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The discovery of an interesting nanostructure behavior or the design of useful nanodevices requires state-
of-the-art physical models. Realistic, multiband nanowire calculations especially tend to be computationally
intensive and slow. Here, we develop optimizations to the renormalization method of Grosso et al. �Phys. Rev.
B 40, 12328 �1989�� specifically for nanowires with �100�- or �111�-oriented axes. For no-spin-orbit models,
our optimizations give far superior performance to other available methods, while for spin-orbit models on a
single processor, our results are at least as good as the best alternative. More importantly, the parallel scalabil-
ity of our optimizations is superior to that of other available methods, making optimized renormalization very
attractive for multiple-processor computers. We demonstrate the method with calculations for Si nanowires.
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I. INTRODUCTION

Calculations of the electronic structure or transmission
characteristics of realistic nanostructures using multiband
tight-binding models present challenges in terms of both nu-
merical stability and computational burden. Because the
presence of evanescent states throughout the energy spec-
trum leads to the spectacular failure of the simple transfer
matrix method in these calculations, several numerically
stable methods1–6 have been developed for layered structures
�quantum wells, resonant tunneling diodes, nanowires, etc.�.
All of these methods have proven successful in overcoming
the numerical instability problems of the transfer matrix
method; yet, in terms of computational burden, they can dif-
fer greatly depending on the specific application.

The question of numerical efficiency is not merely a com-
putational issue. Transmission or electronic structure calcu-
lations generally serve as the starting point for including
other effects such as inelastic scattering or electromagnetic
fields, and such calculations can be very computationally in-
tensive. It is therefore important that the electronic structure
or transmission calculation consumes as little computation
time as possible. As we shall show here, the renormalization
method6 can be modified and optimized so as to realize sig-
nificant efficiency in nanowire calculations.

A brief review of the properties of the Hamiltonian matrix
for a layered nanostructure is helpful for understanding how
differences in the numerically stable methods will affect
computational efficiency. Because tight-binding models have
interactions only over a finite range of neighboring atoms
�e.g., up to nearest or second nearest�, for a layered structure,
it is generally possible to construct units or layers of one or
more atomic planes normal to the structure axis, which inter-
act only with themselves and their immediately adjacent lay-
ers. �For a nearest-neighbor model such as that we employ

here, the units can be single-atomic planes.� When open-
system boundary conditions are enforced for transmission
calculations, the Hamiltonian matrix takes a block tridiago-
nal form. In general, the first and last blocks incorporating
the boundary conditions are of larger dimension than the
others. However, for the nearest-neighbor model considered
here, only adjacent atomic planes are coupled so that the first
and last blocks remain the same size as the others. For trans-
mission calculations, there is a unit incident flux, so that the
linear system becomes a complex, general A� x=b problem.

The resulting sparse A� x=b problem can be solved using
one of several efficient direct algorithms.7–10 While such
solvers do take advantage of some of the properties of the
matrix A� to achieve efficiencies, they can nevertheless miss
some important structural details which can lead to great
speed improvements. For example, in nanowire calculations
without the spin-orbit interaction, usually, only the terminal
�emitter and collector� blocks of the matrix are complex. An
algorithm which deals with the terminal blocks last could
employ real arithmetic for most of the calculation, realizing
significant savings. Complex-complex multiplies cost four
times as much as do real-real multiplies, while complex-real
multiplies cost twice as much. Even in calculations which
include the spin-orbit interaction, the geometry of many
nanowires permits similar efficiencies. When properly modi-
fied and optimized, the renormalization method6 becomes at-
tractive for nanowire calculations since it allows consider-
able flexibility in the ordering of the solution process.

The renormalization method was originally introduced for
multiband superlattice electronic structure calculations.6

Subsequently, it was used for multiband bound-state calcula-
tions of �001�-oriented quantum wells,11 and single-band,
two-dimensional nanowire calculations.12 Because superlat-
tices and quantum wells are effectively infinite in planar ex-
tent, Bloch sums in the appropriate wave vector form the
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Hamiltonian basis states, so that the size of the block matri-
ces of the Hamiltonian is set by the number of orbitals per
atom, typically 10–20. For single-band nanowire calcula-
tions, the block size is set by the number of atoms transverse
to the nanowire axis; in Ref. 12, this number is typically 50.

Our calculations involve rather larger Hamiltonians since
we study realistic, three-dimensional nanowires modeled
with the sp3d5s* basis13 �with and without spin-orbit interac-
tion�. Such nanowires typically have 30–80 atoms in a plane,
so that when spin orbit is included, the Hamiltonian blocks
are of dimension 600–1600, an order of magnitude or more
larger than the previous calculations. For such large prob-
lems, the renormalization method6 must be optimized and
modified to achieve good computational performance. Here,
we show that for �100�- and �111�-oriented nanowires, the
Hamiltonian matrix has a readily exploited mathematical
structure. We present this modified and optimized version,
showing that significant performance improvements are pos-
sible for many nanowires. We also show that this optimized
version has excellent parallel scalability, and we use it to
study the transmission characteristics and densities of states
of �100�- and �111�-oriented nanowires. Section II presents
the optimized method, Sec. III presents our results, and Sec.
IV the conclusions.

II. METHOD

A. Nanowire geometry and Hamiltonian structure

To illustrate the importance of the choice of solution
method for �100�- and �111�-oriented nanowire calculations,
it is necessary to examine in detail how the nanowire geom-
etry and tight-binding model affect the mathematical proper-
ties of the Hamiltonian matrix. Consider a nanowire grown

on a �100� substrate of a diamond or zinc blende material.
The primitive cell for such a perfect nanowire consists of
four �finite� atomic planes, as shown in Fig. 1; we will refer
to this unit as a layer. The Schrödinger equation for a trans-
mission problem through a nanowire of L layers is
written1,2,5,14 as

�
H= 1,1 + �= 1 − 1=E H= 1,2 0= ¯ 0=

H= 1,2
† H= 2,2 − 1=E H= 2,3 0= 0=

0= � � � 0=

] � � � H= L−1,L

0= ¯ 0= H= L−1,L
† H= L,L + �= L − 1=E

��
C� 1

C� 2

]

]

C� L

� = �
V� I

0�

]

]

0�
� , �1�

where the self-energies �= 1 ,�= L, respectively, couple the emit-
ter and collector layers to the semi-infinite contact regions
�zero-bias continuations of the nanowire structure�, the vec-
tors C� j are the orbital coefficients for the jth layer, and the
vector V� I represents the injection from the left contact. �Any
injection from the right contact would appear in the last
block of the right-hand vector.� Double-underlined matrices
and arrow-superscripted vectors cover layers. �The Hamil-
tonian for a �111�-oriented nanowire adopts the same tridi-
agonal form, except that the primitive cell now has six
atomic planes.�

We remark on some general properties of Eq. �1� before

proceeding. First, Eq. �1� could be written in other forms.
For example, to recover the form of Eq. �1� from Eq. �17� of
Ref. 5, one uses standard block elimination to decouple slabs
0 and �NS+1� from the rest of that matrix by eliminating
blocks L10 and RNSNS+1 �in the notation of Ref. 5�. The result
is a matrix of three block diagonals, where the central �and
largest� block and inhomogeneous vector correspond to Eq.
�1� and are decoupled from the first and last blocks. Second,
the tridiagonal structure of the system in Eq. �1� is clearly
advantageous but is not its only useful mathematical prop-
erty. For nearest-neighbor models, the structure of the sub-
matrices can be exploited to simplify the solution process.

FIG. 1. Atomic positions for diamond. The two fcc sublattices
�“anion” and “cation”� are shown as open and filled circles. The
planes orthogonal to �100� lie parallel to the cube faces, while tri-
angles show planes orthogonal to �111�. Note that in both cases,
atoms of a given plane belong to only one of the fcc sublattices.
Neither of the planes has both anions and cations.
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To understand this structure, it is important to keep in
mind a few points about orthogonal tight-binding models for
diamond or zinc blende semiconductors. First, in nearest-
neighbor orthogonal tight binding, the only interatomic cou-
pling is anion-cation. There are no anion-anion or cation-
cation matrix elements. �For elemental semiconductors, we
employ this terminology strictly to designate the two fcc
sublattices of diamond.� Second, if the spin-orbit interaction
is neglected, then the orbitals are conventionally chosen as
real and all of the submatrices in Eq. �1� except the terminal
diagonal blocks, �1, 1� �L ,L�, are real. Third, when the spin-
orbit interaction is included using Chadi’s model15 �a same-
atom, p-only matrix element�, the only complex submatrices
are the diagonal blocks. There are no interatomic matrix el-
ements between orbitals of different spin quantum numbers.
Our optimizations take advantage of these properties and
therefore assume the use of a nearest-neighbor, orthogonal
tight-binding model, where Chadi’s prescription15 is used for
the spin-orbit interaction �when included�.

The geometry of �100�- and �111�-oriented nanowires to-
gether with a nearest-neighbor orthogonal tight-binding
model leads to perhaps the most important mathematical
properties of the system in Eq. �1�. Figure 1 shows the two
fcc sublattices of the diamond or zinc blende structure. The
cube faces are of course normal to the �100� directions, while
planes normal to the �111� directions are shown as striped
and shaded triangles. Note that for both wire geometries,
only a single atom type �anion or cation� lies in each plane,
so that only atoms in adjacent planes are coupled together.
There are no same-plane, different atom matrix elements, so
that the blocks in Eq. �1� adopt a much simpler form.

We illustrate this simplification for the �100� case; the
extension to the �111� case is obvious. Denoting the atomic
planes n=1,2 , . . . ,N, N=4L, the diagonal blocks take the
form

H= l,l = �
H� 4l−3,4l−3� H� 4l−3,4l−2 0� 0�

H� 4l−3,4l−2
† H� 4l−2,4l−2 H� 4l−2,4l−1 0�

0� H� 4l−2,4l−1
† H� 4l−1,4l−1 H� 4l−1,4l

0� 0� H� 4l−1,4l
† H� 4l,4l�

�,

l = 1,2, . . . ,L , �2�

where single-underlined matrices denote single-atomic plane
blocks. The matrices H� p,p� are different only for the terminal
blocks since they incorporate the open-system boundary con-
ditions. These conditions affect only the first and last planes
of the nanowire,

H� p,p� = H� p,p, p � 1,4L, H� 1,1� = H� 1,1 + �� 1,

H� 4L,4L� = H� 4L,4L + �� 4L, �3�

V� I = �V1,0,0,0�T, �4�

where superscript T denotes the transpose. Because the self-
energies �� p incorporate the open-system boundary condi-

tions, the first and last diagonal blocks are non-Hermitian.
Observe that if the spin-orbit interaction is neglected, the
diagonal blocks of Eq. �2�, H� p,p, are themselves real and
diagonal, consisting of the orbital same-atom parameters.
The off-diagonal blocks in Eq. �1� are even simpler,

H= l,l+1 = �
0� 0� 0� 0�

0� 0� 0� 0�

0� 0� 0� 0�

H� 4l,4l+1 0� 0� 0�
�, l = 1,2, . . . ,�L − 1� , �5�

since only the last plane of layer l and the first plane of layer
�l+1� are coupled. The planar block matrices in Eqs. �2� and
�5� are of dimension NaNorb, where Na is the number of
atoms in a plane and Norb is the number of orbitals per atom.

Because even the planar block matrices can be quite large
in a realistic model, it is critical to take advantage of the
efficiencies afforded by treating the system in Eq. �1� as a
planar coupling system �as opposed to a layer coupling sys-
tem�. Other efficiencies may also be exploited. Since each
atom couples to only four nearest neighbors, the Hamiltonian
blocks coupling adjacent atomic planes will themselves be
quite sparse. In the �100�-oriented nanowire discussed here,
each atom couples to two atoms in the plane ahead, and two
in the plane behind; only orbitals of the same spin quantum
number are coupled. Thus, each block row of the matrix
coupling atomic planes p and �p+1�, H� p,p+1, only has two
nonzero block columns. In summary, then, an efficient
method for solving the system �Eq. �1�� should take advan-
tage of the sparse nature of the Hamiltonian and individual
planar blocks, as well as the fact that the interplane coupling
matrices are real.

B. Optimized renormalization method

The renormalization method6 is attractive for solving
�100� and �111� nanowire transmission problems because it
allows great flexibility in the order of execution of the A� x
=b calculation. As noted above, when spin-orbit coupling is
neglected, all of system �1� is real except for the terminal
blocks, and even when spin-orbit is included, the vast major-
ity of the system is real. In addition, the planar blocks are
quite sparse. As we shall see below, the renormalization
method6 allows us to take advantage of these properties to an
extent unmatched by other methods.

The basic process in the renormalization method6 is de-
coupling an atomic plane from its neighbors. Because the
details of this process are precisely what allow us to intro-
duce optimizations, we briefly sketch the method below.
Since we need the wave function in the original basis, this
process is most conveniently presented as a transformation.
�In the original formulation of the method,6 only the eigen-
values of the superlattice Hamiltonian were of interest.� An
interior plane p �one not belonging to either of the terminal
blocks� is decoupled by observing that

H = ML,p
−1 H̃MR,p

−1 , �6�
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H = �
� �

� H� p−1,p−1 − 1�E H� p−1,p 0�

0� H� p−1,p
† H� p,p − 1�E H� p,p+1

H� p,p+1
† H� p+1,p+1 − 1�E H� p+1,p+2

� � �

� , �7�

H̃ = �
� �

� Ĥ� p−1,p−1 − 1�E 0� Ĥ� p−1,p+1

0� 0� H� p,p − 1�E 0�

Ĥ� p−1,p+1
† 0� Ĥ� p+1,p+1 − 1�E H� p+1,p+2

� �

� , �8�

ML,p
−1 = �

� 0� � ¯ ¯

� 1� X� p
† 0� �

� 0� 1� 0� �

] 0� Y� p
† 1� �

] � � 0� �

�, MR,p
−1 = �ML,p

−1 �†, �9�

X� p = �H� p,p − 1�E�−1H� p−1,p
† , Y� p = �H� p,p − 1�E�−1H� p,p+1,

�10�

Ĥ� p−1,p+1 = − H� p−1,pY� p, Ĥ� p−1,p−1 = H� p−1,p−1 − H� p−1,pX� p,

Ĥ� p+1,p+1 = H� p+1,p+1 − H� p,p+1
† Y� p, �11�

with the other blocks unchanged. Because each plane is de-
coupled once, indexing the transformation matrices
ML,p

−1 ,MR,p
−1 by just the decoupled plane index is sufficient.

Also, the matrix ML,p is trivially obtained from Eq. �9�,

ML,p = �
� 0� � ¯ ¯

� 1� − X� p
† 0� �

� 0� 1� 0� �

] 0� − Y� p
† 1� �

] � � 0� �

�, MR,p = ML,p
† . �12�

The matrices X� p ,Y� p and the inverses Ĥ� p,p
−1 used to generate

them are saved for use in wave function reconstruction. �A
circumflex is used since a plane may have been renormalized
prior to decoupling.�

One finds the wave function by repeatedly decoupling
planes and accumulating transformation matrices until the

decoupled Hamiltonian H̃ is block diagonal. Only the last
step, decoupling terminal planes 1 and 4 L, is different be-
cause the terminal blocks are not Hermitian due to the open-
system boundary conditions,

ML,4L
−1 = �

1� 0� ¯ 0� X� 4L�

0� � � � 0�

] � � � ]

] � � � 0�

0� ¯ ¯ 0� 1�
�,

MR,4L
−1 = �

1� 0� ¯ ¯ 0�

0� � � � ]

] � � � ]

0� � � � 0�

X� 4L 0� ¯ 0� 1�
� , �13�

X� 4L = �Ĥ� 4L,4L + �� 4L − 1�E�−1Ĥ� 1,4L
† ,

X� 4L� = Ĥ� 1,4L�Ĥ� 4L,4L + �� 4L − 1�E�−1, �14�

H̃� 1,1 = Ĥ� 1,1 − Ĥ� 1,4LX� 4L. �15�

Note that for an incident state as in Eq. �1�, multiplication of
the inhomogeneous vector by the matrices ML,p has no ef-
fect. Thus, to reconstruct the wave function, one multiplies
the inhomogeneous vector by the inverse of the now block-

diagonal H̃ followed by repeated multiplication by the trans-
formation matrices MR,p, in reverse decoupling order. The
transformation matrices are not multiplied together; instead,
this operation proceeds as the far more efficient matrix-
vector multiplication. Because each plane is decoupled only
once, a simple recursion relation yields the subvectors of
wave function coefficients for each atomic plane. From Eq.
�4�, only plane 1 has an inhomogeneous part, so that only the

inverse �H̃� 1,1+�� 1−1�E�−1 need be computed. Furthermore,
each of the matrices MR,p alters only the subvector for plane
p, which is not affected by subsequent matrix multiplica-
tions. Because this subvector was initially zero, the result is
the wave function subvector for plane p, Cp. The recursion is
thus
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C1 = �H̃� 1,1 + �� 1 − 1�E�−1V1, C4L = − X� 4LC1, �16�

Cp = − X� pCp−m − Y� pCp+n, �17�

where the recursion proceeds in reverse decoupling order
and, prior to decoupling, the plane p was connected to planes
�p−m� and �p+n�, p�1, 4L, m ,n�1.

There is, of course, great flexibility in the ordering of the
decoupling and it is here that we can optimize the method. It
is not at all necessary to “roll up” the nanowire from one end
to the other. In fact, that procedure is very inefficient. To
understand why, note from Eqs. �4�–�9� that so long as only
interior planes are being decoupled, the new same-plane ma-

trices �e.g., Ĥ� p+1,p+1� remain Hermitian, and the new inter-
plane coupling matrices remain Hermitian conjugates of one

another, e.g., Ĥ� p+1,p−1=Ĥ� p−1,p+1
† , thus saving matrix multipli-

cations. In the no-spin-orbit case, intra- and interplane ma-
trices for all interior planes are purely real, so all but the
terminal layers can be decoupled using real arithmetic, where
multiplications cost only one-fourth that of complex arith-
metic. In the spin-orbit case, as shown in the Appendix,
when the orbitals in a plane are ordered by spin quantum
number, then atom, and finally spatial orbital, all interior-
plane Hamiltonian blocks �both intra- and interplane� take a
special form which persists under inversion and matrix addi-
tion and multiplication,

H� = � a> b>

− b>* a>*
� , �18�

so that renormalized blocks such as Ĥ� p+1,p+1 and Ĥ� p−1,p+1
retain this form as well. As a result, only one-half of each
matrix need be computed using matrix multiplication �the
remainder follows using O�N2� operations�. In contrast,
“rolling up” the nanowire from one end to the other would
introduce non-Hermitian diagonal blocks and complex arith-
metic �without any special structure� from the very first step,
destroying all of the special structure of the interior matrices.

Even greater savings can be achieved by repeated decou-
pling of alternate interior planes because this procedure pre-
serves the sparse nature of the Hamiltonian blocks for as
long as possible. We emphasize that these savings do not
depend on the alternate planes being bulklike, as is the case
in Ref. 6, which proposes decoupling of all layers of a given
species. To see this, consider the initial decoupling step. If
only planes of a single atomic type �anion or cation� are
decoupled first, then the diagonal block inversions are either
trivial �no-spin-orbit case� or nearly so �spin-orbit case� since
there are no same-plane interatomic parameters. One multi-
plies these inverses by the interplane coupling matrices,
which are likewise initially sparse, as discussed above. De-
coupling every other remaining plane in the second step, and
repeating this procedure until only the terminal layers remain
coupled, maintains as much of the sparse nature of both the
intra- and interplane coupling matrices for as long as pos-
sible. This procedure results in substantial computational
savings because one-half of the atomic planes are decoupled
with simple sparse-matrix operations, and a further one quar-
ter are decoupled with a mixture of full- and sparse-matrix

operations; only the final quarter of the nanowire requires
full-matrix operations. The savings are often dramatic. In
practice, decoupling the first three-fourths of the planes takes
only about one-third of the total decoupling time.

Thus, the savings do not depend on all planes being bulk-
like, only on the fact that there are no same-plane interatomic
couplings. For example, in a random-alloy AlGaAs nano-
wire, cation planes p , �p+2� , �p+4� , . . . all will be different,
due to different atomic compositions and orderings. Like-
wise, in a biased nanowire, where the bias is treated in the
conventional manner, as a same-atom, same-orbital
interaction,16–18 all cation planes are different �as are all an-
ion planes� due to the varying potential. However, because
there are no same-plane interatomic couplings in either case,
the computational savings are the same. This optimized pro-
cess demonstrates yet another inefficiency of rolling up the
wire from one end to the other since that procedure produces
full matrices from the beginning.

Finally, observe that the renormalization method6 lends
itself naturally to parallelization. Obviously, one can simul-
taneously decouple alternating planes independently. We
have found the following parallelization scheme to be par-
ticularly efficient. For an Nproc processor computer, we di-
vide the Hamiltonian into Nproc sets of atomic planes, assign-
ing one set to each processor. Each processor only has the
part of the full Hamiltonian for its own set of planes. We
apply the optimized renormalization algorithm discussed
above to each set until only the first planes of the sets remain
connected. Thus, prior to the final renormalization, the first
plane of set n now only couples to the first plane of set �n
−1� and the first plane of set �n+1�. This method reduces
communication between the processors operating on the
various sets of planes.

III. RESULTS

Figure 2 shows transmission and density of states results
for a Si nanowire with axis along �100�, including the spin-
orbit interaction, as calculated with the optimized renormal-
ization method presented above and MUMPS;7 the wire di-
mensions are Lx�Ly �Lz=30�2.1�2.1 nm3. The sp3d5s*

nearest-neighbor tight-binding model13 is used for the calcu-
lations and the Si parameters are taken from Ref. 19. The
curves lie atop one another because both methods give es-
sentially the same results, with relative errors of 8.0�10−8

for the transmission and 8.4�10−7 for the density of states.
The wire is unbiased and perfect, so sharp transmission steps
occur as new channels open, exactly as expected. The den-
sity of states results correlate nicely with the transmission
results, showing peaks as new channels open. This test es-
tablishes the reliability of the optimized renormalization
method for nanowires modeled with realistic, multiband
tight-binding approaches.

In Tables I and II, we compare the optimized renormal-
ization method presented here to other methods for transmis-
sion calculation. All simulations were run on a 64 bit Sun
Fire X4600 with 4�2.8 GHz Dual Core Opteron processors.
Table I presents single-processor times �in seconds� to com-
pute one energy point for the device wave function �or in the
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case of the recursive Green function method, the Green func-
tion� after the open-system boundary conditions have been
computed as well as processing time relative to that of opti-
mized renormalization; results are listed as absolute/relative
time. The wire has dimensions Lx�Ly �Lz=30�2.1
�2.1 nm3, with transport axis along either �100� or �111�,
and we employ the sp3d5s* nearest-neighbor tight-binding
model13 with Si parameters taken from Ref. 19. For no-spin-
orbit calculations, optimized renormalization is typically two
to three times faster than other methods. For the �100� nano-
wire with spin orbit, MUMPS7 is slightly faster, but for the
�111� nanowire with spin orbit, optimized renormalization is

slightly faster. Comparing the �111� to the �100� cases reveals
that optimized renormalization takes only slightly longer
�139 s vs 130 s�, whereas MUMPS7 takes significantly longer
�172 s vs 117 s�. Thus, for a single processor, optimized
renormalization is superior for no-spin-orbit cases and on
average at least as good as the best alternative when spin
orbit is included.

It is in terms of parallel scalability where optimized renor-
malization clearly takes the lead. In Table II, we present
execution times �in seconds� and parallel scalings for a cir-
cular nanowire with axis along �111�, length L=50 nm, and
diameter d=4 nm. The same tight-binding model is used but
without spin-orbit coupling. Figure 3 shows the transmission
and density of states results for this nanowire. As with the
nanowire in Fig. 2, the two methods give essentially the
same results. The optimized renormalization method shows
an impressive parallel behavior, as expected from the discus-
sion in Sec. II B. above. Discounting the anomalous perfor-
mance of SuperLUdist,9 discussed below, the optimized renor-
malization method has the best parallel scaling behavior, in
addition to being the fastest method of all. The two- and
four-processor scalings come close to theoretical maxima,
and even the eight-processor scaling is very impressive
�5.85� �.

We believe the superlinear performance of the SuperLUdist

�Ref. 9� algorithm reported here �two processors: 2.9�; four
processors: 5.4�� to be anomalous. We have found that on
some single processors, it gives unusually poor performance
and in these cases we have seen a superlinear speed improve-
ment between one and two processors. Conversely, where the
single-processor performance is reasonable, we have seen
only the expected sublinear improvement. This processor de-
pendence is likely due to the fact that SuperLUdist �Ref. 9� was
designed specifically for parallel computers. As further evi-
dence that the superlinear figures are the result of comparing

0

2

4

6

8

10

12

14

16
Tr
an
sm
iss
io
n

1.5 1.55 1.6 1.65 1.7 1.75
0

50

100

150

200

E (eV)

D
en
sit
y−
of
−S
ta
te
s/L
a y
er
(e
V
−1
)

Renormalization
MUMPS

1.51 1.515 1.52
0

50

D
O
S

FIG. 2. Transmission and density of states �DOS� per layer for
the Lx�Ly �Lz=30�2.1�2.1 nm3 Si nanowire with axis along
�100� including spin-orbit coupling, as discussed in the text as cal-
culated with the optimized renormalization method presented here
and MUMPS �Ref. 7�. The two curves are essentially the same, with
maximum relative errors of 8.0�10−8 for the transmission curve
and 8.4�10−7 for the density of states. Inset: Detailed DOS near
the turn on of the nanowire.

TABLE I. Execution times �measured in seconds� and execution times relative to the optimized renor-
malization for a silicon nanowire Lx�Ly �Lz=30�2.1�2.1 nm3 with axis along the �100� or �111� direc-
tions with �SO� or without �no SO� spin-orbit coupling. The test computation is one energy point once the
open-system boundary conditions have been computed, for the device wave function �Refs. 7–10� or the
Green function �Ref. 3� via the recursive Green Function �RGF� method. First row, N, is the size of the sparse
matrix �E−H−��. Entries are listed as absolute time �s�/relative time �dimensionless, to optimized renormal-
ization�. All simulations were run on a 64 bit Sun Fire X4600 with 4�2.8 GHz Dual Core Opteron
processors.

�100� no SO �100� SO �111� no SO �111� SO

N 70400 140800 67200 134400

Optimized renormalization 11.2 /1.0 130 /1.0 11.3 /1.0 139 /1.0

Umfpak 5.0.1a 24.6 /2.20 176 /1.35 28.4 /2.51 185 /1.33

PARADISOb 27.7 /2.47 147 /1.13 63.5 /5.62 447 /3.22

SuperLUdist
c 40.6 /3.62 203 /1.56 58.7 /5.19 420 /3.02

MUMPS 4.6.3d 21.4 /1.91 117 /0.90 26 /2.30 172 /1.24

RGFe 95 /8.48 708 /5.45 104 /9.20 754 /5.42

aReference 8.
bReference 10.
cReference 9.
dReference 7.
eReference 3.
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reasonable multiple-processor performance to unusually poor
single-processor results, we calculate from Table II the speed
improvements between two and four processors �1.84� � and
four and eight processors �1.15� �. These results show the
expected sublinear scaling. In comparison, for optimized
renormalization, the two- to four-processor improvement is
1.85�, while that for four to eight processors is 1.62�. We
therefore conclude that optimized renormalization has supe-
rior scaling, in addition to being the fastest method for no-
spin-orbit calculations.

IV. CONCLUSIONS

We have optimized the renormalization method6 for use in
�100�- and �111�-axis nanowire transmission calculations.
Our optimizations exploit mathematical properties of the
Hamiltonian matrix arising from the relationships between

the device geometry and the tight-binding model. One key
result is that the open-system boundary conditions should be
handled only as the last step since doing so allows us to
exploit the mathematical structure of the Hamiltonian to the
greatest extent possible. For no-spin-orbit models, our opti-
mizations allow the use of real arithmetic for the vast major-
ity of the transmission or wave function calculation, while
for spin-orbit models, we reduce the computational effort by
almost one-half via exploitation of the structure in the blocks
of the Hamiltonian matrix. Furthermore, we have shown that
the optimized renormalization method has an excellent par-
allel scaling behavior. Thus, optimized renormalization is
well suited for modeling nanowires with realistic tight-
binding models; its superior performance will aid in device
design and simulation and clarification of nanodevice behav-
ior.
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APPENDIX

Here, we show that the special form taken by the Hamil-
tonian blocks in the spin-orbit case persists up to the last
renormalization. To establish this assertion, we must show

TABLE II. Execution times �in seconds� and parallel scalings for a circular silicon nanowire �length L
=50 nm; diameter d=4 nm� with axis along �111� without spin-orbit coupling. The test computation is one
energy point once the open-system boundary conditions have been computed, for the device wave function
�Refs. 7–10� or the Green function �Ref. 3� via the recursive Green function �RGF� method. The size of the
sparse matrix �E−H−�� is N=319 060. Entries are listed as time �s�/speed �relative to one processor�. All
simulations were run on a 64 bit Sun Fire X4600 with 4�2.8 GHz Dual Core Opteron processors.

CPUs 1 2 4 8

Optimized renormalization 316 /1� 162 /1.95� 87.4 /3.61� 54 /5.85�

Umfpak 5.0.1a 1070 NA NA NA

PARADISOb 1660 /1� 852 /1.95� 475 /3.5� 330 /5.03�

SuperLUdist
c 2950 /1� 1009 /2.9� 547 /5.4� 477 /6.18�

MUMPS 4.6.3d 667 /1� 362 /1.84� 211 /3.16� 160 /4.16�

RGFe 3560 NA NA NA

aReference 8.
bReference 10.
cReference 9.
dReference 7.
eReference 3.
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FIG. 3. Transmission and density of states per layer for the
circular Si nanowire �length L=50 nm; diameter d=4 nm� with axis
along �111� without spin-orbit coupling, as calculated with the op-
timized renormalization method presented here and MUMPS �Ref. 7�.
As with Fig. 2, the two curves are essentially the same. Inset: De-
tailed DOS near the turn on of the nanowire.
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that this form persists under �i� matrix inversion and �ii� mul-
tiplication of two matrices of this form.

When the spin-orbit interaction is treated as a p-orbital,
same-atom only parameter, the Hamiltonian block for a
single atom, l, takes the form

� H> l
↑↑ H> l

↑↓

− H>
l

↑↓* H>
l

↑↑*� = �h> d + h> so
↑↑ h> so

↑↓

− h>
so

↑↓* h> d + h>
so

↑↑*� , �A1�

where the matrix h> d is real and diagonal in the orbitals. Be-
cause none of the additional orbitals used in our model has
spin-orbit interactions, it suffices to specify the matrices in
Eq. �A1� for the sp3 basis; the extension to the sp3d5s* case
is obvious. For the sp3 basis, with orbital ordering
	
s� , 
px� , 
py� , 
pz��, the matrices appearing in Eq. �A1� are

h> d = �
Es 0 0 0

0 Ep 0 0

0 0 Ep 0

0 0 0 Ep

�, Es,Ep � Re, �A2�

h> so
↑↑ = �

0 0 0 0

0 0 − i� 0

0 i� 0 0

0 0 0 0
�, h> so

↑↓ = �
0 0 0 0

0 0 0 �

0 0 0 − i�

0 − � i� 0
�,

� � Re. �A3�

From Eq. �A3�, it is clear that −�h> so
↑↓�*= �h> so

↑↓�†, as demanded
by Hermiticity; the form adopted in Eq. �A1� is more useful
for our purposes.

Next, consider the same-plane Hamiltonian block for an
interior plane p of n atoms, where the basis is ordered
		
�↑ ;1�� , . . . , 	
�↑ ;n�� , 	
�↓ ;1�� , . . . , 	
�↓ ;n���, and
	
�� ; l�� denotes the full set of spatial orbitals � of spin � on
atom l. �Since this is an interior plane, it does not incorporate
the open-system boundary conditions. These appear only in
the terminal planes.� From Eqs. �A1�–�A3�, it is clear that
prior to any renormalization, this block takes the form

H� �p,p� = � H> p,p
↑↑ H> p,p

↑↓

− H>
p,p
↑↓* H>

p,p
↑↑*� , �A4�

H> p,p
↑↑ = diag�H� 1

↑↑, . . . ,H� n
↑↑�, H> p,p

↑↓ = diag�H� 1
↑↓, . . . ,H� n

↑↓� ,

�A5�

where “diag” denotes a block-diagonal matrix, and the
blocks in Eq. �A5� are defined in Eq. �A1�. Note that the
form of Eq. �A4� is the same as that of Eq. �A1�.

To show that this form persists under inversion, we con-
sider an invertible matrix h� and its inverse,

h� = � a> b>

− b>* a>*
�, h� −1 = ��> �

>

�
>

�>
� , �A6�

where all blocks are of the same size. Demanding that
h� ·h� −1=1� results in four equations to be solved for the blocks
of h� −1. The result is

�> = �a> + b> �a>*�−1b>*�−1, �
>

= − a>−1b>�> *, �> = �> *,

�
>

= − �
>

*. �A7�

Hence, the form of Eq. �A6� is preserved under inversion.
The proof of persistence under multiplication is even simpler
�under matrix addition, it is obvious�,

� a> b>

− b>* a>*
�� c> d>

− d>* c>*
� = � a>c> − b>d>* a>d> + b>c>*

− a>*d>* − b>*c> a>*c>* − b>*d>
� .

�A8�

The persistence of this form throughout the renormaliza-
tion process until the last step follows from observing that
the matrices to be computed, such as,

X� 4 = h� 4,4
−1 H� 3,4

† , ĥ� 3,3 = h� 3,3 − H� 3,4X� 4, Ĥ� 3,5 = − H� 3,4h� 4,4
−1 H� 4,5,

�A9�

where prior to the first renormalization the adjacent-plane
coupling matrices are spin independent and block diagonal,
H� 3,4=diag�H> 3,4

↑↑ ,H> 3,4
↑↑ � and real. Note that this form is a spe-

cial case of the form Eq. �A6�. Because the matrices com-
puted in Eq. �A9� all retain the form Eq. �A6�, subsequent
renormalizations will likewise retain this form until the last
step, where the open-system boundary conditions enter the
process. Therefore, only the upper half of each matrix need
be computed, reducing the computational burden by almost
one-half.
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