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We study the transport properties of a quantum dot with sublattice symmetry �chiral symmetry� coupled to
two electron reservoirs via asymmetric ideal point contacts. The joint distribution of transmission eigenvalues
is obtained from a maximum-entropy principle, and we calculate all moments and the full distribution of
conductance for some cases of physical interest in the extreme quantum limit of few open channels. A
Brownian motion model is used to obtain the average conductance for an arbitrary number of open channels in
each lead. All analytical results are confirmed by numerical implementations of the Mahaux–Weidenmüller
formula for the scattering matrix.
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I. INTRODUCTION

In the absence of the Coulomb interaction, the electron
dynamics in phase coherent conductors can be well de-
scribed via the Landauer–Büttiker scattering formalism.1 In
this approach, transport observables such as conductance,
shot-noise power, or higher cumulants of the charge-counting
statistics2 are directly related to the scattering �S� matrix of
the system. Universal statistical properties of such observ-
ables can be obtained by means of a random-matrix theory
�RMT� formulation of the transport problem. There are two
such approaches:3 the Hamiltonian and the scattering matrix
technique �which includes transfer matrices�. In the first one,
the Hamiltonian of the system is modeled by a Hermitian
random matrix, and the associated S-matrix is obtained
through quantum scattering theory. In the second case, the
RMT is directly constructed for the S-matrix by means of a
maximum-entropy principle, which is global, i.e., involves
the scattering properties of the whole system, in the case of
ballistic chaotic cavities and local, i.e., only single scattering
from a thin slice is considered, for the transfer matrix de-
scription of disordered wires. For chaotic quantum dots,
strong arguments in favor of the equivalence of these two
approaches have been presented in Refs. 4–6.

The fundamental feature of the maximum-entropy tech-
nique is the possibility to directly address the universal sto-
chastic properties of the S-matrix bypassing the need to
specify irrelevant microscopic details of the underlying
Hamiltonian. The only relevant information concerns the ba-
sic intrinsic symmetries of the Hamiltonian, such as time
reversal �TR�, spin rotation �SR�, particle hole, and chiral.
There are ten universality classes which directly follow from
a one-to-one correspondence7 with Cartan’s table of symmet-
ric spaces.8 These ten symmetry classes can be further di-
vided into three categories: Wigner–Dyson, chiral, and
Bogoliubov–de Gennes �BdG�. The Wigner–Dyson class was
the first thoroughly studied and contains the three standard
ensembles of classical RMT.20 It is appropriate to describe
transport on conventional disordered conductors and ballistic
chaotic cavities. The chiral class applies to systems with off-
diagonal disorder and the BdG class is used in the descrip-
tion of quasiparticles in weakly disordered unconventional
superconductors.

During the last decade, the proof of the mathematical ex-
istence and the physical realization of new universality
classes resulted in an outburst of activity in this field. Some
of the addressed problems concerned the effects of the novel
symmetries on physical properties of previously studied sys-
tems. In this line of research, transport properties of systems,
such as quantum wires and quantum dots with chiral sym-
metry, have attracted much attention. The chiral symmetry
naturally emerges on systems in which the disorder is com-
pletely off diagonal, such as in the random hopping
model.9,10 The nearest-neighbor random hopping connecting
sites of different sublattices in a bipartite topology implies an
additional discrete symmetry, in which the single particle
energy changes sign under a transformation that changes the
sign of the wave function in one sublattice, but not in the
other. As a consequence, the spectrum is symmetric about the
energy �=0 and, at this special point, the system shows very
unusual spectral and transport properties, which are signa-
tures of the chiral symmetry class.

Quasi-one-dimensional disordered conductors with chiral
symmetry �chiral quantum wires� have been intensively stud-
ied, both analytically and numerically, with the aid of the
random-transfer-matrix approach.9–14 This disordered system
has a bipartite structure with a random hopping connecting
sites in different sublattices and is coupled via ideal leads,
also a bipartite lattice, to two electron reservoirs. Some of
the remarkable results reported in these works include the
anomalous behavior of the density of states near the band
center and the dependence of the localization length on the
parity of the number of open channels. Similar results were
obtained from an alternative approach based on the nonlinear
� model.15,16 In addition, these works reported a different
parity effect which depends on the total number of sites in
the chiral quantum dot and affects both its spectral and trans-
port properties.

A chiral quantum dot can be defined as the zero-
dimensional limit of a quantum wire with sublattice symme-
try. A systematic study of transport properties of a two-
terminal chiral quantum dot was presented in Ref. 18 in a
model that corresponds to the zero-dimensional limit of that
introduced in Ref. 10. It is assumed that there is a finite
density of zero-energy eigenstates responsible for transport
at the chiral point.17 It is also assumed that the coupling of
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the system to the leads is ideal �no barriers�, symmetric, i.e.,
the same number of open scattering channels in both leads
�N1=N2�, and involves sites of both sublattices, which allows
for the existence of a nonvanishing electric current through
the system.16 Based on a maximum-entropy S-matrix en-
semble, the authors showed that the presence of chiral sym-
metry dramatically affects transport observables in the limit
of few propagation modes, but in the semiclassical limit, the
chiral symmetry affects only the quantum correction terms,
which are more sensitive to phase coherence. Transport and
spectral properties of a chiral quantum dot were recently
studied in a different context in Ref. 19, which considers
chiral dots with absorption coupled to an electron reservoir
via a single-channel lead.

In this work, we generalize the analysis based on the
maximum-entropy S-matrix approach presented in Ref. 18 to
the case of asymmetric ideal contacts, i.e., by allowing for
different numbers of propagation modes in each lead. We
also show some calculational details not included in Ref. 18
and derive additional results. Furthermore, we formulate the
problem in terms of the Hamiltonian approach and show that
the compatibility between the chiral constraint on the Hamil-
tonian and on the S-matrix is guaranteed if we impose an
additional constraint on the coupling matrix. The analytical
results obtained from the maximum-entropy S-matrix en-
semble are compared to numerical ones obtained from the
Hamiltonian approach, yielding perfect agreement.

The paper is organized as follows. In Sec. II, we briefly
review the scattering approach, list the basic symmetry con-
straints imposed on the S-matrix, and write the observables
of interest in terms of transmission eigenvalues. Next, we
present the two random-matrix approaches to the problem. In
Sec. II A, we construct the maximum-entropy S-matrix en-
semble and obtain the joint transmission eigenvalue distribu-
tion. In Sec. II B, we introduce the chiral random Hamil-
tonian of the closed dot and relate it to the S-matrix of the
open dot through the Mahaux–Weidenmüller formula. In
Sec. III, we obtain analytical expressions for the average
conductance and shot-noise power and their full distributions
in the limit of few open channels. We also compare the ana-
lytical formulas with numerical results.

II. SCATTERING FORMALISM

Our model system is a two probe setup consisting of a
chiral quantum dot, coupled to two electrical reservoirs by
semi-infinite ideal leads, with N1 and N2 open propagation
channels. We shall consider the general asymmetric case as-
suming, without loss of generality, that N2�N1 and defining
m=N2−N1 and N=min�N1 ,N2�.

In the leads, we have incoming and outgoing plane wave
states described, respectively, by Ni-dimensional vectors Ii
and Oi, i=1,2. By definition, the scattering matrix S relates
these amplitudes through

�O1

O2
� = S�I1

I2
� . �1�

It is conveniently written in the following block structure:

S = �s11 s12

s21 s22� = �r t�

t r�
� , �2�

in which the blocks r and r� denote reflection matrices, while
t and t� are transmission matrices. Each block sij is an Ni
�Nj matrix.

Flux conservation implies that the S-matrix must be uni-
tary,

S†S = 1. �3�

Sublattice symmetry, represented by the invariance of the
scattering properties of the system under a transformation
that interchanges incoming and outgoing waves, changing
the sign of their energy, leads to the constraint10 S−�

† =S�.
Since we are interested in describing transport properties at
the chiral point �=0, the scattering matrix becomes Hermit-
ian,

S† = S . �4�

In the absence of other symmetries, the S-matrix of the
chiral ensemble must satisfy the above requirements only.
This specifies the chiral-unitary class, characterized by Dys-
on’s index �=2. Invariance of the physical system under TR
and SR imposes additional constraints on the scattering ma-
trix. For systems with TR and RS symmetries, the S-matrix
must be symmetric,

ST = S . �5�

Conditions �3�–�5� define the chiral-orthogonal class, charac-
terized by �=1. On the other hand, for systems with TR but
without SR symmetries there is an additional spin degree of
freedom for each scattering state, yielding a factor 2 in the
order of the scattering matrix. Therefore, S becomes a 2�N1
+N2��2�N1+N2� matrix, which can be conveniently repre-
sented as an �N1+N2�� �N1+N2� quaternion matrix. For
such system, S must be a self-dual quaternion matrix,20

S̄ = S . �6�

Conditions �3�, �4�, and �6� define the chiral-symplectic
class, characterized by �=4.

The unitarity of the S-matrix implies that the N2-order
matrix tt† has the same eigenvalues as the N1-order matrix
t�t�

†
, plus a set of m=N2−N1 zero eigenvalues. The nonzero

eigenvalues �i, �i=1, . . . ,N1� are called the transmission ei-
genvalues of the system. Transport properties can be related
to the transmission eigenvalues by means of the Landauer–
Büttiker scattering theory. We write below, as instances, the
dimensionless conductance and shot-noise power in terms of
the transmission matrix,

g = Tr tt† = �
i=1

N1

�i, �7�

p = Tr�tt†�1 − tt†�� = �
i=1

N1

�i�1 − �i� . �8�
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In the following section, we discuss the two RMT ap-
proaches to obtain the scattering matrix distribution of a chi-
ral quantum dot.

A. S-matrix ensemble: Maximum-entropy approach

The statistical characteristics of transport observables can
be obtained by averaging over an ensemble of scattering ma-
trices. We may therefore introduce the probability to find a
system with scattering matrix in a neighborhood dS of some
given S by

dP��S� = W��S�d�����S� , �9�

where d�����S� is the, �-dependent, invariant Haar’s measure
of the appropriate symmetry group. The S-matrix ensemble
can be constructed by maximizing the Shannon information
entropy,21

S = −� d�����S�W��S�ln W��S� , �10�

subject to the symmetry constraints of S and normalization of
W��S�, yielding W��S�=const. This result means that the
scattering matrix is uniformly distributed over the unitary
group and that the differential probability is completely de-
fined by the corresponding Haar’s measure,

dP��S� 	 d�����S� . �11�

Such an approach has the advantage of directly accessing the
universal distribution of the scattering matrix, without the
need to build a detailed microscopic Hamiltonian.

Following Ref. 22, we represent the chiral S-matrix in the
polar parametrization,

S = �u 0

0 v
�	− cos 2
 0 sin 2


0 1m 0

sin 2
 0 cos 2


�u−1 0

0 u−1 � , �12�

where u and v are N1�N1 and N2�N2 matrices, both or-
thogonal, unitary, and real self-dual quaternion for �=1, 2,
and 4, respectively, and 1m is the m-dimensional unit matrix.
The matrix 
 is diagonal and contains N1 nonvanishing ei-
genvalues 0��i� /2, related to the transmission eigenval-
ues by �i=sin2�2�i�. Note that in the case N1=N2 �m=0�,
this representation reduces to that used in Ref. 18. In such a
parametrization, the dimensionless conductance and shot-
noise power are, respectively, given by

g = �
i

sin2�2�i� , �13�

p = �
i

sin2�2�i�cos2�2�i� . �14�

The invariant measure is calculated in Appendix A for all
symmetry classes. Upon integrating over the angular part, we
arrive at the reduced distribution,

P����� 	 
i�j


�=�

�sin��i + �� j���
i=1

N1

sin�−1�2�i�sin�m��i� .

�15�

In the particular case of symmetric contacts �m=0�, this ex-
pression reduces to that presented, without derivation, in Ref.
18. In this case, it was possible to connect the chiral S-matrix
ensembles to Cartan’s table of symmetric spaces. In the gen-
eral case �m�0�, however, such a directed connection is not
possible. Nevertheless, the non-Cartan parametrization, re-
cently discussed by Caselle and Magnea,23 could be used to
obtain Eq. �15�. For conventional quantum dots with asym-
metric contacts, the joint distribution of transmission eigen-
values was first stated, without proof, in Ref. 3. A deduction
was recently put forward in Ref. 24.

B. Hamiltonian approach

Systems with chiral symmetry are described by Hamilto-
nians with the following off-diagonal block structure,

H = � 0 H

H† 0
� , �16�

in which the block H is a rectangular matrix with L1 rows
and L2 columns, so that the order of H is M =L1+L2. We
assume that L1�L2, in which case the matrix H has exactly
Nz=L1−L2 zero eigenvalues, whose corresponding eigen-
functions are denoted as zero modes. The remaining M −Nz
eigenvalues occur in symmetrical pairs ��k, where �k de-
notes the positive square roots of the eigenvalues of H†H.25

Chiral Hamiltonian �16� satisfies the following constraint,

�zH�z = − H, �z = � 1L1
0L1�L2

0L2�L1
− 1L2

� , �17�

which is a generalization of the Pauli matrix �z.
We assume that, in the universal regime, the block H can

be chosen as a member from the chiral Gaussian ensemble.
The probability distribution is given by

P�H� 	 e−2�M Tr H†H. �18�

Such ensembles have been used in the study of spectral prop-
erties of the QCD Dirac operator.26

The scattering matrix of an open system is obtained from
the Hamiltonian H of the corresponding closed system by
means of the Mahaux–Weidenmüller formula,27

S�E� = 1 − 2iW† 1

E − H + iWW†W , �19�

in which W is an M � �N1+N2� nonrandom matrix describing
the coupling of the resonance states in cavity to the propa-
gating states in the guides. For our two-terminal problem, it
has the following structure:28

W�,n = ��W1��,n, n = 1, . . . ,N1

�W2��,n−N1
, n = N1 + 1, . . . ,N1 + N2.� �20�

The matrices Wj, j=1,2, describe the coupling to each of the
two guides. By explicitly using these matrices, we can write
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the S-matrix in the familiar block structure �Eq. �2�� with
transmission and reflection matrices given by

r = 1 − 2iW1
†D−1W1, �21�

t� = − 2iW1
†D−1W2, �22�

t = − 2iW2
†D−1W1, �23�

r� = 1 − 2iW2
†D−1W2, �24�

where

D = E − H + i�W1W1
† + W2W2

†� . �25�

Note that Eqs. �21�–�24� give the full S-matrix, although we
only need the transmission matrix �Eq. �23�� to calculate the
observables of interest. The universality of the results, and
the agreement with the maximum-entropy approach, is guar-
anteed by the following sufficient, but not necessary, or-
thogonality condition,29

Wp
†Wq =

1


�p,q. �26�

This is usually the only constraint imposed on the coupling
matrix describing a conventional chaotic cavity coupled to
free propagation leads. In the chiral case, we find compat-
ibility between the chiral constraint in the Hamiltonian,
�zH�z=−H, and in the scattering matrix, S�E�=S†�−E�,
only if the coupling matrices satisfy the extra constraint,

�zWj = Wj, j = 1,2. �27�

In the following sections, we shall present the results for
chiral Hamiltonians with �=1, 2, and 4 and coupling matri-
ces satisfying both Eqs. �26� and �27�. The conductance and
shot-noise power are obtained from the transmission matrix
�Eq. �22�� by using Eqs. �7� and �8�. Such procedure can be
quite demanding since we must invert a M �M complex
matrix for each realization, with in principle M�1. We ob-
served that, in the limit of few open channels, good results
can be obtained with relatively small values for M since we
generate a large number of realizations. The numerical data
in the next section were obtained from 30�30 matrices H
and 30 000 realizations. The number of zero modes is fixed
by Nz=min�N1 ,N2�.

III. PHYSICAL RESULTS

In this section, we restrict our attention to some particular
cases of physical interest. We begin by analyzing the extreme
quantum limit of a few number of open channels. We ana-
lytically obtain the full distribution of conductance for the
cases N1=N2=1 and N1=N2=2. We also study the interme-
diate regime N1=1 and N2=1+m, in which we can investi-
gate the effects on the conductance distribution of opening
the scattering channels by increasing m. All results are sup-
ported by extensive numerical simulations of the Mahaux–
Weidemüller formula. Finally, we derive the average conduc-
tance for arbitrary N1 and N2.

A. Extreme quantum regime (N1=1=N2)

The study of statistical properties in the extreme quantum
limit is very important since it reveals information about
quantum transport in a nonperturbative regime that is experi-
mentally accessible.30

For the single-mode case �N1=1=N2�, the eigenvalue dis-
tribution �Eq. �15�� simplifies to

P��� =
2���/2 + 1/2�

����/2�
sin�−1�2�� , �28�

from which we obtain the moments of the conductance and
shot-noise power,

�gn� = 
j=0

n−1
�� + 2j�

�� + 2j + 1�
, �29�

�pn� = 
j=0

n−1
�2j + 1��� + 2j�

�� + 4j + 1��� + 4j + 3�
, n = 1,2, . . . . �30�

The full distributions of these observables are obtained by a
simple change of variables in Eq. �28�. The conductance dis-
tribution, for instance, is obtained from the relation g
=sin2 2�, while the distribution of shot-noise power is ob-
tained from p=sin2 2� cos2 2�, resulting, respectively, in

P�g� =
���/2 + 1/2�
����/2�

g�/2−1

�1 − g
, �31�

W�p� =
���/2 + 1/2�

���/2���1 − 4p�
�
�=�

��
�/2−1

�1 − ��

, �32�

where ��= �1+��1−4p� /2. For conventional dots, the cor-
responding conductance and shot-noise power distributions
were obtained in Refs. 31 and 32, respectively. Their analyti-
cal expressions are presented below,

P�g� =
�

2
g�/2−1, �33�

W�p� =
�

2��1 − 4p�
�
�=�

��
�/2−1, �34�

which are significantly different from their chiral counter-
parts. In Fig. 1, we compare the distributions of conductance
and shot-noise power for all Wigner–Dyson and chiral
classes ��=1,2 ,4�.

The chiral symmetry, thus, has a dramatic effect on the
distribution of transport observables in the extreme quantum
limit. Figure 1 also exhibits numerical results obtained form
the Mahaux–Weidenmüller formula. The agreement between
analytical and numerical results is a striking confirmation of
the correctness of the maximum-entropy hypothesis in this
problem.

From the general shape of the distributions, we also con-
clude that the presence of chiral symmetry induces an open-
ing of propagation channels, which, in turn, enhances the
regularity of charge transmission events by suppressing the
corresponding shot noise.
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B. Symmetric contacts with two open channels (N1=2=N2)

This case is slightly more complex than the previous one
since we have another factor describing correlations between
the transmission eigenvalues. The joint distribution is given
by

P��1,�2� = C��sin��1 + �2�sin��1 − �2���

�sin�−1�2�1�sin�−1�2�2� , �35�

where the normalization constant assumes the values C1=1,
C2=6, and C4=175 /2. Since we have two open channels, the
conductance and shot-noise power can be written as

g = sin2�2�1� + sin2�2�2� , �36�

p = sin2�2�1�cos2�2�1� + sin2�2�2�cos2�2�2� , �37�

whose moments can be numerically obtained from Eq. �35�.
In particular, for the first moment, we found the exact results,
�g�1=8 /9, �g�2=16 /15, �g�4=32 /27, �p�1=56 /225, �p�2
=32 /105, and �p�4=736 /2079, where the subscript indicates
the values of �.

The full conductance distribution can be obtained by the
following ensemble average:

P��g� = ���g − sin2 2�1 − sin2 2�2�� , �38�

where �¯� is a shorthand for �0
/2�0

/2 . . . P��1 ,�2�d�1d�2.
Performing the integrals as in Appendix B of Ref. 21, we
obtain for �=1 the following distribution:

P1�g� = �
1
2 �K�g� − F�/4,g�� , 0 � g � 1

1

2�g
�K�1/g� − F�arcsin��g/2�,1/g�� , 1 � g � 2, �

�39�

where F�� ,m�=�0
�d��1−m sin2 ��−1/2 and K�m�=F� /2,m�

are the incomplete and complete elliptic integrals, respec-
tively. The distributions in the unitary and symplectic cases
are given, respectively, by

P2�g� = � 3
4 �2 − g�arcsin� g

2 − g
� , 0 � g � 1

3

8
�2 − g� , 1 � g � 2� �40�

and

P4�g� = � 175
2048�2g�1 − g�20 − 20g + 7g2� + �g − 2��40 − 60g + 6g2 + 7g3�arcsin� g

2 − g
�� , 0 � g � 1

175

4096
�7g2 + 20g − 20��g − 2�2, 1 � g � 2.� �41�

As in the previous section, we compare the chiral conduc-
tance distributions with the Wigner–Dyson ones. For a con-
ventional dot, such distributions were obtained in Ref. 21 for
�=1 and �=2. Nevertheless, to our knowledge, the corre-
sponding distribution for �=4 has not yet been reported. We
give below the complete list,

P1�g� = � 3
2g , 0 � g � 1
3
2 �g − 2�g − 1� , 1 � g � 2,

� �42�

P2�g� = 2�1 − �1 − g��3, �43�
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FIG. 1. Conductance �left� and shot-noise power �right� distri-
butions for N1=N2=1 and �=1,2 ,4. The chiral classes are repre-
sented by the solid lines, whereas those of the Wigner–Dyson case
are the dotted ones. The open circles are numerical data for the
chiral class.

UNIVERSAL TRANSPORT PROPERTIES OF ASYMMETRIC… PHYSICAL REVIEW B 77, 165313 �2008�

165313-5



P4�g� = � 12
7 g7, 0 � g � 1
12
7 �2 − g�5�g2 + 10g − 10� , 1 � g � 2.

�
�44�

All distributions, chiral and Wigner–Dyson, are plotted in
Fig. 2. We observe for the chiral class an excellent agreement
between analytical and numerical results.

C. Asymmetric contacts (N1=1,N2=1+m)

The simplest instance of asymmetric contacts corresponds
to a system with only one mode in guide 1, N1=1, and an
arbitrary number of modes in guide 2, N2=1+m. In this case,
the transmission eigenvalue distribution reads

P��� =
22−���� + �m/2�

���/2����/2 + �m/2�
sin�−1 2� sin�m � . �45�

Such expression allows for the calculation of all moments of
the conductance. We find

�gn� = 22n��n + �/2���n + �/2 + �m/2���� + �m/2�
���/2����/2 + �m/2���2n + � + �m/2�

.

�46�

It is also possible to obtain the full distribution of conduc-
tance,

P�g� =
2−��1+m/2���� + �m/2�
���/2����/2 + �m/2�

�
�1 − �1 − g��m/2 + �1 + �1 − g��m/2

g1−�/2�1 − g
. �47�

Note that, in the particular case of symmetric contacts, m
=0, Eqs. �45�–�47� agree with Eqs. �28�, �29�, and �31�. In
Fig. 3, we show the analytical and numerical results for the
conductance distribution with m=0,4 ,9 ,19.

We observe that the graphs show a tendency of the distri-
butions to be concentrated on small conductances as the
number of channels in one of the leads is increased.
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FIG. 2. Conductance distribution of a chiral quantum dot with
N1=2=N2 for the three classes, �=1,2 ,4. The analytical result
�solid line� and numerical �circles� data show an excellent agree-
ment. The corresponding result for the Wigner–Dyson classes are
plotted in dashed line.
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FIG. 3. Numerical �symbols� and analytical �solid lines� results
for the conductance distribution of the asymmetric chiral quantum
dot with N1=1 and N2=1+m. The graphs show the three chiral
classes ��=1,2 ,4� for the particular values m=0,4 ,9 ,19.
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D. Average conductance for general N1 and N2

For an arbitrary number of open channels, it is convenient
to perform the following change of variables in Eq. �15�,
xi=cos�2�i�. The probability distribution in the variables ac-
quires the simple form,

P��x�� = CN
i�j

�xi − xj��
i

w�xi� , �48�

where w�x�= �1−x2���−2�/2�1−x�m�/2 and −1�xi�1. This ex-
pression is known in random-matrix theory as the Jacobi
ensemble.20 In this parametrization, the conductance is given
by

g = �
i=1

N

�1 − xi
2� . �49�

The average conductance then reads

�g� = N − �X2� , �50�

where

�X2� =� dNx��
i

xi
2�P��x�� . �51�

The integral in Eq. �51� can be calculated by using the
Fokker–Planck methods developed for the Brownian motion
ensembles in Ref. 33. In such approach, the levels, repre-
sented by the variables xi, execute an artificial Brownian mo-
tion that has a stationary solution Pst given by the joint dis-
tribution of the Jacobi ensemble �Eq. �48��. According to the
general criteria put forward in Ref. 33, the joint probability
distribution of the levels xi evolves according to the Fokker-
Planck equation,

�P

�t
= �

i=1

N
�

�xi
s�xi�Pst

�

�xi

P

Pst
, �52�

where s�x�=1−x2. It proved useful to introduce the auxiliary
function,

r�x� =
1

w�x�
d

dx
�w�x�s�x�� = −

��m + 2�
2

x −
�m

2
. �53�

The value of �X2� was obtained in Appendix D of Ref. 33 for
the following choice s�x�=s2x2+s1x+s0 and r�x�=r1x+r0. In
our particular case, we may set s0=1, s1=0, s2=−1, r0=
−�m /2, and r1=−��m+2� /2, which yield

�g� =
4�N2�N + m�2

�2N + m − 1��2N + m����2N + m� + 2�
. �54�

Since N+m=N2 and 2N+m=N1+N2, we can write

�g� =
4��N1N2�2

�N1 + N2 − 1��N1 + N2����N1 + N2� + 2�
. �55�

This result reduces, in the particular case N1=1=N2, to

�g� =
�

1 + �
, �56�

which agrees with Eq. �29� for n=1. For N1=2=N2, it sim-
plifies to

�g� =
8�

3 + 6�
, �57�

in agreement with the results of Sec. III B. Finally, for N1
=1 and N2=1+m, Eq. �55� reduces to

�g� =
4�m + 1��

�m + 2��2 + ��2 + m��
, �58�

which agrees with Eq. �46� for n=1. It also reduces to the
result of Ref. 18 in the particular case of N1=N2=N. For a
Wigner–Dyson quantum dot, the average conductance is
given by3

�g�WD =
�N1N2

��N1 + N2� + 2 − �
. �59�

This expression, in the semiclassical regime N1, N2�1, has
the following expansion:

�g�WD =
N1N2

N1 + N2
+

� − 2

�

N1N2

�N1 + N2�2 + . . . . �60�

The dominant term is the classical effective conductance ob-
tained from a series composition. The term of order 1 is a
quantum correction with a sign consistent with weak local-
ization for �=1 and with weak antilocalization for �=4. The
semiclassical expansion for the chiral case reads

�g�ch =
4�N1N2�2

�N1 + N2�3 +
� − 2

�

4�N1N2�2

�N1 + N2�4 + . . . . �61�

Note that the leading term does not coincide with the
Wigner–Dyson one. This unexpected result is another non-
trivial effect of the chiral symmetry and may have an inter-
esting impact in the development of a chiral version of cir-
cuit theory.34,35 Such effect does not appear if both N1 and N2
are of the same order, i.e., if m is small compared to N. This
can be seen by expanding the leading term according to

4�N1N2�2

�N1 + N2�3 =
N1N2

�N1 + N2��1 −
m2

4N2 + O�m3/N3�� . �62�

In particular, in the symmetric case �N1=N2�, the chiral sym-
metry does not affect the leading term.18

IV. CONCLUSION

In this paper, we have presented two independent random
matrix approaches to the study of universal transport proper-
ties of a quantum dot with chiral symmetry, coupled to a
chiral symmetric environment by two asymmetric ideal point
contacts. We constructed the S-matrix ensemble by calculat-
ing the Haar measure of the appropriate symmetry group,
from which we obtained the joint distribution of transmission
eigenvalues. It was possible to analytically obtain all mo-
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ments and the full distribution of the conductance in some
interesting cases. We also obtained, from a Fokker–Planck
approach, the average conductance for arbitrary values of
open propagating channels in each lead. We observed that
the presence of chiral symmetry affects all terms in the semi-
classical expansion including the dominant one. This non-
trivial effect vanishes if the asymmetry parameter m is suf-
ficiently small or if the environment breaks chiral symmetry.
We also modeled the closed quantum dot by a chiral random
Hamiltonian and numerically obtained the S-matrix by
means of the Mahaux–Weidenmüller formula. We showed
that both approaches agree if the matrix describing the cou-
pling between resonance states in the dot and scattering
states in the leads satisfies an additional constraint. The
agreement between analytical and numerical results confirms
the correctness of the maximum-entropy hypothesis.

ACKNOWLEDGMENTS

This work was partially supported by CNPq and FACEPE
�Brazilian Agencies�.

APPENDIX: INVARIANT MEASURE

In this section, we derive the invariant measures for the
S-matrix ensembles. The standard procedure21 is based on
the following definition of the differential arc element:

ds2 = Tr�dS†dS� . �A1�

From differential geometry, the arc element allows from the
identification of the metric tensor through the formula

ds2 = �
�,�

g���x��x�, �A2�

which implies the following invariant volume element:

dV = �det g�1/2
�

�x�. �A3�

In the next subsections, we follow this procedure to con-
struct the invariant measures of all chiral symmetry classes.

1. Orthogonal ensemble

For the orthogonal ensemble, the S-matrix satisfies SS†

=1 and S=S†=ST and can be written in the polar representa-
tion as

S = VRVT = �v 0

0 u
��− A B

BT C
��vT 0

0 uT � , �A4�

where v and u are real orthogonal matrices of order N1 and
N2, respectively, and A and C are diagonal matrices also of
order N1 and N2 defined by

A = ����N1�N1
, C = � 1m 0m�N1

0N1�m A
�

N2�N2

, �A5�

and B is a rectangular matrix given by

B = �0N1�m,����N1�N1
�N1�N2

, �A6�

where, for the sake of simplicity, we defined �=1−�. Such
matrices can be explicitly written as

A =	
��1 0 ¯ 0

0 ��2 ¯ 0

] ] � ]

0 0 ¯
��N1



N1�N1

, �A7�

C =	
1 ¯ 0 0 ¯ 0

] � ] ] � ]

0 ¯ 1 0 ¯ 0

0 ¯ 0 ��1 ¯ 0

] � ] ] � ]

0 ¯ 0 0 ¯
��N1



N2�N2

, �A8�

and

B =	
0 ¯ 0 ��1 0 ¯ 0

0 ¯ 0 0 ��2 ¯ 0

] � ] ] ] � ]

0 ¯ 0 0 0 0 ��N1



N1�N2

. �A9�

Representation �A4� uses N1+N1�N1−1� /2+N2�N2−1� /2
free real parameters, which are more than the necessary num-
ber, N1N2, resulting from the symmetry restrictions. On the
other hand, parametrization �A4� is not unique, but it remains
invariant under the transformation V→VG, where

G = � 1N1
0N1�N2

0N2�N1 GN2�N2

� , �A10�

in which

G = ��m�m 0m�N1

0N1�m 1N1

� , �A11�

and � is a orthogonal matrix, ��T=1m. The m�m−1� /2 de-
grees of freedom associated with the orthogonal matrix � can
be used to eliminate the redundancy, and we end up with a
total of N1N2 degrees of freedom.

Differentiating S, we obtain

dS = V���V�R + dR + R��V�T�VT, �A12�

where we introduced the antisymmetric matrix �V=VTdV.
The arc element becomes

ds2 = Tr��dR�2 + dR��V�R + ��V�RdR + �dR�R��V�T

+ ��V�R2��V�T + R��V�TdR + ��V�R��V�R

+ R��V�T��V�R + R��V�TR��V�T� . �A13�

From the cyclic property of the trace and the identities
��V�T=−�V and RdR=−dRR, we can show that
Tr���V�RdR�=Tr�dR��V�R�=Tr��dR�R��V�T�
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=Tr�R��V�TdR�=0. Therefore, arc element �A13� simplifies
to

ds2 = Tr��dR�2 + 2��V�T�V + 2��V�R��V�R� . �A14�

From the block structure of the matrices R, B, and V, we
have

Tr���V�T�V� = Tr���v�T��v�� + Tr���u�T��u�� ,

Tr���V�R��V�R� = Tr���v�A��v�A� + 2Tr���v�B��u�BT�

+ Tr���u�C��u�C� .

By evaluating the matrix products and recalling that �v and
�u are antisymmetric matrices, we find

Tr���v�T�v� = 2 �
a�b=1

N1

���v�ab�2,

Tr���u�T�u� = 2 �
a�b=1

m

���u�ab�2 + 2 �
a�b=m+1

N2

���u�ab�2

+ 2�
a=1

m

�
b=m+1

N2

���u�ab�2,

Tr��dR�2� =
1

2�
a=1

N1 �d�a�2

�a�a
,

Tr���v�A��v�A� = − 2 �
a�b=1

N1

��a�b���v�ab�2,

Tr���v�B��u�BT� = − 2 �
a�b=1

N1

��a�b��v�ab��u�a+m,b+m,

Tr��uC�uC� = − 2 �
a�b=1

m

���u�ab�2

− 2 �
a�b=m+1

N2

��a−m�b−m���u�ab�2

− 2�
a=1

m

�
b=m+1

N2

��b−m���u�ab�2.

By substituting these expressions in Eq. �A14� and rearrang-
ing some terms, we obtain the final expression for the arc
element,

ds2 = 4 �
a�b=1

N1

��1 − ��a�b�����v�ab�2 + ���u�a+m,b+m�2�

− 2��a�b��v�ab��u�a+m,b+m� + 4�
a=1

m

�
b=1

N1

�1 − ��b�

����u�a,b+m�2 +
1

2�
a=1

N1 �d�a�2

�a�a
. �A15�

In Eq. �A15�, we have d�a �a=1, . . . ,N1�, contributing
with N1 independent variations, ��v�ab and ��u�a+m,b+m,
�1, . . . ,a�b , . . . ,N1�, contributing with N1�N1−1� /2 each,
and ��u�ab, with a=1, . . . ,m and b=1, . . . ,N1, contributing
with mN1, giving a total of

N1 + 2
N1�N1 − 1�

2
+ �N2 − N1�N1 = N1N2, �A16�

which is the correct number of independent parameters.
The metric tensor has a simple structure consisting of

N1�N1−1� /2 blocks with rows and columns labeled by
��v�ab and ��u�a+m,b+m,

��v�ab ��u�a+m,b+m

��v�ab

��u�a+m,b+m
�1 − ��a�b − ��a�b

− ��a�b 1 − ��a�b
� ,

�A17�

one N1-dimensional block,

diag� 1

�1�1
, . . . ,

1

�N1
�N1

� , �A18�

related to the increments d�a and m N1-dimensional blocks,

diag�1 − ��1, . . . ,1 − ��N1
� , �A19�

related to the differentials ��u�a+m,b+m, a=1, . . . ,m and b
=1, . . . ,N1. Therefore, the determinant of the metric tensor
reads

det g 	 
a�b=1

N1

��1 − ��a�b�2 − �a�b�
a=1

N1 �1 − ��a�m

�a�a
.

�A20�

Thus, the invariant measure directly follows from Eq. �A3�.
Its radial part is related to the joint distribution of transmis-
sion eigenvalues,

P����� 	 
a�b

��1 − ��a�b�2 − �a�b�1/2
a

�1 − ��a�m/2

��a�a

.

�A21�

This expression can be simplified by introducing the
angles �a through the relation �a=sin2 2�a. The resulting
angular distribution reads

P����� 	 
a�b


�=�

�sin��a + ��b��
a

sinm��a� , �A22�

which corresponds to Eq. �15� for �=1.

2. Unitary ensemble

For the unitary ensemble, the S-matrix satisfies SS†=1
and S=S† and can be written in the same structure of Eq.
�A4�,

S = VRV† = �v 0

0 u
��− A B

BT C
��v† 0

0 u† � , �A23�

but with v and u being unitary matrices. In this case, the
number of used parameters is N1

2+N2
2+N1, which is different
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from the necessary 2N1N2 parameters imposed by the Her-
miticity and unitarity constraints of the S-matrix. Parametri-
zation �A23� is also not unique. It is invariant under the
transformation V→VG, with

G = �dN1�N1
0N1�N2

0N2�N1 UN2�N2

� , �A24�

in which

U = ��m�m 0m�N1

0N1�m dN1�N1

� , �A25�

where d=diag�ei�1 , . . . ,ei�N1� and � is an unitary matrix,
��†=1m. The N1 and m2 real parameters associated with the
matrices d and �, respectively, can be used to eliminate the
redundancy of parametrization �A23�.

By differentiating S, introducing the anti-Hermitian ma-
trix �v=v†dv and �u=u†du, and following the same steps as
in the previous section, we can write the arc element as

ds2 = Tr��dR�2 + 2��v�†��v� + 2��u�†��u� + 2��v�A��v�A

+ 4��v�B��u�BT + 2��u�C��u�C� . �A26�

The anti-Hermitian matrices ��v and �u� can be written in
terms of real symmetric ��s1 and �s2� and antisymmetric
��a1 and �a2� matrices as

�v = �a1 + i�s1, �u = �a2 + i�s2. �A27�

By using this decomposition and evaluating the traces as in
the previous section, we obtain the final expression for the
differential arc element,

ds2 = �
a=1

N1 �2�a��ya�2 +
1

2

�d�a�2

�a�a
� + 4�

a=1

m

�
b=1

N1

�1 − ��b�

�����a2�a,b+m�2 + ���s2�a,b+m�2� + 4 �
a�b=1

N1

�1 − ��a�b�

�����a1�ab�2 + ���s1�ab�2 + ���a2�a+m,b+m�2

+ ���s2�a+m,b+m�2� − 8 �
a�b=1

N1

��a�b���a1�ab��a2�a+m,b+m

+ ��s1�ab��s2�a+m,b+m� , �A28�

in which we have defined the combination

�ya = ��s1�aa − ��s2�a+m,a+m. �A29�

In Eq. �A28�, we have d�a and �ya �a=1, . . . ,N1�, contribut-
ing with N1 independent variations each. The ��s1�ab,
��a1�ab, ��s2�a+m,b+m, and ��a2�a+m,b+m for �1, . . . ,a
�b , . . . ,N1� contribute with N1�N1−1� /2 each. Finally, the
��a2�a,b+m and ��s2�a,b+m for a=1, . . . ,m and b=1, . . . ,N1
contribute with mN1 each. The number of independent real
parameters is, thus,

2N1 + 4
N1�N1 − 1�

2
+ 2�N2 − N1�N1 = 2N1N2, �A30�

which is the correct number of independent parameters of a
unitary and Hermitian matrix with bock structure �A23�.

From Eq. �A28�, we can construct the metric tensor,
whose determinant is given by

det g 	 
a�b

��1 − ��a�b�2 − �a�b�2
a

�1 − ��a�2m

�a
,

�A31�

allowing us to obtain the joint distribution of transmission
eigenvalues,

P����� 	 
a�b

��1 − ��a�b�2 − �a�b�
a

�1 − ��a�m

��a

.

�A32�

By performing the change to the variables �a=sin2�2�a�, we
obtain the distribution

P����� 	 
a�b


�=�

�sin��a + ��b��2
a

sin�2�a�sin2m��a� ,

�A33�

which is Eq. �15� for �=2.

3. Symplectic ensemble

In the symplectic case, there is an additional spin degree
of freedom in each scattering state yielding a factor 2 in the
order of the scattering matrix. Therefore, S is a 2�N1+N2�
�2�N1+N2� matrix, which can be treated as a �N1+N2�
� �N1+N2� quaternion matrix, with the same block structure.
According to the symmetry constraints, the S-matrix must be

unitary �SS†=1�, self-dual �S= S̄�, and Hermitian �S=S†�.
Such matrix must have 4N1N2 free parameters and can be
represented as

S = VRV̄ = �v 0

0 u
��− A B

BT C
��v̄ 0

0 ū
� , �A34�

where v and u are unitary and self-dual quaternion matrices.
This representation contains 2N1

2+2N2
2+2N1+N2 parameters,

which is again more than the necessary number. The redun-
dant parameters are due to the fact that parametrization
�A34� also is not unique, but it is invariant under the trans-
formation

u → uu0, v → vv0, �A35�

where

v0 = d = diag�d1, . . . ,dN1
�, di � SU�2� ,

and
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u0 = ��m�m 0m�N1

0N1�m dN1�N1

�, ��̄ = 1m. �A36�

The 3N1 parameters of the SU�2� matrices di and the 2m2

+m of the real self-dual matrix � can be used to eliminate the
redundant parameters of Eq. �A34�.

By differentiating S and introducing the anti-self-dual ma-
trices �v= v̄dv and �u= ūdu, we can write the arc element as

ds2 = Tr��dR�2 + 2��v���v� + 2��u���u� + 2��v�A��v�A

+ 4��v�B��u�BT + 2��u�C��u�C� . �A37�

By evaluating the last traces and using the fact that an
anti-self-dual matrix �v can be expanded in the quaternion
basis as an antisymmetric matrix, �v�0�, and tree symmetric
matrices, �v�k�, k=1,2 ,3, we obtain the final expression for
the differential arc element,

ds2 = 4�
a=1

N1 ��a�
k=1

3

��ya
�k��2 +

�d�a�2

�a�a
� + 8�

a=1

m

�
b=1

N1

�
k=0

3

�1 − ��b�

����u�k��a,b+m�2 + 8 �
a�b=1

N1

�
k=0

3

��1 − ��a�b�����v�k��ab�2

+ ���u�k��a+m,b+m�2� − 2��a�b��v�k��ab��u�k��a+m,b+m� ,

�A38�

in which we have defined the combination

�ya
�k� = ��v�k��aa − ��u�k��a+m,a+m. �A39�

In Eq. �A38�, we have d�a and �ya
�k�, for a=1, . . . ,N1 and k

=1,2 ,3, contributing with N1 independent variations each.
The ��v�k��ab and ��u�k��a+m,b+m, for 1 , . . . ,a�b , . . . ,N1 and

k=0,1 ,2 ,3, contribute with N1�N1−1� /2 each. Finally, the
��u�k��a,b+m, for a=1, . . . ,m, b=1, . . . ,N1, and k=0,1 ,2 ,3
contribute with mN1 for each value of k. The number of
independent real parameters is thus

4N1 + 8
N1�N1 − 1�

2
+ 4�N2 − N1�N1 = 4N1N2, �A40�

which is the correct number of independent parameters.
From Eq. �A38�, we can construct the metric tensor,

whose determinant is given by

det g 	 
a�b=1

N1

��1 − ��a�b�2 − �a�b�4
a=1

N1 �a
2�1 − ��a�4m

�a
,

�A41�

allowing us to obtain the joint distribution of transmission
eigenvalues,

P����� 	 
a�b=1

N1

��1 − ��a�b�2 − �a�b�2
a=1

N1 �a�1 − ��a�2m

��a

.

�A42�

As in the previous sections, we change the variables ac-
cording to �a=sin2�2�a�. The distribution function reads

P����� 	 
a�b


�=�

�sin��a + ��b��4
a

sin3�2�a�sin4m��a� ,

�A43�

which is Eq. �15� for �=4.
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