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We performed a Langevin molecular dynamics simulation to study the response of a two-dimensional �2D�
constrained electron system on a helium film due to an external force parallel to the surface. The electron drift
velocity was obtained as a function of the driven force for different values of film thickness and dielectric
constants of the substrate in the low temperature regime �T→0�. We observed that the system had undergone
an insulator-conductor transition after a finite depinning threshold of the driven force. This should be helpful
for understanding the nonlinear dc conductivity observed in 2D systems, such as that in semiconductor
heterostructures.
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I. INTRODUCTION

The study of low dimensionality is a central task of mod-
ern condensed matter physics and has sharply risen. Two-
dimensional �2D� Coulomb systems have greatly contributed
to developments in fundamental physics. Some typical and
important examples are electrons in semiconductor structures
and electrons floating on a liquid helium surface. The former
are important for understanding phenomena such as the
fractional quantum Hall effect1 and 2D metal-insulator
transitions.2 The latter have been promising candidates to a
set of strongly correlated quantum bits in quantum
computers.3 They are unique and provide an ideal system for
experimental and theoretical research due to their excep-
tional uniformity and cleanliness. Furthermore, at low
enough temperatures and densities, the system undergoes a
transition known as the Wigner crystallization,4 in which the
electrons avoid each other by arranging themselves on a tri-
angular lattice. The Wigner crystal can also be induced in
denser systems considering thin layers �typically �100 Å�
of liquid helium covering a solid substrate or by subjecting
the 2D electrons to strong perpendicular magnetic fields.5

Electrons on helium film offer many interesting possibili-
ties to understand electron mobility, conduction properties,
polaronic effects on the mobility, complex charge, etc.6 The
conduction properties of a pinned electron crystal become an
ideal system in which one can test experimental observations
of nonlinear behavior of the current-voltage I�V� on two-
dimensional semiconductor heterojunctions.7 The advantage
in studying this analogous system with electrons on a helium
film is that the interaction with the substrate can be modified
by varying only the film thickness. The surface electronic
mobility in many situations is affected by impurities or by
the surface profile of the substrate beneath the helium film.
Experimental results on sliding charge-density waves,8 mag-
netically induced Wigner solid,9 and magnetoconductivity10

have shown the importance of the disorder and pinning on
the nonlinear response of the system to an external driven
force. Also, numerical results for the flux pinning model in
type-II superconductors,11 dynamical Wigner crystal with
charged impurities on the underlying substrate,12 moving dis-
ordered vortex lattice,13 and depinning on quasi-one-

dimensional systems14 give us a good qualitative description
of such phenomena.

In the present paper, we use Langevin molecular dynam-
ics simulation to describe the behavior of a two-dimensional
classical electron lattice on a helium film supported by a
dielectric substrate when it is driven by an external force. In
the simulation, a perfect sliding crystal is obtained if an ex-
ternal electric field is applied parallel to the surface. This
occurs because the interaction energy of the surface defor-
mation �dimples� is very small compared to the average Cou-
lomb energy, and the appearance of the dimple lattice prac-
tically has no effect on the pinned lattice. The static
deformation of the helium surface just accompanies the
Wigner crystal. Also, the substrate is considered perfectly flat
since an accurate description of the effect of the substrate
irregularities requires knowledge of the interaction of bound
electrons with an uneven interface, and this is not trivial. The
image charges of the electrons produced inside the helium
and in the substrate do not pin the crystal since they are not
quenched. Therefore, to simulate a pinned crystal, we con-
sider an in-plane constriction potential with a Lorentzian
shape centered at the origin, which behaves as a barrier to the
motion of electrons.15

We report the influence on the electron drift velocity,
which is driven by an external electric field and constrained
by a Lorentzian barrier, as a function of the film thickness
and substrate. This assumption was inspired by recent ex-
perimental dc measurements of electrons on a liquid helium
film.16,17 Also, the theoretical proposal to create quantum
dots on a helium surface18 by using electrodes submerged
into the helium to locally confine the electrons has motivated
us to simulate such a constriction. Similar pinning models
have been used in a quasi-one-dimensional system.14 Not-
withstanding, the kind of electron flow reported in this work
is similar to those that appear in dusty plasma crystals in a
flowing plasma.19,20 However, it is out of the scope of this
work to extend our results to those systems. Our calculations
were carried out at a very low temperature regime �T→0�.

The paper is organized as follows. In Sec. II, we describe
the system and the procedure we have used in the Langevin
dynamics. In Sec. III, we discuss our results. We conclude in
Sec. IV.
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II. MODEL AND SIMULATION PROCEDURE

Our system consists of N electrons deposited on a helium
film with dielectric constant � and thickness d located over a
solid substrate with dielectric constant �s. The interaction
potential between two electrons on the surface is given by21

Vee�r� = e�2�1

r
−

�

�r2 + �2d�2� , �1�

where e�=e /��1+�� /2 is the electron charge renormalized
due to the screening of the electron-electron interaction by
the substrate and �= ��s−�� / ��s+��. A helium film covering a
metallic substrate ��s→�� represents an extreme example of
such screening. In this case, the electrons interact via the
dipole potential Vee�r�→2e2d2 /r3 if d�r.

To obtain a pinned electron lattice, we consider a two-
dimensional Lorentzian shape potential centered at the ori-
gin. Therefore, the interaction between one electron and the
constriction is given by

Vec�x,y� =
V0

1 + �2x2 + �2y2 , �2�

where �x ,y��r is the position of the electron and V0 is the
maximum of the constriction. A positive �negative� V0 will
result in a barrier �valley� in the center of the system, whose
strength produces a local disorder in the lattice.

A positive background is imposed in order to guarantee a
charge neutrality of the system. Its energy contribution Ub is
summed to the total potential energy, which is given by

U =
e�2

2 �
i�j

N � 1

rij
+

�

�rij
2 + �2d�2� + �

i=1

N
V0

1 + �2xi
2 + �2yi

2 + Ub,

�3�

where rij = 	r�i−r� j	. To take into account the long-range char-
acter of Coulomb interactions, we have used the Ewald sum-
mation. The system consists of N electrons in a rectangular
box of area A=LxLy, such that Lx=Ly

�3 /2, with periodic
boundary conditions to eliminate surface effects. We have
concentrated the calculations on three values of the areal
electron density, e.g., 1.477�108, 2.2�109, and
1.3�1010 cm−2, corresponding to typical experimental data,
even though we have verified that the threshold value of the
external force does not depend on the density. Also, most of
the results shown in this paper are for a system with
d=100 Å, �=0.5789, and N=400 electrons. Checks with up
to 784 electrons did not change the results �within the statis-
tical error�.

Another important requirement that is adopted in the
simulation is to write down a suitable set of units to rewrite
all variables of the problem. Then, we have assumed that the
parameters �A and E0=e2 /2�A are in units of length and
energy, respectively. With this assumption, the constriction
potential parameters should be rewritten as V0

�=E0V0,
��=�A�, and ��=�A�. Also, the units of time and tempera-
ture are 	=�mA /2E0 and T0=E0 /kB, respectively, where kB
is the Boltzmann constant. One may also use as a unit of
length the typical interelectron spacing r0, which is propor-
tional to the areal electron density ns=1 /
r0

2.

To consider the effect of an external force, we couple the
system to a heat bath described by the Langevin equation of
motion,22

m
d2r�

dt2 = − �U�r� − �m
dr�

dt
+ ���t� , �4�

where � controls the frictional drag on the motion of the

particles and ���t� is the random force vector, which has zero

average 
��i�t��=0, and its standard deviation must be written
as


��i�t��� j�t��� = 2m�kBT�ij��t − t�� . �5�

The external driven force f acts only in the x direction; there-
fore, Langevin’s equations of motion are given by

m
d2xi

dt2 = − �m
dxi

dt
−

�U

�xi
+ �ix�t� + f ,

m
d2yi

dt2 = − �m
dyi

dt
−

�U

�yi
+ �iy�t� . �6�

To fulfill the dimensionless criterion, we must use
�0= f0=m�A	2 as the unit of the random and driven forces.
The friction coefficient is measured in units of �0=1	.

The typical value of � obtained in dusty plasma experi-
ments lies between 0.1 and 1.0 for the weak Coulomb cou-
pling limit.23 Since we have considered a pure Coulomb po-
tential and a higher constriction potential compared to the
system size, it is necessary to consider a large value of the
friction coefficient to ensure the stability of the system and to
keep the temperature constant. Thus, in our simulations, we
have estimated � to be between 5.0 and 20.0, and in our
dimensionless unit, it ranges from ���1.107�103 to
1.243�104. All of the results shown here were obtained for
a single value of the friction coefficient, i.e., ��=1.0�104.

To integrate Langevin’s equations of motion above, we
use the BBK integrator,24 which has the following form:

v�t +
1

2

t
 = �1 −

1

2
�
t
v�t� +

1

2

t�− �U�r�t�� + R�t�� ,

r�t + 
t� = r�t� + 
tv�t +
1

2

t
 ,

v�t + 
t� =
1

1 + 1
2�
t

�v�t +
1

2

t


+
1

2

t�− �U�r�t + 
t�� + R�t + 
t��� ,

where

R�t� =�2�kBT


t
Z�t� , �7�

and Z�t� represents a vector of independent Gaussian random
numbers with mean zero and variance one.

Before taking into account the effect of the external field
on the system, we must obtain the ground state configura-
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tions resulting from the competition between the Coulomb
interaction and the Lorentzian potential that constrains the
motion of the electrons on the plane. This was done for dif-
ferent numbers of particles and constriction parameters.
First, we used the Metropolis Monte Carlo �MC� method25 to
obtain an equilibrium configuration at some finite tempera-
ture T after carrying out 105 MC steps. Second, the T=0
equilibrium configurations were obtained by the simulated
annealing technique,26 by heating up the system to a high
temperature and then cooling it down to a low temperature.
Once the initial electron configuration was attained, the ex-
ternal force was slowly applied.

In all calculations, we used a time integration step of

t�=1.34�10−3. The averages are collected after 5�105

time steps. For each increment of the driven force, we al-
lowed the system to reach equilibrium with the same amount
of time steps.

III. RESULTS AND DISCUSSION

We first investigated the ground state configurations,
which should no longer be a perfect triangular lattice. The
local disorder in the electron lattice that arises from the in-
terplay between the strong Coulomb repulsion and the con-
striction potential in the middle of the system is shown in
Fig. 1 by means of the Delaunay triangulation.

In this work, we report only the results considering a posi-
tive constriction. The shape of the barrier created by the
constriction depends on the parameters �� and ��. For
��=0, we have a wall in the y direction and the motion of the
electrons is possible only over the barrier. Therefore, there is
a strong dependence of the depinning threshold on the value
of V0

�. In Fig. 1�a�, we show the effect of the constriction
with ����� �namely, ��=30 and ��=2�. One can observe a
smoother disorder only at the edges of the system near the
constriction, and if an external force is applied, the electrons
mainly flow through these edges. However, for a high driven
force, they can also flow over the constriction. In Fig. 1�b�,
we show the Delaunay triangulation for ��=��; this condi-
tion causes a weak local disorder and the depinning is more
likely to occur in the system since the electrons initially
move around the constriction. In most calculations, we ana-
lyzed only the case shown in Fig. 1�a�, with the following
constriction parameters: V0

�=60, ��=30, and ��=2.
The main focus of our work is the drift electron velocity,

which is analogous to an electrical current when the system
is in the presence of a parallel electric field. Here, we con-

sider an external driven force to simulate this field. This drift
velocity along the x direction is measured as

vx =
1

N
�
i=1

N

v� i · x̂ , �8�

where the average was taken at each force increment and
over the whole time integration. Figure 2 shows the simu-
lated result of vx

� versus f� for the film on a glass substrate
��=0.5789�. Note that there is a critical pinning force
fc

� ��9�. For values of fc
� below this depinning, the lattice is

pinned by the constriction and there is no net motion. This
kind of dynamic response clearly indicates an insulated state
of the electron lattice below a driven threshold. After a sud-
den jump on the velocity, the lattice becomes a conductor.

It is important to stress that the number of time steps is
crucial for a good average on the drift velocity. This is also
shown in Fig. 2, in which we consider two different numbers
of time steps for integration, e.g., 5�104 and 5�105 steps.
A long time evolution is needed to allow the particles to
travel throughout the whole system. Otherwise, some elec-
trons could make a quick path and should not overcome the
constriction barrier. As a result, this would provide trace
counts with poor statistics for the drift velocity on the depin-
ning threshold. Note that the more f� increases, the more the
two curves become very similar because the motion of the
electrons becomes more ordered and they tend to coherently
move along the x direction.

The influence of the constriction maximum on the depin-
ning is shown in Fig. 3. In the case of a weak pinning, the
response of the lattice to an external force is basically linear
and the electrons begin to flow in channels above fc

�, which
produce a nonplastic depinning, once all the particles move
together. The inset in Fig. 3 shows that when the pinning
starts to increase, the v-f curve begins to deviate from linear
behavior. This is similar to the dynamic response on charge-
density waves at a weak pinning.27 For a strong pinning
�high value of V0�, some electrons are reflected by the con-
striction and become trapped near the barrier. In this case, the
depinning is essentially plastic. This kind of depinning can

(a) (b)

FIG. 1. Delaunay triangulation for a triangular lattice with 400
electrons. The maximum value of the constriction in this case is
V0

�=60 with �a� ��=30 and ��=2, and �b� ��=��=20.

FIG. 2. �Color online� Average electron velocity versus driven
force for two molecular dynamics runs with different number of
steps.
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be understood by means of the critical behavior near the
threshold, which is obtained by using the scaling relation v
= ��f − fc� / fc��, where � is the critical exponent. In Fig. 4, we
show the scaling fit for some values of the constriction maxi-
mum. One can observe the transition between the two re-
gimes of depinning �e.g., the change in the slope: from solid
circle to solid up triangle�. For both nonplastic and plastic
regimes, the values of critical exponents are in agreement
with the predicted values.27,28

It is well known that when the distance between the elec-
tron layer and the substrate is smaller than the average inter-
particle distance r0, the Coulomb interaction becomes
Vee�r�=e2�1−�� /r+2�e2d2 /r3. This implies that for a metal-
lic substrate ��=1�, the interaction is dipolarlike.21 On the
other hand, if d�r0, the screening due to the substrate is
negligible and the interaction is essentially Coulombic, i.e.,
Vee�r�=e2 /r. Therefore, we can now analyze the influence of
the film thickness and the substrate on the drift velocity of
the electrons. In Fig. 5�a�, we report the vx

�-f� curve for sev-
eral values of d. Note that the critical value of f� decreases
with increasing d and the system more rapidly becomes a

conductor. This is a coherent result since the electron-
electron interaction becomes stronger than the electron con-
striction and when the system reaches the bulk limit �d�ro�,
the depinning threshold does not vary anymore.

Such an effect of the screening can also be seen in Fig.
5�b�, in which we show the velocity-driven force dependence
for some values of � for a film thickness of 100 Å. We
observe that as the screening increases ��→1�, the depinning
threshold increases too, which indicates that the Coulomb
interaction becomes less pronounced than the constriction
potential. The critical exponent for �=0.7 was estimated as
�=1.57�2�. This confirms the plastic flow for a strong pin-
ning force. Our results for the critical exponents in the plastic
regime are in good agreement with the experimental obser-
vation and theoretical prediction for transport phenomena in
metallic quantum dots.29

Finally, we observed the phenomenon of dynamic reor-
dering in our system. This can be seen in Fig. 6, in which we
illustrate the electron trajectories for a system that contains
N=256 electrons constrained by a potential with V0

�=50,
��=20, and ��=2. In this case, the system evolves for only
5�104 time steps for each value of f� because if the trajec-
tories are taken over a long time integration, the electron
flow appears everywhere in the system, despite the fact that
most electrons flow in some preferred paths.

When the driving force is increased, the electrons remain
pinned, as shown in Fig. 6�a�, until a certain critical value of
the force is reached, when the electrons begin to move, try-
ing to overcome the constriction. Figure 6�b� shows that,
initially, they flow in crossing channels that are mainly in the
border of the system near the barrier. Figures 6�c� and 6�d�
indicate that for high values of the force, the interconnecting
channels undergo a gradual reordering and the system starts
to move in an ordered channel structure. This kind of flow

FIG. 3. �Color online� Drift velocity of electrons as a function of
external driven force for some values of the constriction’s maxi-
mum. The inset shows an amplification of the region of weak driven
force.

FIG. 4. �Color online� Scaling behavior near the threshold for
some values of the constriction maximum.

FIG. 5. �Color online� Drift velocity of electrons as a function of
external driven force for different �a� film thicknesses and �b�
substrates.
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signals that our system also indicates a universal character of
the dynamic reordering, which has been extensively studied
in a great variety of systems.30

IV. CONCLUSIONS

In this work, we studied a two-dimensional system of
electrons on a helium film adsorbed on a substrate subject to

an external electric field by means of Langevin dynamics
simulation. We examined the influence of the thickness of
the film and the kind of substrate on the drift electron veloc-
ity. The system was constrained by an in-plane potential with
a Lorentzian shape that simulates a pinning center. We have
observed that the drift velocity of electrons showed a depin-
ning threshold as the external force increased, which charac-
terizes an insulator-conductor transition. Furthermore, when
the film thickness was increased, the critical depinning force
decreased down to the bulk limit. When the dielectric con-
stant of the substrate increased, it became harder for the sys-
tem to undergo a depinning. Such results are very encourag-
ing and they may be helpful for understanding the influence
of the surrounding medium on the metal-insulator transition
in two dimensions more clearly.
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