for N=8 electrons with Sz=0, as a function of the mag-
netic field. The HF wave functions are used as a basis in the
HF-CI calculation of the ground state. We employ Ns=8 HF
basis states �equivalent to NC=4900 configurations� to calcu-
late the total spin of electrons in a quantum dot molecule as
a function of the magnetic field. From this calculation, we
find that the S=0, S=1, and S=2 states are almost degenerate
at �

c1
* =3.1. The prediction of URHF-CI is in qualitative

agreement with an effective SP-CI model, which is presented
above. The direct, exchange, and correlation energies calcu-
lated by URHF-CI shift the transition point to higher mag-
netic fields.

With increasing magnetic field, we find that the gap be-
tween different total spin states tends to vanish. This gapless
phase is seen in Figs. �7� and �8� in the vicinity of �c=4.
This phase is followed by the S=2, S=3, and S=4 states.
The latter state corresponds to a fully spin polarized �=1
droplet.

Let us now summarize the similarities and differences in
the evolution of the total spin of two isolated dots and a
quantum dot molecule. Figure 8�a� shows the evolution of
total spin with increasing magnetic field for two noninteract-
ing N=4 quantum dots and for a N=8 quantum dot mol-
ecule. Figure 8�b� shows the energy gap of the molecule as a
function of magnetic field. The noninteracting quantum dot
spin evolution is obtained by adding the results from two
isolated dots, with each dot evolving with the magnetic field
according to Fig. 3. We find that the effect of interdot inter-
action is to renormalize the magnetic fields at which spin
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FIG. 6. �Color online� �a� The energies of two single spin exci-
tons XSA and XAS with odd parity, the energy of the odd parity
correlated exciton XSA+AS, and the energy of the spin biexciton S
=2 state as a function of magnetic field. All energies are measured
from the energy of the �=2, S=0 state. �b� The energies of two
single spin excitons XSS and XAA with even parity, the energy of the
even parity correlated exciton XSS+AA, and the energy of the spin
biexciton S=2 state as a function of magnetic field. All energies are
measured from the energy of the �=2, S=0 state.
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FIG. 7. �Color online� �a� URHF energies vs cyclotron energy
for N=8 electrons with Sz=0. �b� Evolution of lowest energies for
S=0, 1, and 2 states calculated by the URHF-CI method. The en-
ergies are measured from the energy of the S=0 state.
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transitions take place and, more importantly, to lead to the
appearance of odd spin states S=1 and S=3. While the ex-
istence of odd spin states is most striking, the presence of
spin polarized phases is also nontrivial. The fact that spins of
electrons on two quantum dots align demonstrates the exis-
tence of ferromagnetic dot-dot coupling. In the case of anti-
ferromagnetic coupling, there would have been no net spin
even though each dot has a finite spin. We will show in Sec.
VI that such an antiferromagnetic coupling exists in the N
=8 molecule at low magnetic fields.

Finally, following the gap in Fig. 8�b�, we find the exis-
tence of low spin “gapless” states, which are the molecular
analogs of spin singlet biexcitons. Hence, Fig. 8 shows that
electronic interdot correlations stabilize the odd spin phases,
but their stability range is very narrow. As shown in Sec.
V A, without electron-electron interactions, the competition
between quantum mechanical tunneling and Zeeman energy
was responsible for the existence of odd spin phases. The
effect of a finite Zeeman energy is similar in an interacting
system. Figure 9 shows the effect of increasing the Zeeman
energy on the evolution of spin and energy gap of the N=8
electron quantum dot molecules as a function of magnetic
field. All parameters are the same as in Fig. 8. We see that
increasing the Zeeman energy renormalizes the magnetic
field value of spin flips and, more importantly, stabilizes the
odd spin phases. From the evolution of the energy gap shown
in Fig. 9�b�, we also see the vanishing of the low spin depo-
larized phase in the vicinity of �c=4 and the stabilization
of the spin polarized S=2 phase. The Zeeman energy
depends on the g factor. For GaAs, the g factor is
gGaAs=−0.44, while for InAs and InSb, the g factors are

gInAs=−14 and gInSb=−50.8–13 Hence, by adding In, one can
hope to tune the g factor of quantum dot molecules.

To conclude our analysis of the N=8 electron quantum
dot molecule, we discuss the effect of asymmetry between
the two dots. While for molecules built out of two atoms
each component is identical, quantum dots are defined by
gates or etching and one must understand the effect of dif-
ferences between the two dots on the stability diagram.32 In
Fig. 10, we show the evolution of spin and energy gap of the
N=8 electron quantum dot molecules as a function of mag-
netic field. The two dots are different, with the confining
potential of the left dot VL=−10 unchanged but the potential
of the right dot detuned by 1 Ry to VR=−11. As anticipated,
the effect of detuning results in an increased stability of the
odd spin-flip state S=1.
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FIG. 8. �Color online� �a� The evolution of spin of the N=8
electron quantum dot molecules as a function of magnetic field for
g=0 and Vp=7 �solid line�. For comparison, the spin evolution of
two isolated dots is shown �dashed line�. The width of odd spin
plateaux has been artificially enlarged to be visible to the eyes. The
vertical dashed line �purple color online� tends to qualitatively show
a range of �c in which the gap vanishes. The horizontal dashed line
�red color� shows the corresponding spin one state with zero gap.
�b� The evolution of the energy gap of the quantum dot molecules
as a function of magnetic field.
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FIG. 9. �Color online� The effect of increasing the Zeeman en-
ergy on the �a� evolution of spin and �b� evolution of energy gap of
the N=8 electron quantum dot molecules as a function of magnetic
field. The width of g=0 odd spin plateaux have been artificially
enlarged to be visible to the eyes.
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FIG. 10. �Color online� The effect of detuning, i.e., difference in
confining potential between left dot VL and right dot VR, on the �a�
evolution of spin and �b� evolution of the energy gap of the N=8
electron quantum dot molecules as a function of magnetic field.
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VI. REAL SPACE ANALYSIS OF SPIN TRANSITIONS IN
QUANTUM DOT MOLECULES

In this section, we describe the analysis of spin transitions
in real space. Equation �13� describes the Hamiltonian of an
interacting system in a second quantization in a noninteract-
ing SP state �m���. The single-particle states of coupled
quantum dot molecules in a magnetic field are labeled by the
single dot orbital quantum numbers m and the pseudospin
index �. The symmetric �antisymmetric� orbitals are labeled
by �=1�−1�, which is the parity of the orbitals in two sym-
metric dots. m represents the combined Landau level and
angular momentum quantum numbers, m��n , l�. The first
term in Eq. �13� is the single-particle Hamiltonian, and

V��,	��,���,��=�dr��dr�� �̃
��
* �r���̃

	��
* �r�� � e2

��r�−r�� �
�̃����r�

� ��̃���r�� is

the two-body Coulomb matrix element. Here, �� ,	 ,� ,��
represent the states with orbital quantum numbers �m ,��.

By alternatively denoting the creation �annihilation� op-
erators for an electron in a noninteracting localized SP state
�ms�� by dms�

† �dms��, the Hamiltonian of an interacting sys-
tem in second quantization can be written as

H = �
ms

�
�

�̃msdms�
† dms� + �

m�

tm�
s1s2

�1 − �s1s2
�dms1�

† dms2�

+
1

2 �
�m,s�

�
���


m1s1�,m2s2���V�m3s3��,m4s4��

�dm1s1�
† dm2s2��

† dm3s3��dm4s4�. �22�

Here, s=1 �2� are pseudospin labels of an electron localized
in the left �right� dot. The relation between Eqs. �13� and
�22� can be established by a rotation in pseudospin space
cm��

† = 1
�2

�s=1
2 �s−1dms�

† . We find �̃ms= ��m,�=1+�m,�=−1� /2, tm

= ��m,�=1−�m,�=−1� /2, and


m1s1�,m2s2���V�m3s3��,m4s4��

=
1

4�
�

�1
s1−1�2

s2−1�3
s3−1�4

s4−1

�
m1�1�,m2�2���V�m3�3��,m4�4�� . �23�

A. S=0 ground state

The �=2 state of a quantum dot molecule with N elec-
trons and total spin S=0 is the product of spin polarized
localized electrons as follows:

�� = 2� = �
m=0

N/4−1

�
s=1,2

�
�=↑,↓

dms�
† �0� . �24�

The energy associated with this state is as follows:

E�=2 = �
m=0

N/4−1

�
s=1

2

�2�̃ms + ��m,s�� , �25�

where ��m ,s� is the electron self-energy,

��m,s� = �
m�=0

N/4−1

�
s�=1

2

�2
ms,m�s��V�m�s�,ms�

− 
ms,m�s��V�ms,m�s��� . �26�

B. S=1 exciton

In each isolated dot, at a critical field, and driven by elec-
tron Coulomb interaction, accompanied with increasing elec-
tron kinetic energy, a transition from S=0 singlet to S=1
triplet is seen. The cost in kinetic energy is lowered if local-
ized electrons in one dot flip the spin �SL=1�, while the other
electrons in the second dot occupy the lowest energy single-
particle states to form a spin singlet droplet �SR=0�. This
configuration, which corresponds to XRR �or XLL� in Fig. 5, is
equivalent to a localized electron-hole excitation in one dot
in the presence of the background of electrons in the other
dot. Because of the geometrical symmetry associated with
the electron-hole excitation, the ground state of the system
�without any external bias and interdot tunneling� has double
degeneracy: the state with �SL=0,SR=1� has exactly the
same energy as the state �SL=1,SR=0�. The many-body
wave function of such a molecular state can be expressed as
a linear combination of degenerate states �SL=0,SR=1� and
�SL=1,SR=0�. We identify these pair of excitations as quan-
tum Hall ferrimagnets. For a range of magnetic fields, these
two states are separated from another pair of single excita-
tions XLR and XRL with �SL=1 /2,SR=1 /2� by an energy gap
�because of Coulomb interaction�. In general, in the case of
filled shells, molecular states with S= �odd� form quantum
Hall ferrimagnetism, which may give rise to an experimen-
tally observable ferrimagnetic resonance.

An excitonic state is constructed by removing an electron
from an occupied state and putting it into an unoccupied
state,

�Xj→i� = di
†dj�� = 2� , �27�

where j��m ,s , ↓ � and i��m� ,s� , ↑ �. The lowest energy ba-
sis of the single exciton �first spin-flip state� are depicted in
Fig. 5. By labeling the direct and indirect spin-flip transitions
�with ferrimagnetic and ferromagnetic spin ordering� by
�XRR ,XLL� and �XLR ,XRL� and by using their symmetries, we
find that the direct �indirect� states are twofold degenerate,
EXRR

=EXLL
�EXLR

=EXRL
�. Here, the subscripts are defined as

RR��1,R , ↓ �→ �2,R , ↑ �, LL��1,L , ↓ �→ �2,L , ↑ �, RL
��1,R , ↓ �→ �2,L , ↑ �, and LR��1,L , ↓ �→ �2,R , ↑ �. Note
that in a noninteracting system, the basis is fourfold degen-
erate, EXRR

=EXLL
=EXLR

=EXRL
.

By denoting quasiparticle energy levels �electrons dressed
by interaction� by �i= �̃i+��i�, the energy of one exciton
holds,

EXj→i
= E�=2 + �i − � j − 
i, j�V�j,i� . �28�

The last term is the electron-hole Coulomb interaction. On
the basis of single excitonic states, the Hamiltonian of the
quantum dot molecules can be expressed as
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H4�4
eff = T4�4

eff + V4�4
eff , �29�

where

T4�4
eff =�

EXRR
0 + t1 − t2

0 EXLL
− t2 + t1

+ t1 − t2 EXLR
0

− t2 + t1 0 EXRL

� �30�

is the noninteracting part and

V4�4
eff =�

0 VRRLL VRRLR VRRRL

V
RRLL
* 0 VLLLR VLLRL

V
RRLR
* V

LLLR
* 0 VLRRL

V
RRRL
* V

LLRL
* V

LRRL
* 0

� �31�

is the Coulomb interaction between the single excitonic
states.

Note that the pair of states XRR and XLL are not coupled by
the single tunneling term, because the scattering process be-
tween XRR and XLL requires the simultaneous exchange of
two particles. For that reason, this process is second order in
tunneling. The same is true for the states XLR and XRL.

C. S=2 biexciton

With increasing magnetic fields, a higher polarized state
with S=2 �SL=1,SR=1�, which is equivalent to a biexcitonic
state, tends to appear as a ground state. A biexciton is con-
structed by removing a pair of electrons from occupied states
and putting than into unoccupied states,

�Xj→i,k→l� = di
†dl

†djdk�� = 2� . �32�

The energy of a biexcitonic state can be decomposed into the
energy of two single excitons plus their interaction,


EXXj→i,k→l
= 
EXj→i

+ 
EXk→l
+ �V . �33�

�V is the binding energy between two excitons, which ac-
counts for the electron-electron, electron-hole, and hole-hole
interactions, as follows:

�V = 
l,i�V�i,l� − 
l,i�V�l,i� − 
l, j�V�j,l� − 
k,i�V�i,k�

+ 
j,k�V�k, j� − 
j,k�V�j,k� . �34�

In the quantum dot molecule considered in this study, we
find �V�0 for large magnetic fields, i.e., two isolated exci-
tons favor to pair and form a biexcitonic state, where the
energy of a biexciton is lower than the energy of two isolated
single excitons.

D. Excitonic condensation: A single-particle configuration
interaction effective model

The eigenvalues of T4�4
eff follow EAS�ESS�EAA�ESA �as

t2� t1�. The corresponding eigenstates are �XAS�, �XSS�, �XAA�,
and �XSA�, as shown in Fig. 4. Note that in noninteracting

electrons, 
EX
0 =EX

0 −E�=2�0, where EX
0 =EXRR

=EXLL
=EXRL

=EXLR
. By simplifying the Coulomb interaction among elec-

trons as Vijkl→V0�0, we can analytically calculate the self-
energy and the ground state energy of the S=0 state as �
=NV0 /2 and E�=2=E�=2

0 + �N /2�2V0. The latter is the energy
of a single exciton from the ground state energy. We can also
calculate the energy of a single exciton 
EXj→i

=�i−� j −V0

�
EX
0 and the energy of the biexciton 
EXX=2
EX−2V0,

where 
EX�
EXRR
=
EXLL

and �V=−2V0�0. The energy
difference between a biexciton and a single exciton follows

EXX−
EX=
EX−2V0. In the limit of a strong Coulomb
interaction �large magnetic fields�, we find �i−� j �3V0 and
EXX�EX.

The energy of interacting electrons with two distinct
single excitons corresponding to the direct and indirect first
spin-flip transitions, XRR and XLR, the lowest energy eigen-
value of H4�4

eff , and the energy of a biexciton �S=2�, calcu-
lated from the ground state energy with S=0, are shown in
Fig. 6.

Predicted by single configuration SP-CI, the direct spin-
flip transition takes place at ��

c1
* �2.8, where EXRR

�E�=2,
as shown in Fig. 11. Within this range of magnetic fields, the
energy of a biexciton is lower than the energy of a single
exciton due to strong Coulomb interaction, where at ��

c2
*

�2.1, a transition to S=2 state is seen due to pairing of
single spin excitons and, thus, single excitons condensate
into a pair of excitons �biexcitons�. However, because of a
strong mixing between the single excitonic states, electron
correlations significantly improve the energy of S=1 state
such that it brings the first spin-flip transition point to ��

c1
*

���
c2
* , where three states with S=0, S=1, and S=2 ap-

peared to be almost degenerate. The Zeeman coupling re-
moved such degeneracy. As a result, the S=1 state tends to
become stable in a narrow range of magnetic field.
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FIG. 11. �Color online� The energies of spin excitons with re-
spect to �=2, S=0 state as a function of magnetic field. E1

eff is the
lowest eigenenergy of the effective Hamiltonian H4�4

eff . The inset
illustrates the energy levels of single-particle localized states.
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VII. CONCLUSION

In conclusion, we have presented the magnetic field
driven spin transitions of quantum dot artificial molecules
with N=8 as a function of external magnetic field, Zeeman
energy, and detuning, using the Hartree–Fock configuration
interaction method. The magnetic field allows the tuning of
the total spin of electrons in each artificial atom. Quantum
mechanical tunneling and electron-electron interactions
couple spins of each artificial atom and result in ferromag-

netic, antiferromagnetic, and ferrimagnetic states of quantum
dot artificial molecules tunable by the magnetic field and
barrier potential.
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