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We report results of a systematic analysis of optical absorption in finite metallic quantum-dot nanorings
containing a variable number of electrons described by the extended Hubbard model. Despite the very strong
electron correlations, the number of significant spectral lines is astonishingly small, and the optical spectra can
still be rationalized within a simple framework relying upon the single-particle picture. The main effect of
correlations is to split the optical transitions that are degenerate within the single-particle description and to
give rise to numerous avoided crossings (anticrossings). Unusually, the latter often involve more than two
states. For closed-shell systems, the optical spectrum is practically monochromatic. We also present results of
an approximate scheme, based on the Landau idea to describe low excitations in an interacting electron system.
It consists of diagonalizing the Hamiltonian in the configuration interaction truncated to include dressed
particle-hole excitations derived from the exact ground state. This method provides a good description of the
overall optical absorption, including that of the diabatic state corresponding to the bright transition at avoided
crossings. The scarcity in the optical spectra reported here points toward a hidden dynamical quasisymmetry in
the optical absorption of finite nanorings described within the extended Hubbard model, generalizing thereby
our recent finding [I. Baldea and L. S. Cederbaum, Phys. Rev. B 75, 125323 (2007)]. In addition, we report a

qualitative difference between the optical gap and the charge gap occurring at quarter filling.
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I. INTRODUCTION

Advances in nanotechnologies attempt to bridge the gap
between molecules and solids, by assembling metallic quan-
tum dots (QDs) in extended regular nanostructures.'~® Indi-
vidual QDs resemble artificial atoms.’® With the motion con-
fined within a few nanometers, electrons occupy quantized
levels, well separated energetically, similar to atomic orbitals
(AOs) in ordinary atoms. Assembled in dense nanostructures,
QDs are coupled via electron tunneling and mutual capacity
effects. The former, which results from overlapped wave
functions between adjacent dots, causes delocalization of a
few “valence” (or ) electrons over the whole nanostructure.
Unlike those of ordinary atoms, molecules, or solids, the
properties of QD nanostructures—and this is their salient
feature—are easily tunable in wide ranges by varying param-
eters easily controlled experimentally, such as dot diameter
(2R), interdot spacing (D),'"8 or gate voltages.'?

The tunable properties make assembled QDs ideal sys-
tems for studying (strong) electron correlation effects. In this
paper, we shall focus our attention on the optical absorption
of QD nanorings described by means of the extended Hub-
bard model. From extensive studies of molecular and solid-
state physics,'! it is well known that this property is very
sensitive to electron correlations.

Perhaps the most important issue of the present paper is
that, despite of strong correlations, optical absorption spectra
of the nanorings are astonishingly scarce. This statement is
based on exact numerical diagonalization results for finite
rings. This finding represents a generalization of our recent
result on the near monochromaticity of the optical spectrum
in half-filled nanorings.'?

The remaining part of the paper is organized in the fol-
lowing manner: The model of the theoretical study of QD
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nanorings is presented in Sec. II. By analyzing the electron
correlations in Sec. III, we show that it is possible to con-
tinuously drive the investigated systems from a weak to a
strong correlation regime. General aspects related to the
property on which we mainly focus, the optical absorption,
are discussed in Sec. IV. Next, we discuss in detail optical
absorption for nanorings with a variable number of electrons.
Because of qualitative differences, optical absorption for
closed and open shells is analyzed in separate sections, Secs.
V and VI, respectively. In Sec. V, we present the results both
for the case of half-filling (Sec. V A) and away from half-
filling (Sec. V B). Then, in Sec. VI, we consider in detail
various cases of open-shell nanorings (Secs. VI A-VID). In
Sec. VII we show that the exact results can be accurately
reproduced by means of an approximate method, consider-
ably less demanding than exact numerical diagonalization. In
Sec. VIII, we comparatively analyze two related but distinct
quantities, the optical gap and the charge gap. Finally, Sec.
IX makes the object of some discussions and conclusions.

II. MODEL

Isolated QDs are characterized by the on-site Coulomb
repulsion energy U (related to self-elastance or Coulomb
blockade) and the energy of valence electrons €. These quan-
tities can be controlled by varying the dot diameter 2R. As-
sembled in nanorings, QDs are coupled both by electron tun-
neling (resonance integral ¢;) and by Coulomb interaction V
(related to the mutual elastance). These parameters can be
tuned by adjusting the interdot separation D. In addition, the
number of electrons can easily be changed within wide
ranges by varying the voltage of a gate electrode, which is
placed on the top of the electron gas.!®
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To account for the physical aspects mentioned above, fol-
lowing, e.g., Refs. 12—15, we shall model a nanoring with N
QDs contains N, valence electrons (arbitrary-filling case) by
means of the one-band extended Hubbard (in chemists’ no-
menclature, Pariser—Parr—Pople) Hamiltonian,

N N
=—f02 E (Clzaa1+la+az+1aaza)+2(Unmnu
I=1 o=1,]
+ Vi), (1)

where q, , (a, ) denote the creation (anmhllatlon) operators
for electrons of spin o on the /th QD, n,U—al o410 and 7,
=n L1 +7 L]

In Eq. (1), we have assumed an ideal situation, wherein
the model parameters are site independent. This can be con-
sidered a reasonable first-order approximation in view of the
narrow size distributions (~2-5%) achieved in the arrays of
Ag QDs assembled by Heath’s group.'~® As discussed in Ref.
12, such a weak disorder do not have a dramatic impact on
optical absorption. The analysis of the model parameters #,
U, and V has been presented earlier in literature. The hop-
ping integral 7, was determined in Ref. 16 by fitting the
second harmonic response experimentally measured' for an
array of Ag QDs of size 2R=2.6 nm and used in a series of
subsequent studies.'>!"2! U was determined by scanning
electron microscopy experiments (U~0.3-0.34 eV for 2R
=2.6 nm),’ in agreement with the spherical model, and sub-
sequently employed in interpreting later experiments by
Heath and co-workers.®8 The d-dependent self-elastance and
mutual elastance (and thence U and V) have been obtained
by considering electrostatically coupled QDs.?? The restric-
tion to a single AO per QD (one-band extended Hubbard
model) in Eq. (1) is justified by the large energy separation
of the levels in a small spherical box.

Concerning the method, we note that the exact numerical
results reported in this paper have been obtained by means of
the Lanczos algorithm. As discussed elsewhere,!>?32* by
running the Lanczos procedure three times, we are able to
directly compute the frequencies and the intensities of the
spectral lines. In the method more familiar in condensed
matter physics,>>>’ by using the continued fraction algo-
rithm, only convoluted spectra can be calculated.

III. ELECTRON CORRELATIONS

The Langmuir technique that is experimentally
employed'~® enables a broad tuning of the hopping integral
tocexp(—5.5d) by varying the interdot spacing d within the
range 1.1=d=1.85 of experimental interest. In this way,
broad ranges of the parameter space (U/t,,V/t,) of the ex-
tended Hubbard model can be explored (see Fig. 1). There-
fore, it is possible to practically switch continuously from the
weak correlation regime to the strong correlation regime. In
the former limit, the QDs are close enough to each other
(d=1) and efficient tunneling yields electrons that are com-
pletely delocalized over the whole nanoring. Correlations are
practically absent and the single-particle description in terms
of molecular orbitals (MOs) holds true. Up to, say, d=<1.3,
one can clearly distinguish between (almost) fully occupied
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FIG. 1. (Color online) Curve in the (U/t,, V/t,) plane accessible
by varying the interdot spacing in the range 1 <D/(2R)<2 in as-
semblies of QDs of silver, showing that broad parameter ranges can
be explored. Notice the logarithmic scale on both axes.

MOs with occupancy n —<G|cp(r ¢yo|G)=1 inside the
Fermi sea, |p| <pp, and (almost) empty MOs, n,~0, outside
the Fermi sea, |p|>pp. Here, cp,,,—l/\NE]al,U exp
(=2mpli/N) denote MO (Bloch) operators, py is the Fermi
momentum and |G) the exact ground state. For illustration,
see Fig. 2 for the half-filling case (six electrons over six QDs
and ten electrons over ten QDs), where pp=1r/2. Because of
the fast, exponential fall-off of the hopping integral, the MO
picture rapidly worsens and finally breaks down with in-
creasing d. One arrives at a situation wherein one cannot
distinguish between occupied and unoccupied orbitals any
longer. Then, for half-filling, all orbitals become democrati-
cally occupied n, ,~0.5 (see Fig. 2). Electron tunneling be-
comes negligible, and the lowest (ground state) energy is
reached by localized electrons that avoid double occupancy
on the same dot.

To end Sec. III, we note that in Fig. 2 the values of the
momentum distribution n, for six electrons over six QDs and
ten electrons over ten QDs build smooth curves. This behav-
ior, which was also encountered in other cases, is related to
the fact that rings with N=N,=4x+2 (with integer «) belong
to the class of the so-called Hiickel systems (see, e.g., Refs.
28-30).
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FIG. 2. (Color online) Momentum distribution in the ground
state of six (circles) and ten (triangles) half-filled QDs for several
values of interdot spacing d given in the legend. The values of d
that increase downward for k/7<0.5 are given in the legend. The
lines are guides for the eyes (Ref. 31).
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IV. OPTICAL ABSORPTION

The property of our main interest here is the optical ab-
sorption in the ground state. Optical absorption provides in-
formation on the dipole allowed transitions from a reference
state; at sufficiently low temperatures 7=0, this is usually
the ground state. The quantities of interest are the excitation
energies €, —¢&s and the matrix elements of the electric di-
pole m, which enter the absorption coefficient in the ground
state |G). In the ring plane specified by the unit vectors
(X,¥), the electric dipole operator is expressed by

m=—|e|lp>, A% cosRmlN) +§ sin@@l/N)],  (2)
1

where e and p=D/2 sin(7r/N) denote the elementary charge
and ring radius, respectively.
For later considerations, the expression of the dipole mo-

mentum in terms of MO (Bloch) operators ¢, ,, is also useful,

Moy =~ |€|p/22 (C;H,acp,(r"' C;,O'CIJH,U') ’
P,

My = i|6’|.0/22 (c;+1,(rcp,0' - c;,a-cp+1,cr)- (3)
p.o
The absorption coefficient of a nanoring shined by a laser
field linearly polarized along j direction (j=x,y) of the ring
plane can be written as

@) =p 0 2 (Ol dw-e+eg). )
b% )\El—‘y

Because of symmetry, a,(w)=a,(w), and hereafter we shall
drop the subscript. Within the point group Dy, relevant for
nanorings with N QDs, the components (., u,) of the elec-
tric dipole operator pu transform according to the two-
dimensional irreducible representation E,,, and therefore
only eigenstates with I',, symmetry satisfying

,@E,®TDA,, (5)

which contribute to optical absorption. Here, I'; denotes the
ground state symmetry.

For the considerations on optical absorption in Secs. V
and IX, it is important to note the occurrence of the consecu-
tive indices (p and p+1) in Eq. (3). This implies that only
transitions between adjacent MOs can contribute to optical
absorption. Below, we shall present results on optical absorp-
tion for nanorings consisting of six and ten QDs. Therefore,
to facilitate understanding, it is useful to note that in the
former case the MOs ordered by increasing energy are a
nondegenerate a;, MO (p=0), two degenerate e, (p=*1)
and e,, (p=*2), and a nondegenerate b;, MO (p=3). For
rings with ten QDs, ordered by increasing energy, the ten
MOs are a nondegenerate a;, MO (p=0), two degenerate e,
(p= * 1)’ €2 (P= * 2)’ €3y (P= * 3)’ €4 (P= i4) MOS’ and
a nondegenerate b;, MO (p=5).

Below, we shall examine nanorings with a variable num-
ber of electrons N,. Because of the particle-hole symmetry of
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model (1), one can restrict oneself to values N,=<N. The
cases of closed and open shells will be separately discussed.
In the analysis below, one should keep in mind that both the
total spin and the total spin projection are conserved in op-
tical absorption.

Concerning the effect of electron correlations, it is worth
remembering that in view of space symmetry, free (Bloch)
electron states exactly satisfy the Hartree—Fock equations
(see, e.g., Ref. 32). As a consequence, all absorption frequen-
cies scale as the hopping integral ¢, within the MO approxi-
mation. Therefore, in the figures presented below with loga-
rithmic scale on ordinates, the corresponding curves would
be straight lines tangent to the exact curves for small d be-
cause electron correlations are very weak for d=1. In the
figures, we shall not present these rather trivial lines of the
single-particle approximation, but one should keep in mind
that deviations from the linearity of the exact curves measure
the effect of electron correlations. Apart from exact results,
we shall present instead approximate results obtained by di-
agonalizing the exact Hamiltonian on the basis of the
particle-hole excited states of the MO approximation. Acci-
dentally, because of the aforementioned particularity of the
Hartree—-Fock equations, this approximation actually
amounts to the first-order perturbation theory. Therefore, the
label p.t. will be used for the curves computed within this
approximation. This first-order perturbation theory is applied
for nondegenerate states in the cases discussed in Sec. V and
for degenerate states for those in Sec. VI.

In all of the cases presented in Secs. V and VI, we find a
small number of optical transitions with significant spectral
intensities, which are astonishingly small considering that
the electron correlations are strong and very numerous tran-
sitions are allowed by spin conservation and spatial symme-
try. Other contributions from other allowed transitions also
exist but are not shown because they are substantially
smaller. In this respect, the situation is similar to the half-
filling case recently discussed in Ref. 12.

In Secs. V-VIII, we shall present results on absorption
frequencies and intensities for the relevant optical transi-
tions. Because the former can be directly compared to ex-
periments, we express them in electronvolts. Since only con-
voluted theoretical spectra are of interest to experimentalists,
less attention will be paid to the units of the absorption co-
efficient (&) —&6)|[(¥)|,|G)[* [cf. Eq. (4)], and we write ge-
nerically arb. units. To be specific, this “arbitrary unit” (the
same in all figures) is electronvolt times squared elementary
charge.

V. CASE OF CLOSED SHELLS

For closed-shell systems, within the MO picture the
lower-energy MOs are fully occupied up to the highest oc-
cupied molecular orbital (HOMO), while the higher-energy
MOs, starting from the lowest unoccupied molecular orbital
(LUMO), are completely empty in the ground state. Only a
single transition is optically allowed, which amounts to the
excitation of an electron from the HOMO into the LUMO,
and this requires an excitation energy called the HOMO-
LUMO gap. Within the MO picture, all closed-shell systems
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FIG. 3. (Color online) Absorption frequency and intensity of the
relevant spectral line for six-QD nanorings at half-filling. For small
d the exact results (represented by points) are well approximated by
those of the perturbation theory (p.t.) (see Sec. IV), whereas for
large d the absorption frequency approaches the asymptotical limit
U-V (see main text). Concerning the curves denoted by hl-ph and
ph, see Sec. VII.

behave qualitatively similar. In the presence of electron cor-
relations, however, as shown below, the case of half-filling
represents a special case, with a behavior qualitatively dif-
ferent from other closed-shell cases away from half-filling.

A. Case of half-filling

Because the case of half-filling was already presented in
our earlier work,!2 here, we restrict ourselves to only a few
aspects relevant for the present context. At half-filling, in
agreement with the MO picture, we always numerically
found that the ground state |G) is a 'A 1 singlet for all d’s.
Therefore, in principle all excited singlet 'E,, states could
contribute to optical absorption [Eq. (4)]. For six-QD nano-
rings, out of 175 singlet states, there are 54 states of 'E,
symmetry.>3 For ten-QD nanorings, there are 19404 singlet
states, and thousands thereof possess E;, symmetry. There-
fore, in view of the strong correlations (cf. Sec. III), one
would expect a multitude of optical transitions or, rephras-
ing, a rich optical spectrum. However, and this was the as-
tonishing result reported in Ref. 12, the contrary is true: even
in the presence of strong electron correlations, the spectrum
remains practically monochromatic, a fact we attributed to a
hidden dynamical quasisymmetry.

Results for the absorption frequency (which is also the
optical gap here) and the intensity of the single relevant
spectral line are shown in Figs. 3 and 4. By inspecting the
exact results on the absorption frequency [points in Figs. 3(a)
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FIG. 4. (Color online) Absorption frequency and intensity of the
relevant spectral line for ten-QD nanorings at half-filling. The
meaning of the various curves is indicated in the legends and ex-
plained in the caption of Fig. 3.

and 4(a)], one can easily identify the weak and strong corre-
lation regimes for smaller and larger interdot spacings d,
respectively. In the former regime, the optical gap, which is
basically a HOMO-LUMO gap (or band gap)
=21, sin(7r/N), is in good agreement with the MO descrip-
tion (the curve is almost linear). It decreases with increasing
N and exponentially falls off, similar to the hopping integral
ty (note the logarithmic scale on the ordinate). In the latter
regime, it is reminiscent of the finite Mott—Hubbard gap.
This represents the gap of charge excitations, which is
known from the study of the infinite restricted Hubbard
model (i.e., with V=0) to be nonvanishing only at
half-filling.3** (See also Sec. VIIL) Loosely speaking, the
Mott—Hubbard gap is the energy necessary to create a doubly
occupied site. In the limit of vanishing hopping (7,— 0), the
double occupancy is avoided in the ground state because it
costs a large energy (U). To create a charge excitation re-
quires an energy U-V (for U> V), and one can see that this is
just the limit approached by the exact optical gap. Notewor-
thy is that in this case, of large d, the optical gap tends to a
limit (U-V) that is independent of N. This fact is understand-
able because for large d the dots are practically no longer
coupled by tunneling. Figures 3(a) and 4(a) suggest a prac-
tical criterion to reasonably define a critical point d,, for the
crossover between weak and strong correlation regimes:
equate the asymptotic limit (U-V) with the single-particle
gap.

From the fact that the spectrum is practically monochro-
matic, like within the single-particle picture, one may think
that correlation effects on optical absorption are altogether
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FIG. 5. (Color online) [(a) and (c)] Energies and (b) spectral
intensities of optical absorption for six electrons on ten QDs in the
ground (A, o) state. Only three excited E,, states are important,
which are shown by the solid, dashed, and dashed-dotted lines.
Note that except around d=1.87, where an avoided crossing in-
volving all these three states occurs, practically only one optical
transition possesses a significant intensity. Because of the small
energy splitting at the avoided crossing, the measured spectrum is
practically monochromatic and has a smoothly varying intensity in
the whole d range, which is well approximated by the results of the
ph approximation (see Sec. VII). In (c), the ph curve for energy has
been shifted downward by 0.7 meV. For small d, the exact results
are well approximated by those of the perturbation theory (p.t.) (see
Sec. IV).

ineffective. However, the opposite is true: the results (p.z.) of
the perturbation theory, which are also depicted in Figs. 3
and 4, are close to the exact ones in the weak correlation
regimes but substantially depart from the latter in the strong
correlation regime.

In Sec. V A, we do not analyze all of the curves in Figs. 3
and 4, but postpone their analysis until Sec. VII. Below, we
similarly proceed with Figs. 5-7 and 9.
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B. Closed shells away from half-filling: Nanorings with six
electrons on ten quantum dots

Let us now consider a closed-shell nanoring away from
half-filling. For illustration, we present results on optical ab-
sorption for a ten QD nanoring with six valence electrons in
Fig. 5. Three optical transitions play an important role in this
case, which are represented by the solid, dashed, and dotted
lines in Fig. 5.

Very interesting is the region around d=d_.~1.87, where a
phenomenon termed “avoided crossing” by molecular physi-
cists and “anticrossing” by solid-state physicists occurs.
What makes the difference from other cases of avoided
crossings from molecular and solid-state physics on which
we are aware is the fact that three and not only two states are
involved in the case depicted in Fig. 5. As shown in Sec. VI,
the participation of more than two states to avoided crossings
in QD nanorings is the rule rather than the exception.

Note that the optical transition is intense only to one of
the E,, states, namely, to that which is expected in the
MO picture (HOMO-LUMO transition) except around the
avoided crossing. Because of the small energy differences of
the three states around d~1.87, one cannot separately mea-
sure the three intensities represented by the solid, dashed,
and dotted lines in Fig. 5, but rather their sum. This means
that in practice, the absorption spectrum is also practically
monochromatic, in accord with what one expects within the
MO picture, and similar to the half-filling case (Sec. V A and
Ref. 12).

However, there is an important difference from the latter
case. While the optical gap remains finite at half-filling, it
exponentially decreases with d in the present case. We found
the same behavior for other cases of closed shells away from
half-filling numerically studied. Again, this is a counterpart
to the behavior known from the infinite restricted Hubbard
model (V=0), where one can distinguish two phases: a me-
tallic phase away from half-filling and a Mott insulating
phase at half-filling. The lowest excitations of the metallic
phase have a gapless spectrum, while the excitations of the
insulating phase have a finite gap due to on-site repulsion
(U>0). Further details will be discussed in Sec. VIII.

VI. CASE OF OPEN SHELLS

For open-shell systems, there exists a certain molecular
orbital, which is partially occupied, lying above fully occu-
pied orbitals and below completely empty orbitals. The ab-
sorption spectrum within the MO picture consists of two
lines, which correspond to an excitation of an electron either
into or from the partially occupied molecular orbital (absorp-
tion frequencies &, and &,, respectively, &, <e,). For odd
electron systems, unless otherwise specified, we restrict our-
selves below to the spin doublet states (S=1/2, S,=+1/2).

A. Cases of five electrons on six quantum dots and five
electrons on ten quantum dots

The ground state is a spin doublet 2E,, state both for five
electrons on six QDs and for five electrons on ten QDs. Both
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FIG. 6. (Color online) Results for optical absorption of five electrons on six QDs. The superscripts indicate the energy ordering of the
excited states with significant spectral intensity. The solid lines represent the exact results. In (a)—(d), the points represent the results of
perturbation theory (p.z.), while in (e)—(h), they are the results of the ph method (see Sec. VII). In (g), the diabatic ph curve approximating
the exact energies of Egg and Egg in the regions where these two are bright (for d=<1.56 and d=1.56, respectively) has been shifted

downward by 5.5 meV.

in the Dg, and the Dy, point groups, m|G)—E,,®E,
=A,® Ay, @ E,,. Therefore, only spin doublet excited states
of symmetries A, A,,, and E,, can contribute to optical
absorption. In Figs. 6 and 7, we show the spectral intensities
and the absorption frequencies of the optical transitions to
the aforementioned states.

As already mentioned, within the MO picture the absorp-
tion spectrum from the ground state consists of two spectral
lines. The first allowed transition corresponds to the excita-
tion of an electron from an a;,-MO to an e;,-MO, and this
yields a (orbitally) nondegenerate excited *A, ¢ state. We

shall denote this state by A% o as part of a general notation
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FIG. 7. (Color online) Energies and spectral intensities of optical absorption for five electrons on ten QDs in the ground (E,,) state. The
solid lines represent the exact results. The superscripts indicate the energy ordering of the excited states with a significant spectral intensity.
In (a) and (b), the points are the results of the p.z. approximation (see Sec. IV). In (c), (d), and (e), the points represent the results of the ph

approximation (see Sec. VII).

used throughout hereafter. Namely, we shall drop the left
superscript of spin multiplicity for excited states (which is
the same as in the ground state since optical transitions con-
serve the spin) and use (right) superscripts to label the ex-
cited states that significantly contribute to optical absorption
ordered in ascending energy. For the second excitation en-
ergy, an electron is excited from an e;,-MO to an e,,-MO.
For a fixed total spin S=1/2 and spin projection S,=+1/2,
in the case of five electrons on six QDs, this transition com-
prises the following group of degenerate excited states: one
’A, ¢ state (denoted by Afg), one 2A2g (A%g), and three states
2E2g (Eég, E%g and Egg) For five electrons on ten QDs, the
group of degenerate excitations comprises one 2A1g state
(A%g),zone 2A2g (Aég), two states 2E2g (Eég and Egg), and one
state “Ey,.

At smaller d, the main effect of the electron correlations
induced by the Hubbard terms consists of lifting this degen-

eracy in the above mentioned second group of optically ac-
tive excitations. To illustrate this, in Figs. 6(a)-6(d), 7(a),
and 7(b), we have plotted the exact curves (solid lines) along
with those denoted by p.z. (dotted lines) obtained in the first
order of (degenerate) perturbation theory with respect to U
and V (see Sec. IV). As revealed by the comparison of the
curves presented in the aforementioned figures, although
qualitatively correct, the p.t. approximation rapidly worsens
with increasing d, indicating stronger correlations that cannot
be pertubatively accounted for.

As already noted in Sec. V B, with increasing d and con-
comitant fast reduction of tunneling, there is an overall ten-
dency of diminishing energy separations, with the states be-
coming agglomerated in narrow energy windows. The failure
of the perturbation theory is one manifestation of this fact.
Another, yet more important manifestation is the appearance
of avoided crossings. Three avoided crossings are visible in
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Figs. 6(c), 6(d), 6(g), and 6(h) for five electrons over six
QDs: two involving three states— (Egg, Se0 E2g) and (Ezg,
E‘z‘g, ) at d=1.555 and d=1.685, respectlvely—and one
with the participation of the pair of states E2 and E at d
~1.765.

For five electrons on ten QDs (Fig. 7), there is an avoided
crossing at d=1.795, which involves the parr A1 and A%g,
and another at d = 1.765 between the pair E g and E . Coun-
terintuitively, for five electrons on ten QDS there are not so
many avoided crossings involving E,, states as for five elec-
trons on six QDs. The reason why there are less in the case
of ten QDs is similar to that encountered in the analysis of
the group of second excitations: the role of certain optically
active E,, excitations in the case of six QDs is replaced by
certain optically inactive E,, excitations.

B. Case of seven electrons on ten quantum dots

For seven electrons on ten QDs, the ground state is a spin
doublet *E,, state. Because in Dy, p|G)—E,,®Ey,=E|,
® E,,, only eigenstates with spatial symmetries E,, and Ej3,
contribute to absorption. The first group of MO optically
active degenerate excitations (excitation energy 7,) comprises
one E;, and two E|, states. They result from the excitation of
one of the four electrons completely occupying the e;, MOs
into one empty e,, MO. The second group of MO optically
active excitations (excitation energy 1.236¢,) merely consists
of one E;, state. It results from the excitation of the single
electron occupying one of the degenerate e,, MOs into one
of the degenerate empty ez, MOs.

The results obtained by exact numerical diagonalization
are collected in Fig. 8. The lowest optically active excitation
possesses E;, symmetry for small d, which changes to Ej3,
symmetry beyond d=1.1917. With increasing d, correlations
split more and more the two E;, states originating from the
degenerate group of lowest MO E |, excitations, while higher
E,, states come closer in energy to the second excitation.
Consequently, a series of avoided crossings can be seen for
this symmetry, at d=1.59, d=1.81, and d=1.96, the second
with participation of three states. For Ej, symmetry, an
avoided crossing involving three states is also visible in Fig.
8 around the value d=1.71. Interestingly, at larger d values,
not only the energies of the relevant excitations for each
symmetry (E;, and Es,) become close to each other but also
their intensities [see Figs. 8(b) and 8(c)].

C. Case of nine electrons on ten quantum dots

Similar to the above case of seven electrons on ten QDs,
for nine electrons on ten QDs, the ground state is a spin
doublet 2E2g state. However, differences exist concerning the
first and second excitations in the two cases.

In the present case, the highest occupied MO is an e;,.
Out of the four single-particle e,, states, three are occupied
and one is empty. The lowest MO excitation amounts to the
excitation of one electron from the MO below it, e,, into the
only empty e;, MO (excitation energy ¢;), and this yields a

’E,, state. The second MO excitation is the rise of one of the
three electrons from the e,, MOs into the empty ez, MOs.
This leads to the second group of optically active excitations
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FIG. 8. (Color online) Exact results for [(a) and (b)] energies
and (c) spectral intensities of optical absorption for seven electrons
on ten QDs in the ground (E,,) state. The superscripts indicate the
energy ordering of the excited states with a significant spectral
intensity.

(excitation energy 1.236¢,) comprising one E;, and three 3,
states.

The exact results for this case, which are presented in Fig.
9, indicate effects of electron correlations similar to the cases
exposed in Secs. VI A and VI B: splittings of degenerate MO
optical transitions and avoided crossings. One should empha-
size that the phenomenon of avoided crossing is more fre-
quently encountered than in the preceding cases. Noteworthy
is the sequence of four dense avoided crossings for E3, sym-
metry, two of them involving three states [see Figs. 9(b) and

9(c)].

D. Cases of four and eight electrons on ten quantum dots

In both cases of four and eight electrons on ten QDs, two
electrons occupy two out of the four single-particle states
available in the highest partially occupied MO (e;, and e,,,
respectively). Accordingly, the ground state is sixfold degen-
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FIG. 9. (Color online) Results for optical absorption of nine electrons on ten QDs obtained exactly (solid lines) and by the ph method (see
Sec. VII). The latter are depicted by points [for clarity, in (¢) and (f), they are joined by the thin lines]. The superscript indicates the energy

ordering of the exact excited states with a significant spectral intensity.

erate in the MO picture. The group of these six degenerate
states comprises 3A2g, 'A,,, and lEzg states for four elec-
trons, and 3A2g, 1A1 o and E,4, states for eight electrons. In
the range of d shown in Fig. 10, wherein the exact results are
collected, the exact ground state is a triplet state 3A2g, which
lies slightly below the other nearly degenerate singlet states.
Thus, we are dealing here with nanosystems satisfying the
Hund rule, a situation we also encountered for four electrons
on six-QD nanorings.

The selection rule in these cases, u|G)%E1u®A2g=Elu,
is simpler than in the other cases of open shells discussed
above. The optical absorption spectra are also simpler than in
those cases. As shown in Fig. 10, they consist of two lines
only, and no avoided crossing is present.

VII. VERY USEFUL APPROXIMATE METHOD: DRESSED
PARTICLE-HOLE EXCITATIONS

Even more than the figures presented in Secs. V and VI,
the eye-catching aspect from inspecting the curves of the

preceding section is the intriguingly extreme simplicity of
optical spectra, which is an unexpected fact in view of the
strong electron correlations. The detailed analysis reveals
that, apart from the splitting of the degenerate transitions, the
number of optical signals with a significant intensity coin-
cides with that expected within the MO description.

This feature bears much resemblance with the basic idea
of the Landau theory,?® which postulates a one-to-one map
between the low-energy excitations, which are close to the
Fermi level, of interacting and noninteracting electron sys-
tems. Because of the strong correlations, it makes little sense
to attempt to construct approximate excited states by using
configurations obtained by acting on the noninteracting
ground state with the operators of (HOMO-LUMO) particle-
hole pairs EUCZ;PUCPWU (|p;)=pnl=1) that are closest to the
Fermi level, i.e., either p; corresponds to a completely empty
MO or p;, to a completely occupied MO. Unless d is very
small, this approximation turns out to be indeed very poor.
However, in view of the observation of the small number of
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FIG. 10. (Color online) Exact results for energies and spectral
intensities of optical absorption for four (upper panels) and eight
electrons (lower panels) on ten QDs in the triplet ground (3A3g)
state. The superscripts indicate the energy ordering of the excited
states with a significant spectral intensity.

optical signals, it looks meaningful to use instead the inter-
acting ground state. This approximation, which we denote by
hil-ph, qualitatively agrees with the exact results, in the sense
that it predicts the correct number of significant spectral
lines. Unfortunately, for larger d, where electron correlations
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are strong, the quantitative agreement is reasonably good
only for half-filling. The latter aspect can be seen by inspect-
ing the hl-ph results for half-filling, which are shown to-
gether with the exact results in Figs. 3 and 4.

One can extend this idea and consider not only HOMO-
LUMO but all dressed particle-hole excitations {|p)},

— T
Op = E Cp,a'cpil,(r?
o

lp) = O,|G). (6)

The operators O, are useful because they possess the sym-
metry E;, of the dipole operator and generate, when applied
on the interacting ground state |G), approximative eigen-
states with correct spin and spatial symmetry. We have also
numerically diagonalized Hamiltonian (1) in the truncated
configuration space spanned by these dressed particle-hole
excitations. In this way, we have found that all bright transi-
tions can be accurately described. Compare the exact curves
to those denoted by ph computed by means of this method in
Figs. 3-7 and 9. To better see that this approximation pro-
vides a good description of the states with a significant spec-
tral intensity (the so-called bright diabatic states), the ap-
proximate ph curves for energy in Figs. 5(c) and 6(g) have
been artificially slightly displaced. The only exact result that
cannot be explained by this approach is the avoided crossing,
which is less important for the pragmatic purpose of repro-
ducing the spectra.

One should note that this method brings a substantial sim-
plification by drastically reducing the number of configura-
tions used in numerical diagonalization as compared to the
total dimension of the Hilbert space of the many-body sys-
tem. The dimension of the Hamiltonian matrix to be diago-
nalized is ~N, while that for the exact result is ~(2N/N,).

VIII. OPTICAL GAP VERSUS CHARGE GAP

The charge gap A is a useful quantity to assess whether a
many-body system behaves as a Luttinger liquid or not. It is
defined as the difference between the chemical potentials u™
for adding and removing an electron to/from the system, A
=u*— w37 The latter are expressed in terms of the ground
state energies E; of the systems with N, and N,* 1 elec-
trons, w'=Eg;(N,+1,N)—E5(N,,N) and wu =Eg(N,,N)
—Eg(N,—1,N). From the study of infinite chains, it is known
that the charge gap of the Hubbard model (V=0) is finite at
half-filling (Mott-Hubbard gap) and vanishes away from
half-filling (see, e.g., Refs. 34 and 35). Accordingly, the sys-
tem is a Mott insulator or metal, respectively. For finite Hub-
bard systems, one can expect to observe precursor effects of
this behavior in the strong coupling limit U/#,> 1, in which
the interaction between sites via tunneling plays only a sec-
ondary role and, therefore, the number of sites is not impor-
tant.

As obvious from their definition, although related from
intuitive physical considerations, the charge gap A and the
optical gap € are not identical. Therefore, it would be inter-
esting to comparatively inspect curves for optical gap and
charge gap and to see whether they behave similarly.
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FIG. 11. (Color online) (a) Optical gap & for various numbers of
electrons (N,) and QDs (N). These numbers are indicated in the
legend along with the gap value for free electrons. In addition,
because the lowest optically active excitation changes the symmetry
for seven electrons on ten QDs, its symmetry is also given in pa-
rentheses. For three electrons on ten QDs, the ground state switches
beyond d=1.47 from doublet (S=1/2) to quartet (S=3/2), and the
free gap of the latter case is also indicated in parentheses. (b) Op-
tical gap ey y and charge gap Ay y for several values of N, and N.
The charge lgap for five electrons on ten QDs does not tend to zero
as for other cases away from half-filling for physical reasons ex-
plained in the main text.

In Fig. 11(a), we have collected the results for the optical
gap of the finite nanorings studied here. As visible there and
partly anticipated in Sec. V A, the optical gap changes its
character at around d=1.5. Below this value, it scales as the
hopping integral 7, and is basically similar to the band (or
HOMO-LUMO) gap because the physics manifestly exhibits
a single-particle character. For larger d, the optical gap tends
to a finite value at half-filling and to zero away from half-
filling. That is, it reproduces the strong coupling limit of
infinite systems, as expected for the restricted Hubbard
model.

As a general characterization, as revealed by some typical
curves we choose to present in Fig. 11(b), the two kinds of
gaps ¢ and A often behave qualitatively similar (see the cases
of ten electrons on ten QDs and of six electrons on ten QDs).
However, significant quantitative differences between & and
A exist even for these cases (note the logarithmic scale on
ordinate).

More important than such quantitative differences, a
qualitative difference can be observed for five electrons on
ten QDs, which corresponds to quarter filling. There, unlike
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the optical gap, the charge gap does not fall off more or less
exponentially with increasing d but approaches the value 2V
(see below). The reason is the following: In the strong cou-
pling limit (U, V> 1,), by increasing the number of electrons
up to quarter filling (N,=N/2, whereN is even), in the
ground state there are neither doubly occupied sites nor sites
consecutively occupied because of the large energy penalty
(U or V, respectively) and, therefore, E4(N,,N)=0O(t,). By
adding an extra electron to a quarter filled band, it will oc-
cupy an empty site between two sites already occupied with
one electron if (and this is the case for the QDs investigated
here) the corresponding energy cost 2V is lower than that to
be paid for double occupancy U. Consequently, E;(N/2
+1,N)=2V+0O(ty), and this straightforwardly yields a
charge gap Ay y=2V+0O(1y) for U>2V>1,.

Thus, based on the present numerical results, we claim
that in the limit U>2V>¢, the optical gap of the infinite
extended Hubbard model at quarter filling vanishes, while
the charge gap reaches a finite value, which is equal to 2V
+O(1y). Needless to say, the difference between the charge
and optical gaps is relevant only for the extended Hubbard
model and does not exist for the restricted Hubbard model
(V=0). To the best of our knowledge, we are not aware on a
previous work reporting this finding for the extended Hub-
bard model.

IX. DISCUSSIONS AND CONCLUSIONS

In the present paper, we have extended the study of Ref.
12 on optical absorption of finite tunable nanorings consist-
ing of metallic QDs by considering in detail cases away from
half-filling. By varying the interdot spacing, the nanorings
can be driven from a weak to a strong correlation regime, a
fact that clearly reflects itself in optical absorption. However,
in spite of the (very) strong correlations, their effect on op-
tical absorption is intriguingly simple. It is basically twofold:
the splitting of degenerate optical excitations in the MO pic-
ture and the occurrence of avoided crossings.

Qualitatively, the splitting of the degenerate MO transi-
tions can be understood already by the perturbation theory.
Quantitatively, the latter description is very poor in the
strong correlation regime. Avoided crossings in nanorings of
the type studied here are not too surprising. The interdot
spacing plays the role of a giant symmetric stretching mode
in a molecule, and avoided crossings in molecules are well
known.’® What makes the difference in the present case is
that numerous avoided crossings often occur with the partici-
pation of more than two states. To our knowledge, such a
feature has not been reported so far in literature. What favors
the occurrence of such avoided crossings is the fact that with
increasing d and concomitant rapid reduction of tunneling,
numerous states condense into almost degenerate groups,
which are well separated by energies on the order of U or V
(much larger than f).

The very small number of spectral lines that possess a
significant intensity is quite intriguing in view of the strong
correlations and the large numbers of transitions allowed by
spin conservation and spatial symmetry. For closed shells,
even away from half-filling the absorption signal remains
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practically monochromatic. This is a generalization of the
particular case of half-filling.'? In the open-shell cases, a few
optical signals with a significant intensity are present in the
spectrum.

Qualitatively, one can understand the small number of the
significant spectral lines within Landau’s idea to construct
low-lying excitations in an interacting electron system,
which is an approximation denoted by hl-ph in Sec. VIIL
Quantitatively, this method turned out to be satisfactory only
at half-filling. Fortunately, we have been able to extend this
method by applying the operators of particle-hole excitations
to the fully interacting ground state. This generalization (see
Sec. VII), which is briefly denoted by ph, has been found to
be very accurate for computing the absorption spectra. It is
much less demanding than the exact numerical diagonaliza-
tion; the only notable effort is to determine the ground state.

The scarcity of the optical spectra in all investigated cases
is astonishing. It makes us to believe that the conclusion of
Ref. 12 is more general: we ascribe this scarcity to a more
general hidden dynamical quasisymmetry of the extended
Hubbard model for arbitrary filling. Despite extensive efforts
to analyze our numerical data, we are unable to more pre-
cisely specify this hidden symmetry. What we can solely do
at present is to tentatively speculate on a special type of
Landau liquid, which is characterized by a one-to-one map
between the optically active excitations in interacting and
noninteracting electron systems. This would be a counterpart
of the traditional Landau liquid, wherein there the low-lying
(optically active or not) excitations of interacting electrons
are in one-to-one correspondence with those of noninteract-
ing electrons. This speculation is based on our observation
that there are exactly as many optical transitions are expected
within the single-particle picture by considering the degen-
eracy lifted by interactions.

The fact that we have computed individual spectral lines
and not only convoluted optical spectra permits us to directly
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determine the optical gap (i.e., the lowest absorption fre-
quency). The optical gap nicely reveals the crossover from
weak to strong correlation regimes. In the weak correlation
regime, it behaves as a HOMO-LUMO (or band) gap, a fea-
ture specific for single-particle physics. In the strong corre-
lation regime we found a behavior that singles out the half-
filling case from the cases away from half-filling. In this way,
the strong coupling limit displays features that are precursor
to the behavior of the infinite restricted Hubbard chain
(Mott-Hubbard insulator and metal, respectively).

The optical gap has also been compared to the charge gap.
The latter has been extensively employed to assess whether
the infinite restricted Hubbard chain, which is exactly solv-
able by Bethe ansatz,3** behaves as a Luttinger liquid or
not. In spite of many similarities, we have demonstrated
(both numerically and analytically) that for quarter filling in
the strong coupling limit, the charge gap tends to the value
2V (and this obviously vanishes only for the restricted Hub-
bard model), while the optical gap rapidly falls down to zero.

Of course, a realistic theory of QD nanorings should in-
clude many other concrete aspects not considered in the
present work. However, by using parameter values deter-
mined in literature for a real case (assembled Ag-QDs), with
parameters tunable in wide ranges, we think that the present
results are of sufficient interest to motivate further experi-
mental work on metallic QD nanorings. In addition to the
presently considered metallic QDs, structures of tunable
semiconducting nanorings with equidistant barriers, which
are already fabricated,>*~*! could also be of interest.
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