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We consider trial wave functions exhibiting SU�K� symmetry, which may be well suited to grasp the physics
of the fractional quantum Hall effect with internal degrees of freedom. Systems of relevance may be either
spin-unpolarized states �K=2�, semiconductor bilayers �K=2,4�, or graphene �K=4�. We find that some
introduced states are unstable, undergoing phase separation or phase transition. This allows us to strongly
reduce the set of candidate wave functions eligible for a particular filling factor. The stability criteria are
obtained with the help of Laughlin’s plasma analogy, which we systematically generalize to the multicompo-
nent SU�K� case. The validity of these criteria is corroborated by exact-diagonalization studies for SU�2� and
SU�4�. Furthermore, we study the pair-correlation functions of the ground state and elementary charged exci-
tations within the multicomponent plasma picture.
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I. INTRODUCTION

Soon after the discovery of the fractional quantum Hall
effect �FQHE�,1 Laughlin successfully described the under-
lying strongly correlated electron liquid with the help of a
simple trial wave function.2 The reasons for the success of
this approach were twofold: first, the calculated energy of
this state is lower than that of charge-density waves or
Wigner crystals,3 which are natural candidates for the ground
state within the partially filled lowest Landau level �LL� due
to the quenched kinetic energy.2 The second reason for its
success is the fact that Laughlin’s wave function is in very
sharp agreement with exact-diagonalization studies.4

A powerful tool in the understanding of Laughlin’s wave
function is the quantum-classical analogy, in which its prob-
ability is interpreted as the �classical� Boltzmann weight of a
two-dimensional one-component plasma �2DOCP�.2 Most
strikingly, this analogy shows that Laughlin’s trial wave
functions have no free parameter that may be optimized by
any variational calculation.

Laughlin’s original proposal was concerned only with a
single species of fermions, namely, spin-polarized electrons.
In spite of its success, this is at first sight a very crude as-
sumption in view of the relatively weak �effective� Zeeman
effect when compared to the leading energy scale set by the
Coulomb interaction e2 /�lB in terms of the magnetic length
lB=�� /eB. Indeed, the latter is almost 2 orders of magnitude
larger than the bare spin splitting for typical magnetic fields
of B�10 T. In order to account for an internal SU�2� spin
symmetry, Halperin proposed a generalized trial wave
function,5 which includes Laughlin’s as a special case. The
latter may indeed be viewed as a Halperin wave function
with a spontaneous ferromagnetic spin ordering.6

Halperin’s SU�2� wave functions have been a first step in
the understanding of general multicomponent systems. In the
case of bilayer quantum Hall systems, the same wave func-
tions may be applied if one supposes a complete polarization
of the physical spin and if one interprets the two layer indi-
ces as the two possible orientations of a pseudospin.6,7 How-
ever, the hypothesis of a complete spin polarization is a pri-

ori as feebly justified in bilayer as in monolayer quantum
Hall systems, again due to a relatively weak Zeeman effect.
A more appropriate approach is, therefore, one that takes into
account the internal SU�4� spin-pseudospin symmetry. Such
approaches have indeed been proposed in the description of
ferromagnetic states when the LL filling factor �=nel /nB, in
terms of the electronic, nel, and the flux, nB=eB /h, densities
are 1, 2, or 3, respectively.8,9

Another example of a multicomponent quantum Hall sys-
tem is graphene, where the internal SU�4� symmetry is due
to the physical spin accompanied by a twofold valley
degeneracy.10–12 In contrast to the above-mentioned bilayer
quantum Hall systems, where the pseudospin symmetry is
explicitly broken because of the difference between intra-
and interlayer Coulomb interactions, the SU�4� symmetry is
almost perfectly preserved in graphene from an interaction
point of view—a possible �valley� symmetry breaking may
be due to lattice effects, which are suppressed by the small
parameter a / lB, where a=0.14 nm is the distance between
nearest-neighbor carbon atoms in graphene, as compared to
lB=26�B�T� nm.13–17 In order to describe a possible, yet un-
observed, FQHE in graphene, taking into account the appro-
priate form of the interaction potential,13,18 exact-
diagonalization studies have been performed in the
framework of an internal SU�2� valley symmetry19,20 as well
as in a SU�4� composite-fermion approach.21,22

More recently, two of us have proposed a generalization
of Halperin’s wave functions to K components, i.e., systems
with an internal SU�K� symmetry, in order to describe a pos-
sible FQHE in K-component systems, namely, graphene with
K=4.23 Here, we investigate the stability of these wave func-
tions from two complementary perspectives—first, we derive
the stability criteria within a generalized plasma picture. This
analogy allows one to interpret the SU�K� Halperin wave
functions in terms of K correlated 2DOCP and to describe
their ground-state properties in a compact manner as well as
the elementary excitations with fractional charge. Second,
we corroborate the validity of the generalized plasma picture
with the help of exact-diagonalization studies.

After a brief review of Laughlin’s plasma analogy �Sec.
II�, we generalize the plasma picture to K-component sys-
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tems in Sec. III. In Sec. IV, we derive the general stability
criteria within the plasma analogy, on the basis of which we
discuss the stability of specific SU�2� and SU�4� wave func-
tions. We complete this paper with a discussion of ground-
state properties, such as sum rules for the pair-correlation
functions �Sec. V�, and fractional charges of quasiparticle
and/or quasihole excitations �Sec. VI�.

II. LAUGHLIN’S PLASMA ANALOGY

In order to describe a correlated electron liquid to account
for the FQHE, Laughlin proposed the N-particle trial wave
function2

�m��zk�� = 	
k�l

N

�zk − zl�m exp
− �
k

N �zk�2

4

 , �1�

where zk=xk+ iyk denotes the position of the kth electron in
the complex plane. Here and in the following, we set the
magnetic length lB�1 for notational convenience. The form
of this trial wave function is solely determined by the analy-
ticity condition for the lowest LL—i.e., all single-particle
states are of the form z� exp�−z2 /4�, where � is a positive
integer—and by symmetry considerations. In order to have a
translational and rotational invariant state and, thus, an in-
compressible state with no gapless Goldstone mode, the
wave function may only depend on the relative distance zk
−zl of the kth and the lth particle. Furthermore, fermion sta-
tistics for electrons requires the exponent m to be an odd
integer, which is the only variational parameter of Laughlin’s
wave function �1�.

However, the parameter m turns out to be fixed by the
electron density, or by the filling factor �=1 /m, as Laughlin
showed with the help of a plasma analogy.2 Indeed, one may
interpret the modulus square of the wave function as the
Boltzmann weight

��m��zk���2 = e−�HN �2�

of a classical system, namely, a 2DOCP described by the
classical Hamiltonian2,24,25

HN = − m�
k�l

ln�zk − zl� + �
k

�zk�2

4
, �3�

where one has somewhat arbitrarily set the inverse “tempera-
ture” ��2. Note that the true temperature does not intervene
in the analysis because the system is placed at T=0. The first
term describes two-dimensional �2D� interacting particles of
charge �m, whereas the second term may be interpreted as a
homogeneous background of charge −1 /�m �jellium�. The
minimization of the classical Hamiltonian corresponds, via
the relation �2�, to a maximal quantum probability of the
original quantum system of electrons within the lowest LL.
The classical ground state of the Hamiltonian �3�, however,
is obtained when the plasma particles of charge �m are fully
neutralized by the background, i.e., when

mnel =
1

2�
⇔ m� = 1. �4�

It is evident from the last equation that the variational
parameter must be positive—otherwise, one would have to
deal with unphysical negative densities. Note that from the
wave function point of view, m�0 is not physical because it
violates the analyticity condition for wave functions in the
lowest LL. This point, which may seem obvious, is worth
emphasizing and recalling in the following sections when the
plasma picture is generalized to more components.

III. PLASMA PICTURE FOR SU(K) HALPERIN WAVE
FUNCTIONS

Based on Halperin’s idea to write down a Laughlin-type
wave function for a two-component quantum Hall system, in
order to take into account the spin degree of freedom,5 two
of us have proposed a SU�K� generalization for a
K-component system,23

�m1,. . .,mK;nij

SU�K� = 	m1,. . .,mK

L 
 	nij

inter 
 exp
− �
i=1

K

�
ki=1

Ni �zki

�i��2

4

 ,

	m1,. . .,mK

L = 	
i=1

K

	
ki�li

Ni

�zki

�i� − zli
�i��mi,

	nij

inter = 	
i�j

K

	
ki=1

Ni

	
kj=1

Nj

�zki

�i� − zkj

�j��nij . �5�

There are K different types of electrons �denoted with super-
script �i�� with inter- �nij� and intracomponent �mi� quantum
correlations, and zki

�i� is the complex position of the kith elec-
tron of type i=1, . . . ,K. The lowest-LL analyticity condition
imposes that all exponents, mi and nij, must be integers. Fur-
thermore, mi must be odd in the case of fermions. Apart from
K=2, discussed by Halperin,5 K=4 wave functions may be
physically significant in the case of bilayer quantum Hall
systems and graphene. In the former example, the internal
degrees of freedom do not only contain the physical SU�2�
spin �↑ ,↓�, but also a layer index, which may be mimicked
by an additional SU�2� isospin �+,−�. There are, thus, four
internal states, 1= �↑ ,+�, 2= �↑ ,−�, 3= �↓ ,+�, and 4= �↓ ,−�.
In the case of graphene, an isospin �+,−� must be introduced
in order to account for the twofold valley degeneracy. Wave
functions similar to those in Eq. �5� have been proposed by
Qiu et al.26 for multilayer quantum Hall systems, by Morf27

as potential candidates for the FQHE hierarchy states, and by
Yang et al.21 in the study of a possible FQHE in graphene.

Again, the starting point of the plasma analogy is Eq. �2�,
and one associates the new Hamiltonian HN with a physical
system. In the case of K=2, this system has been interpreted
as a generalized plasma, which consists of K different types
of particles �each of which corresponds to a different elec-
tron type in the original quantum system� plus a neutralizing
background.6,28 With the identification �2�, one obtains for
the wave functions �5� the classical Hamiltonian

DE GAIL, REGNAULT, AND GOERBIG PHYSICAL REVIEW B 77, 165310 �2008�

165310-2



HN = − �
i=1

K

mi �
ki�li

Ni

ln�zki

�i� − zli
�i�� − �

i�j

K

nij�
ki,kj

ln�zki

�i� − zkj

�j��

+ �
i=1

K

�
ki=1

Ni �zkj

�i��2

4
. �6�

Here, the first term represents a sum over K 2D interaction
terms for �i�-type particles of charge �mi, whereas the second
one takes into account interactions between particles of dif-
ferent types, �i� and �j�. However, this generalized plasma
does not satisfy the charge superposition principle29 unless
nij =�mimj, which is a rather special case.

Instead of one single plasma of K types of particles, it
seems, therefore, more appropriate to interpret this general-
ized plasma in terms of K different 2DOCPs �one for each
type of electrons� with correlations between them. For this
purpose, we introduce the continuum limit, in which the den-
sity for particles of type �i� �electrons or plasmatic particles�
is �i�r�=�ki

��r−rki
�. In order to distinguish the resulting

Hamiltonian from the original discrete one, we supress the N
subscript in Eq. �3� and one obtains the energy functional

H���i�r��� = −� �



d2rd2r���1�r�
]

�K�r�
�

T

MK

2
ln�r − r����1�r��

]

�K�r��
�

+ �



d2r��1�r�
]

�K�r�
�

T

�r�2

4 �1

]

1
� . �7�

Here, MK is the symmetric exponent matrix, with nij =nji and
nii�mi,

23 and 
 is the surface occupied by the plasma. Simi-
lar to the one-component case, the configurations with maxi-
mal probability �Eq. �2�� are obtained by minimizing H with
respect to all densities. The stationary points are found at

� �H
��i�r�

�
�j,j�i

= 0. �8�

In order to have a minimum, the Hessian matrix

�2H
��i�r��� j�r�

� MK, �9�

which is identical to the exponent matrix MK up to a positive
constant, needs to be positive, i.e., have positive eigenvalues.
One may interpret Eq. �8� as the stationary point of a 2DOCP
of �i�-type particles, whereas the positions of all other par-
ticles of type �j� i� are fixed and constitute a quasistatic
impurity potential felt by the �i�-type particles. For the
2DOCP of this type, the interactions between all other types
of particles yield only an unimportant constant with respect
to the �i derivative. In this sense, one may indeed interpret
the system as K correlated 2DOCPs rather than a single
plasma of K different types of particles.

As for a single 2DOCP, Eq. �8� is satisfied when each of
the K plasmas exhibits quasineutrality,25 but now contribu-
tions from the impurities have to be taken into account,

mi�i�r� + �
j�i

nij� j�r� =
1

2�
�10a�

⇔MK� �i�r�
]

�K�r�
� =

1

2��1

]

1
� . �10b�

Here, 1 /2� on the right-hand side of Eq. �10a� represents the
neutralizing background, as for a single 2DOCP �Eq. �4��.
The second term in Eq. �10a� represents the contributions
from type-�j� i� particles due to intercomponent correla-
tions. One notes that Eq. �10b� is the matrix generalization of
Eq. �4�. This result was previously derived by counting the
zeros of the wave function �5�.23 Invertible matrices yield a
unique solution with all densities being uniform, �i�r�=�i, as
is the case of U�1� Laughlin’s liquid. The case of noninvert-
ible matrices will be discussed in the next section.

Unlike the U�1� case, fixing the total filling factor �T
=�1+ ¯ +�K does not uniquely determine the exponent ma-
trix. It has been pointed out in Ref. 23 that several candidate
wave functions may give rise to a FQHE at the same filling
factor �T, especially in the case of larger internal symmetry
groups. Moreover, even if one fixes all component filling
factors �i=2��i, the wave function is not unambiguous. As
an example, we consider the SU�2� Halperin wave functions
�m1 ,m2 ,n�, with �i� m1=m2=3, n=1 ��331� wave function�,
and �ii� m1=m2=1, n=3 ��113� wave function�. Both wave
functions describe a situation with �1=�2=1 /4 and have
been considered in the past within the study of a possible
unpolarized �T=1 /2 state.30 Indeed, an even-denominator
quantum Hall state has been observed at �=5 /2 and �
=7 /2 in the first excited LL.31 However, it is strongly un-
likely that this state is spin unpolarized32–34 and that more
sophisticated theories, in terms of a Pfaffian state, need to be
invoked to account for a spin-polarized state.35 As we will
show below, stability conditions related to Eq. �9� allow one,
in the case of unpolarized states, to discriminate between
�mmn� and �nnm� wave functions for m�n.

IV. STABILITY

In order to obtain a stable state, the stationary point ob-
tained from Eq. �8� must be minimum, i.e., the Hessian ma-
trix �MK in Eq. �9� must be positive. Otherwise, the plasmas
would neither be stable nor be in the state of lowest energy.
Hence, a first stability condition imposes that all eigenvalues
�i of MK must be positive.

There is indeed a limiting case for which one �or more�
eigenvalue�s� is �are� zero. Because the potential is quadratic,
the minimum point now becomes a line of minima, which
correspond to different ground states. If at least one eigen-
value is zero, the exponent matrix MK is no longer invertible
and all densities may not be fully determined from Eq. �10b�.

This point may be alternatively interpreted in terms of
SU�K� ferromagnets—different states of equal energy may,
e.g., occur at various combinations of two �or more� filling
factors �i and � j although the sum �ij =�i+� j is fixed. In this
case, one may introduce a pseudospin operator Sij

z =N��i
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−� j� /2, which can possibly take all values in between
−N /2�Sij

z �N /2. The simplest example of such a case is the
Laughlin wave function with an internal spin degree of free-
dom �a Halperin �mmm� wave function�, which is, for odd m,
completely antisymmetric in its orbital part. For fermions,
the spin wave function must, therefore, be completely sym-
metric and, thus, represent a SU�2� ferromagnet. If the total
spin is oriented along the positive z direction, all electrons
reside in the upper spin branch ��1=1 /m, �2=0�. In the ab-
sence of a Zeeman effect, this state has the same energy as
the one with a total spin in the −z direction ��1=0, �2
=1 /m�, as well as any intermediate state with �1+�2=1 /m.
In the general SU�K� case, the ferromagnetic properties are
determined by the rank r of the matrix MK. Indeed, if r�K
and one introduces common fixed filling factors �ij for the
relevant components, one may describe the resulting state by
a SU�r� Halperin wave function with an invertible exponent

matrix M̃r with additional pseudospin degrees of freedom for
the components, the density of which remains
undetermined.23

As mentioned earlier, some exponent matrices can lead to
negative density solutions for Eq. �10b�. A second class of
stability conditions needs to be imposed in order to prevent
this unphysical situation, which may occur even in the case
of a positive matrix MK.

In order to illustrate the two conditions, we discuss some
specific examples for different K’s. The case of K=1 has
already been presented above.

A. The case K=2

We first study Halperin’s wave function �m1 ,m2 ,n� for the
SU�2� case, which is described by the exponent matrix

MK=2 = 
m1 n

n m2

 .

Even if all exponents are positive, as required by the
lowest-LL analyticity condition, the eigenvalues �� and the
filling factors �1/2 are not necessarily so,

�� =
m1 + m2 � ��m1 − m2�2 + 4n2

2
, �11a�

�1 =
m2 − n

m1m2 − n2 �2 =
m1 − n

m1m2 − n2 . �11b�

In order to obtain only positive eigenvalues �first stability
condition�, one needs to require

m1m2 − n2 � 0. �12�

The case m1m2=n2 corresponds to a situation of a noninvert-
ible matrix of rank r=1. Because of Eq. �12�, positive den-
sities �filling factors� are found in Eq. �11b� only for

m1 � n and m2 � n , �13�

which we, thus, need to impose as a second class of stability
conditions. Furthermore, one notices from Eqs. �12� and �13�
that the only states with a noninvertible exponent matrix of

rank r=1 are the ferromagnetic Laughlin states �mmm� dis-
cussed above.

The final stability criterion Eq. �13� for SU�2� wave func-
tions has a compelling physical interpretation: intracompo-
nent correlations must always be stronger than intercompo-
nent correlations. Within the plasma picture, this may also be
understood from Figs. 2�a� and 2�b�. For illustration, we con-
sider the �73n� wave function, where n is left as a variable,
which we treat in a rather artificial manner as a continuous
variable in the following discussion. It is evident that only
integer values may be taken into account for physical candi-
date wave functions.

Figure 1 shows the plot of both component filling factors
and the lower eigenvalue, �−. This graph can be split into
three distinct parts I, II, and III.

Part I �n�3�. Each type-�1� particle carries a charge �7
and is affected by those from the type-�2� plasma through a
charge coupling of n /�7��7, which may be interpreted as
constituting a quasistatic impurity distribution interacting
with type-�1� particles. Alternatively, one may concentrate on
type-�2� particles with charge �3, which see type-�1� par-
ticles as a distribution of charge n /�3��3 impurities. There-
fore, both types of particles are more strongly repelled by
those of their own species than by particles of a different
type. One, thus, obtains a stable homogeneous mixture of
two plasmas, which is shown in Fig. 2�a�.

Part II �3�n�7�. Although type-�1� particles are still
more strongly repelled by those of their own species than by
type-�2� particles �n /�7��7�, this is not the case for type-
�2� particles. Because their interspecies repulsion is now
weaker than that which they experience from type-�1� par-
ticles �n /�3��3�, they prefer to gather— rather than be
mixed —with type-�1� particles. This indicates a tendency to
phase separate, and the effect manifests itself in an unphysi-
cal negative filling factor �1. The divergence of the filling
factors at the artificial value of nc=�21�4.6 in Fig. 1 is due

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9

n

I II III

FIG. 1. Stability of the �73n� wave function. Both filling factors,
�1 �long dashed line� and �2 �short dashed line�, and the �− eigen-
value �solid line� of the �73n� wave function are plotted as a func-
tion of n. For n�3 �part I�, all quantities are positive and the
corresponding state is stable. In part II, one of the filling factors is
negative. Part III exhibits positive filling factors, but the state is still
unstable because of the negative eigenvalue; the system eventually
undergoes a phase separation.
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to the vanishing eigenvalue �−. Above nc, the original mini-
mum of the energy functional �7� evolves into a saddle point
and the first stability condition of non-negative eigenvalues
is no longer satisfied. Indeed, one notices that the filling
factors interchange their roles. Although the repulsion be-
tween type-�1� particles is stronger than that between type-
�2� particles and one would, therefore, intuitively expect that
�1��2, one finds �1��2 for n�nc.

Part III �7�n�. Above n=7, the intercomponent repulsion
is stronger than that between particles of the same type. The
phase separation between the two plasmas, which we have
alluded to in the discussion of part II, is well pronounced.
Due to this strong intercomponent repulsion, the interface
between the two plasmas needs to be minimized, and this
results in an inhomogeneous state of two spatially separated
plasmas, as shown in Fig. 2�b�. Should the partial densities
not be fixed, i.e., particles could flip from state 1 to state 2, it
is clear that the system would favor a distribution where only
one type of particles would remain. The interface between
the two plasmas disappears.

Figure 3 shows the stability graph for an �mmn� wave
function �here with n=3�. In this case, the eigenvalues �11a�
and the component filling factors �11b� become

�� = m � n and �1 = �2 =
1

m + n
, �14�

respectively. Although the component filling factors remain
positive for all choices of n, the eigenvalue �− becomes
negative for n�m, where one would expect a phase separa-
tion between the two plasmas, as in the case of the �73n�
wave function �Fig. 2�a��. The critical value n=m corre-
sponds to the Laughlin case with a SU�2� ferromagnetic spin
wave function, as discussed above. For the case of n�m,
both trial wave functions, �mmn� and �nnm�, are valuable
candidates for the description of a potential FQHE at �T
=2 / �m+n� if only the symmetry considerations for trial
wave functions in the lowest LL are taken into account.
However, the plasma analogy clearly indicates that only one
of the two wave functions, namely, �mmn�, yields a stable
physical state. At half-filling, the only SU�2� Halperin wave
function which might yield a stable FQHE state is �331�,
whereas �113� corresponds to an unstable plasma, which is
not evident from wave function calculations alone.30

B. The case of K=4

We now consider the generalized Halperin wave functions
with an internal SU�4� symmetry. We restrict our studies to a
particular subset of the latter, �m1m2m1m2 ,nen+n−�, the cor-
responding exponent matrices of which may be written as23

MK =�
m1 ne n+ ne

ne m2 ne n−

n+ ne m1 ne

ne n− ne m2

� . �15�

If applied to graphene, those correlation coefficients imply
that one should treat all intervalley components �ne� on the
same footing and the intravalley ones separately �n+ ,n−, for
+ and − valleys, respectively�. This is an even more natural
assumption in the case of bilayer quantum Hall systems in

(a)

(b)

FIG. 2. Sktech of the plasma corresponding to the �73n� wave
function for �a� n�3 and �b� 7�n. �a� Intracomponent repulsions
are stronger than intercomponent repulsions �n�m1 ,m2�. Type-�1�
particles �black� are therefore, on the average, surrounded by type-
�2� particles �gray�. This yields a stable state of two homogeneous
interpenetrating plasmas. �b� If the intercomponent repulsion is
stronger than the intracomponent repulsion, the plasmas have a ten-
dency to phase separate to minimize the number of neighbors from
different types.

-1

-0.5

0

0.5

1

0 1 2 3 4 5

n

I III

FIG. 3. Stability of the �33n� wave function. Equal filling fac-
tors, �1 and �2 �long dashed line�, and the �− eigenvalue �solid line�
of the �33n� wave function are plotted as a function of n. For n
�3 �part I�, the state is stable as in Fig. 1. There is no correspond-
ing part II, since the densities never vanish. In part III, the plasmas
tend to phase separate.
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semiconductor heterostructures, where interlayer correlations
�described by the exponents ne� are weaker than intralayer
ones �n+ and n−, which couple the different spin orientations
within the + and − layers, respectively�. Moreover, some
intracomponent correlations are fixed to the same value so
that an explicit calculation of the eigenvalues � and filling
factors � may be carried out. However, here we will only
settle the conditions for all quantities to be positive �the first
and second stability arguments�, and these conditions are sat-
isfied if

m1 � n+,

m2 � n−,

m2 + n− � 2ne,

m1 + n+ � 2ne. �16�

The case where one of the first two inequalities, or one of the
last two, turns into an equality corresponds to matrices of
rank r�4. For r=1, Eq. �16� becomes an equation set and,
once again, the only stable state is of Laughlin type
�mmmm ,mmm� with SU�4�-ferromagnetic ordering. The sta-
bility criteria �Eq. �16�� yield a slightly more complex inter-
pretation: not only do intracomponent correlations have to be
stronger than some intercomponent ones, but there are also
conditions between intercomponent coefficients. This may be
more easily understood within the �3535,n22� state, where n
is left as a variable, similar to the SU�2� case discussed in
Sec. IV A. Again, we have chosen this state purely for illus-
tration reasons.

Figure 4 plots all filling factors and the relative signed
eigenvalue �3. As for the case of K=2, the graph is split into
parts I, II, and III.

Part I �n�2�. One notices that type-�1/3� and �2/4� par-
ticles act identically; therefore, one can virtually treat the
problem as for the case K=2. Type-�1/3� and �2/4� plasmas
are stable separately with respect to the previous section on
SU�2� wave functions. Moreover, type-�1/3� particles carry a
�3 charge and are affected by type-�2/4� quasistatic impuri-
ties of n /�3��3 charge. Similarly, type-�2/4� particles with
a �5 charge interact with type-�1/3� plasma through a n /�5
��5 charge. Hence, one plasma suffers weaker repulsion
from the other and type-�1/3� and �2/4� plasmas will mix in
order to form a stable homogeneous state.

Part II �n=3�. The �3 eigenvalue is now negative
�−0.08� as well as some filling factors. In the plasma picture,
type-�1/3� particles are equally repelled by their own species
and type-�2/4� quasistatic impurities, each carrying a �3
charge. On the contrary, the type-�2/4� plasma still experi-
ences more “favorable” repulsion from type-�1/3� particles.
One cannot conclude about the stability at this level and
some care has to be taken of the inner composition of the
type-�1/3� particles. Indeed, type-�1� particles carry a �3
charge and interact with type-�3� quasistatic impurities via a
2 /�3 charge, which is less than any other charge for this
plasma. Similarly, type-�3� particles will be less repelled by
type-�1� particles than by any other particles. Hence, type-
�1/3� plasma will tend to phase separate, which is contradic-
tory to the phase mixing tendency of type-�2/4� particles. As
in the K=2 case, this yields unphysical negative densities for
type-�1/3� particles.

Part III �4�n�. Above n=4, all filling factors are positive,
but �3 becomes more and more negative. For n=4, the same
argument as above can be developed: type-�1/3� plasma
tends to separate from type-�2/4� plasma, whereas type-�2/4�
plasma tends to mix with type-�1/3� plasma. Surprisingly,
this is not related to a negative density, as in any other case
previoulsy discussed. This may be due to the composite na-
ture of type-�2/4� plasma. For n�5, both plasmas are more
severely repelled by each other such that the phase separa-
tion is complete.

C. Comparison with exact-diagonalization studies

The stability discussed so far is only related to the par-
ticular form of the wave functions and it somehow has to be
linked to the true ground state of the quantum system with N
interacting electrons. We, therefore, investigate the stability
of generalized Halperin wave functions within exact-
diagonalization studies. The system is mapped onto a sphere,
in the center of which a magnetic monopole is fixed to en-
sure a magnetic field orthogonal to the surface. This mag-
netic monopole creates 2S flux quanta threading the surface
of the sphere. At a particular filling factor �T, the relation
between the number of particles and that of flux quanta is

2S = N/�T − � ,

where

�T = �
i,j

Mij
−1, �17�

and the shift

-1

-0.5

0

0.5

1

0 1 2 3 4 5

n

I II III

FIG. 4. Stability of the �3535,n22� wave functions. Filling fac-
tors �1 and �3 �long dashed line�, �2 and �4 �short dashed line�, and
the third eigenvalue �3 �solid line� of the �3535,n22� generalized
Halperin wave function are plotted as a function of n. For n�2
�part I�, all quantities are positive and the corresponding state is
stable. Part II corresponds to unphysical negative densities with a
negative eigenvalue �−0.08�. For n�4, because of the eigenvalue
�3 being still negative, the plasmas �1�–�3� phase separate from
�2�–�4�.
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� =
1

�T
�
i,j

Mij
−1mi �18�

is due to the finite-size geometry and depends on the particu-
lar wave function considered.

All calculations are performed within the lowest LL with
the help of Haldane’s pseudopotentials,36 Vij

l , which deter-
mine the interaction between two electrons of types i and j
with a relative angular momentum l. Halperin’s wave func-
tions �mi ,nij� represent the exact ground state for a model
interaction, such that

Vii
l = �1 for l � mi

0 for l � mi,
�

Vij
l = �1 for l � nij

0 for l � nij .
� �19�

One of the simplest nontrivial cases occurs when all intra-
�inter-�component correlations are the same, i.e., mi=m and
nij =n. These states are fully unpolarized and the correspond-
ing filling factor and shift are

�T
�m,n� =

K

m + �K − 1�n
and ��m,n� = m , �20�

respectively. We have already shown in Secs. IV A and IV B
that, within the plasma picture, m�n yields a stable state
and m�n an unstable state, whereas m=n represents a
�stable� Laughlin state with SU�K� ferromagnetic order. This
stability criterion may also be obtained directly from the in-
teraction model corresponding to the
�mi=m ,nij =n�-Halperin state: whenever this state is un-
stable, other zero-energy states with respect to the model
interaction appear in the fully polarized sectors. These zero-
energy states are quasihole excitations of the
�mi=nij =m�-Laughlin state, the model interaction of which
matches that of the Halperin state in that sector. This is a
direct consequence of �T

�m,n��1 /m for unstable states, as may
be seen from Eq. �20� with n�m. Thus, any Zeeman-type
perturbation or any extra pseudopotentials beyond the model
interaction dramatically change the polarization, as sug-
gested by the plasma picture. For more generic Halperin
wave functions, similar conclusions can be drawn when one
of the mi is lower than 1 /�T.

When the polarization is regarded as fixed, the phase
separation is clearly observed through the study of pair-
correlation functions, which are discussed in Sec. V B. As
mentioned before, unstable systems will exhibit instability
through unphysical correlation functions.37

In addition to these general stability arguments, we inves-
tigate via exact diagonalization the K=2, �331� and �113�,
wave functions studied by MacDonald et al.30 The first state
is realized for the particular model V↑↑

1 =V↓↓
1 =V↑↓

0 =1, all
other potentials being zero, and 2S=2N−3. The second one
is related to V↑↓

0 =V↑↓
1 =V↑↓

2 =1 and 2S=2N−1. For N=6 elec-
trons and 9 and 11 flux quanta, exact-diagonalization calcu-
lations yield an energy gap of 0.8 for �331� as compared to
0.01 for �113�. Hence, the �113� state has an energy gap,
almost 2 orders of magnitude smaller than the characteristic

energy, which is set to 1. One may, therefore, expect that the
�113� state is much less stable than the �331� state, as indi-
cated by the plasma analogy and the above-mentioned argu-
ment. This is indeed the case as may be seen when other
pseudopotentials are chosen as nonzero in a perturbative
manner. We choose, for this investigation, to vary VA

3 �V↑↑
3

=V↓↓
3 and VE

1 �V↑↓
1 continuously from zero to 1, for the �331�

state, and VA
1 �V↑↑

1 =V↓↓
1 and VE

3 �V↑↓
3 for the �113� state. Our

exact-diagonalization results show that the unpolarized state
described by the above-mentioned wave functions �there is
an equal number of spin ↑ and ↓� is conserved only for the
�331� case. Moreover, there is indeed an instability of the
�113� state such that even a small perturbation in the pseudo-
potentials �VA

3 =0.1, for example� completely polarizes the
state, which is in agreement with the general polarization
argument given above.

We now focus on the unpolarized sector although the sys-
tem is no longer in its ground state in the �113� case. The
unpolarized sector may be physically relevant for a system
with constrained polarizations, such as those for a bilayer
configuration with equal densities in both layers. Figure 5
presents phase diagrams with compressible and incompress-
ible states for �331� and �113� varying states. The overlap
between the exact ground state and the Halperin wave func-
tions is represented by gradual shading. For the �331� case, it
can be observed that there is a finite energy gap around the
values VA

3 =VE
1 =0 of the exact model, and the overlap be-

0

0.2

0.4

0.6

0.8

1

Compressible States

0 0.2 0.4 0.6 0.8 1

V(intra)3

0

0.2

0.4

0.6

0.8

1

V
(in

te
r)

1

Compressible States

0 0.2 0.4 0.6 0.8 1

V(intra)3

0

0.2

0.4

0.6

0.8

1

V
(in

te
r)

1

0

0.2

0.4

0.6

0.8

1

Compressible States

0 0.2 0.4 0.6 0.8 1

V(intra)1

0

0.2

0.4

0.6

0.8

1

V
(in

te
r)

3

Compressible States

0 0.2 0.4 0.6 0.8 1

V(intra)1

0

0.2

0.4

0.6

0.8

1

V
(in

te
r)

3

(a)

(b)

FIG. 5. Phase diagram for �a� 331 and �b� 113 ground states.
Exact diagonalization is performed with N=6 electrons and �a� 2S
=9 �b� 2S=11 flux quanta. An unpolarized state is assumed.
Pseudopotentials V↑↑=V↓↓ are denoted V�intra�, whereas V↑↓ is
V�inter�. The overlap between Halperin’s wave functions �exact
ground state of the unperturbed model� and the exact ground state is
plotted in gray scale. We also indicate the separation between in-
compressible and compressible states �i.e., whether the ground state
is in the L=0 sector or not� by a black line.
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tween the true ground state and the trial wave function re-
mains large whenever the pseudopotentials VA

3 and VE
1 remain

in this area. A further increase in the potentials leads to a gap
collapse at relatively large values of the pseudopotentials.
Hence, this state is stable even in the case of more realistic
interactions beyond the model situation.

In the case of the �113� wave function, the gap collapses
rapidly even at small values of V↑↓

3 ��0.1�. A rather subtle
perturbation would, therefore, completely change the system
since a zero-energy gap is incompatible with any FQHE.
Outside the funnel-shaped area of compressible states, cf.
Fig. 5�b�, the overlap can be either quite small ��0, at larger
values of VA

1 and VE
3� or quite large ��1, in the vicinity of the

model situation�. This indicates that the incompressible states
are described by states with a different symmetry. However,
even though the system appears stable up to relatively high
V↑↓

3 , the gap remains small �0.01–0.1�. Moreover, we empha-
size that, in the case of an unfixed polarization, the ground
state is no longer in the unpolarized sector.

Note that the phase diagram in Fig. 5�b� is not generic for
all unstable wave functions, but may be attributed to the
pathologic model interaction of �113�. General consider-
ations on stability should only treat the polarization and pair-
correlation function arguments.

As in the case of K=2, we compare the plasma picture
with exact-diagonalization results for K=4. For the special
subset of matrices previously discussed, it has been checked
numerically that unstable states are related to the existence of
partially polarized zero-energy states with a lower number of
flux quanta. As in the case of K=2, those states will be
favored when any Zeeman-type perturbation is introduced.
The phase transition predicted within the plasma picture is
recovered. We checked this criterion for several particular
wave functions, such as �3333, 233� and �3333, 311�, and it
appears that wave functions with unstable corresponding
plasma do polarize, partially or completely, which is in
agreement with the classical stability discussed in Sec. IV B.
For a given fixed polarization, phase separation is likely to
be observed, as in the K=2 case.

V. GROUND-STATE PROPERTIES

Although the plasma picture is a powerful tool for the
study of intrinsic properties of Laughlin and generalized Hal-
perin wave functions, as shown in the previous section, it
gives in itself no indication of the physical state chosen by
the true interaction Hamiltonian. The Hamiltonian �6� is ob-
tained from a formal mapping of the wave functions to a
corresponding plasma model, but it is not related to the origi-
nal Hamiltonian of interacting particles in the lowest or par-
tially filled higher LL. Indeed, incompressible quantum liq-
uids, which display the FQHE, are not found at all possible
filling factors for which one may write down a trial wave
function. For example, in the lowest LL, a Wigner crystal is
energetically favorable at ��1 /6.5 �Ref. 38�; in the first
excited LL, a succession of FQHE states and Wigner and
bubble crystals39 gives rise to a re-entrant integral quantum
Hall effect40; and in even higher LLs, stripe phases41,42 yield
a highly anisotropic longitudinal transport.43 Which of these

competing phases is indeed chosen depends on the precise
form of the true interaction of electrons in a fixed partially
filled LL.

It is, however, possible to express the energy of Laugh-
lin’s wave function in terms of the three-dimensional Cou-
lomb interaction potential V�r�=e2 /�r and the pair-
correlation function

g�r� �� d2z3 . . . . d2zN��m�z1 = 0,z2 = r;z3, . . . ,zN��2,

apart from a normalization constant

E =� d2rV�r��g�r� − 1� . �21�

The plasma picture may be of use here because the pair-
correlation functions for electrons and for plasmatic particles
are the same, as may be seen from Eq. �2�. The pair-
correlation function may be expanded as28

g�z� = 1 − e−�z�2/2 + �
n=1

�

�
2

n!

 �z�2

4

n

cne−�z�2/4, �22�

where the prime indicates a summation only over odd n �due
to Fermi statistics� and the expansion parameters cn vanish
in the large-n limit. These expansion parameters are con-
strained in several respects. First, the short-range behavior

g →
�z�→0

�z�2m implies that cn=−1 for n�m. Second, particular
properties of the logarithmic potential in the plasma picture
can be used to derive sum rules, which act as further
constraints.24,44–46

A. Sum rules for SU(K) pair-correlation functions

For wave functions with SU�K� symmetry, there are
K�K+1� /2 pair-correlation functions if all densities are well
defined, i.e., if MK is invertible. The correlation function
between type-�i� and type-�j� electrons is denoted by gij�z�,
and one may generalize the expression �22� to the case of
K-component wave functions,

gij�z� = 1 − e−�z�2/2 + �
n=1

�

�
2

n!

 �z�2

4

n

cn
�ij�e−�z�2/4, �23�

where the expansion coefficients cn
�ij� vanish for large n.

Here, the prime indicates a summation over odd n only for
the intraspecies functions gii. Indeed, Fermi statistics is no
more relevant when considering distinguishable electrons of
types i and j� i. As for the Laughlin �K=1� case, the short-

range behavior gij�z� →
�z�→0

�z�2nij implies that cn
�ij�=−1 for n

�nij.
Further sum rules may be derived within the picture of K

correlated plasmas introduced in the previous section. In or-
der to derive those in the simplest manner, we decouple the
different plasmas with the help of an orthogonal transforma-
tion on the densities,
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��1��r�
]

�K� �r�
� = P��1�r�

]

�K�r�
� , �24�

which diagonalizes the exponent matrix, MK= PTDP, in
terms of the orthogonal matrix P. The diagonalized Hamil-
tonian thus reads

H���i��r��� = �
i=1

K

H�i���i��r�� ,

H�i���i��r�� = −� �



d2rd2r��i��r�
�i

2
ln�r − r���i��r��

+ �



d2r�i��r�
�i�r�2

4
, �25�

where �i is the ith eigenvalue of MK and �i=� j�P�ij. The
Hamiltonian H���i��r��� is a sum of K independent Hamilto-
nians H�i����i��r���, each of which corresponds to a single
2DOCP. The correlation functions for these K plasmas must
therefore obey the usual sum rules for 2DOCPs as
follows:24,44,46

M0 = − 1, �26a�

M1 = −
4

2���i
, �26b�

M2 = −
64

�2���i�2
1 −
��i

4

 , �26c�

M3 = − 6
���i − 6��8 − 3��i�

����i�3 , �26d�

for the different moments

Mm � ��i��
m+1� d2rr2m�gii��r� − 1� .

Here, primes indicate quantities in the diagonal basis. Equa-
tion �26a� is due to the charge neutrality of the system, Eq.
�26b� reflects its perfect-screening property, and Eq. �26c� is
a compressibility sum rule. The third moment �Eq. �26d�� has
no apparent physical interpretation. Because the plasmas are
decoupled in the diagonal basis, there are no correlations
between different plasmas, i.e., gij� �r�=1 for j� i.

The pair-correlation functions gij�r� in the original basis
may be obtained from gij� �r� with the help of the inverse
orthogonal transformation. It is useful to start from the defi-
nition of the structure factor in reciprocal space, which is
related to the pair-correlation function by Fourier transfor-
mation,

S�k� − 1 = �� d2reik·r�g�r� − 1�

for the simplest K=1 case. It may also be expressed in terms
of density operators,

�
S�k� = ���k���− k�� − ����k���2, �27�

where the quantities in brackets are averages with respect to
the probability density function. In the case of K�1, the
structure factor has a matrix form,


��i� jSij�k� = ��i�k�� j�− k�� − ���i�k������ j�k��� ,

and the associated pair-correlation functions gij�r� may be
obtained from those in the diagonal basis with the help of
Sij�r�=��r��ij + ��i� j�1/2�gij�r�−1�,

� �1
2�g11�r� − 1� ¯ �1�K�g1K�r� − 1�

] � ]

�K�1�gK1�r� − 1� ¯ �K
2 �gKK�r� − 1�

� = ��r�


�− ��1 ¯ 0

] � ]

0 ¯ �K
� + PT��1� ¯ 0

] � ]

0 ¯ �K�
�P�

+ PT��1�
2�g11� �r� − 1� ¯ 0

] � ]

0 ¯ �K�
2�gKK� �r� − 1�

�P .

�28�

Thus, the sum rules �26a�–�26d� for the diagonal basis im-
mediately yield those for the K correlated 2DOCP due to Eq.
�28�. For instance, the zeroth- and first-moment rules are

� d2r�i�gij�r� − 1� = − �ij , �29a�

� d2rr2�i� j�gij�r� − 1� = −
4

2��
�MK

−1�ij , �29b�

respectively. Equations �29a� and �29b� are generalizations of
results which have been previously obtained for K=2.28,37

The second- and third-moment rules may be derived in the
same manner.

B. Exact-diagonalization results for pair-correlation functions

The pair-correlation functions of the ground state may
also be obtained from exact-diagonalization results. We first
focus on the SU�2� case by considering the same �331� and
�113� wave functions discussed above and which were stud-
ied by MacDonald et al.30 As mentioned in Sec. IV C, the
first state is realized for the particular model V↑↑

1 =V↓↓
1 =V↑↓

0

=1, all other potentials being zero, and 2S=2N−3. The sec-
ond one is related to V↑↓

0 =V↑↓
1 =V↑↓

2 =1 and 2S=2N−1. Figure
6�a� shows the ground-state pair-correlation functions for the
�331� state with N=10 electrons and 2S=17 flux quanta, and
the results for the �113� case �N=8 and 2S=15� are displayed
in Fig. 6�b�. The correlation function of a pair of electrons
�i , j� is the relative density of type-j electrons when a type-i
electron is fixed at the origin, � j�r�=�igij�r�. With this defi-
nition in mind, one can infer that the �331� state is rather well
behaved. Correlation functions vanish near the origin as a
result of repulsive interactions and Fermi statistics. The den-
sity peaks at finite distances indicate different layers of elec-
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trons �on average� with a regular alternation of particles of
types �1� and �2�. The large-distance limit of type-�1� par-
ticles is related to a uniform density. Hence, the system dis-
cussed is composed of a uniform and homogeneous mixture
of electrons of both types. Unlike this first case, the �113�
state displays a vanishing intracomponent function �g11
=g22� at large distances. Electrons of both types thus tend to
aggregate on a finite-size location. Moreover, the intercom-
ponent function �g12=g21� is maximum only at infinity,
which implies that the different types of electrons tend to
separate spatially. This corroborates the plasma picture of
phase-separated particles.

We now turn to the SU�4� case by considering the two
stable generalized Halperin wave functions studied in Ref.
23, namely, �3333,111� and �3333,033�. The correlation func-
tions are computed for N=8 electrons and 2S=9 flux quanta
�Fig. 7�. While the partial filling factors of the �3333,111�
state are fixed and all equal to 1/6, only the filling factor per
layer is fixed for the �3333,033� ferromagnetic state. For a
better comparison, we have set the partial filling factors to be
the same as those of �3333,111�. Thus, in both cases, there
are only two electrons per species, leading to a prominent
finite-size effect �N=12 is out of computational reach�. The

�3333,111� state is the straightforward SU�4� generalization
of �331� and is therefore similar to its SU�2� counterpart
�bear in mind the small system size we are considering�. The
�3333,033� state consists of two independent spin insensitive
�=1 /3-Laughlin states in each layer. Both intralayer and in-
tracomponent correlation functions are therefore identical to
their Laughlin counterpart �up to normalization factors�. The
interlayer pairs are trivially constant in this noncorrelated
layer �3333,033� state.

Furthermore, we have confirmed numerically the validity
of the sum rules �29a� and �29b� for the SU�2� and SU�4�
states discussed above. Note that the �3333, 033� state may
be described alternatively by a SU�2� wave function, where
the two components correspond to the two layer indices, re-
gardless of the spin orientation. The relevant sum rules are
therefore those of the SU�2� case, in which the exponent
matrix MK in Eq. �29a� and �29b� is invertible.

VI. CHARGED EXCITATIONS

In this section, we present our study of the charged exci-
tations of SU�K� Halperin wave functions with the help of
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FIG. 6. Pair-correlation functions related to �a� �331� states for
N=10 particles and �b� �113� states for N=8 particles, plotted as a
function of distance �in units of magnetic length�. Intracomponent
pairs �g11=g22� are plotted as a solid line and intercomponent pairs
�g12=g21� as dashed lines. In the �331� graph, all functions go to 1
at infinity, which is typical of uniform density. In contrast, the �113�
intracomponent function vanishes at large distances, thus endowing
a particle aggregate.
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FIG. 7. Pair-correlation functions related to �a� �3333,111� and
�b� �3333,033� states for N=8 particles, plotted as a function of
distance �in units of magnetic length�. Intracomponent pairs �gii� are
plotted as a solid line. In the �3333,111� graph, the dashed line
corresponds to the intercomponent pairs �gi�j, all being equal�. In
the �3333,033� graph, the dotted line shows the correlation function
for electrons with opposite spin within any of each layer or valley.
The dashed line corresponds to intercomponent pairs between two
different valleys or layers, which are trivially constant in this non-
correlated valley or layer example.
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the plasma analogy. For K=1, quasihole excitations of the
Laughlin wave function may be written as

	
l=1

N

�zl − z0��m��zk�� . �30�

They consist of adding a zero density, or a magnetic flux, in
the electron liquid at the position z0.

Within the plasma picture, the extra Jastrow term adds a
new potential term to the Hamiltonian �3�,

HN
� = HN − �

l=1

N

ln�zl − z0� , �31�

which thus describes a 2DOCP with a fixed impurity at z0
and charge 1 /�m. Because of the plasma’s perfect-screening
ability,25 the particles are rearranged so that they screen the
effect of the impurity in its vicinity. This requires 1 /m par-
ticles in the plasma picture such that, in the true electron
liquid, the real charge e� of the excitation must be

e� =
1

m
�32�

in units of the electron charge. Hence, one electron can
screen m excitations.

We now investigate SU�K� Halperin wave functions for
which there exist different types of excitation. The quasihole
wave function

	
ki=1

Ni

�zki

�i� − z0� 
 �m1,. . .,mK;nij

SU�K� �33�

creates here an excitation of �i�-type electrons at the position
z0, i.e., adds a magnetic flux in the �i�th component of the
electron liquid. The modified Hamiltonian in the plasma pic-
ture contains a new potential of an impurity that only affects
particles of type �i�,

HN
�i�� = HN − �

ki=1

Ni

ln�zki

�i� − z0� .

Each of the K correlated 2DOCP exhibits a perfect-screening
ability, i.e., the plasma of type �i� screens the impurity to-
tally,

miei
��i� + �

j�i

nijej
��i� = 1, �34�

whereas plasmas of type �j�, with j� i, screen a zero impu-
rity

mjej
��i� + �

k

njkek
��i� = 0. �35�

Here, ej
��i� is the quasiparticle charge, in units of the electron

charge, carried by electrons of type �j� in the electron liquid
for excitations in the �i� component. Equations �34� and �35�
were previously derived for the K=2 case,6 and one may
write them in a concise matrix form as

�
k

njkek
��i� = �ij ⇔ ej

��i� = �MK
−1� ji. �36�

The last equation is valid only if MK is invertible. Indeed, if
this is not the case, some component densities remain un-
fixed, as described in the previous section, and one could
only consider the excitation of groups of particles with a
definite density. For instance, the �mmm�-Halperin wave
function has a noninvertible exponent matrix; the densities �1
and �2 may fluctuate although their sum remains fixed, �T
=1 /m. Physical excitation must therefore not distinguish be-
tween the two components.

For the K=4 case, the �3333,111� wave function23 exhib-
its four excitation types, each of which carries a 1/6 charge,
whereas for the �3333,033� wave function, only joined �1�–
�3� and �2�–�4� excitations are considered, each carrying a
1/3 charge.

Table I shows examples of charged excitations for SU�2�
wave functions. The first example describes two independent
Laughlin states and it is consistent with the assumption that a
type-�1� excitation should only affect type-�1� particles. The
four next examples are related to the “�mmn� and �nnm�”
problem. One should note that there are inconsistencies for
�113� and �223� states. Indeed, when an extra flux quantum is
added to the type-�1� component, the number of flux quanta
increases by 1 and the electron density remains the same.
Therefore, the �1 filling factor should decrease. However, the
total charge is conserved, so the sign of the quasihole charge
should be the same as that of the electron in order to com-
pensate for this “electronic” lack. This is not the case for
�113� and �223� states which must thus be considered as
unphysical, in addition to the conclusions drawn in the pre-
vious sections. The last example in Table I is simply a

TABLE I. Charged excitations of Halperin’s wave functions.

m1 m2 n �T e1
��1� e2

��1� e1
��2� e2

��2�

3 3 0 2/3 1/3 0 0 1/3

3 3 1 1/2 3/8 −1 /8 −1 /8 3/8

1 1 3 1/2 −1 /8 3/8 3/8 −1 /8

3 3 2 2/5 3/5 −2 /5 −2 /5 3/5

2 2 3 2/5 −2 /5 3/5 3/5 −2 /5

3 3 3 1/3 1/3
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Laughlin wave function split into two arbitrary sets. There is
only one common excitation as for the usual U�1� case.

Similarly, Table II shows some charged excited states for
SU�4� wave functions. All examples are associated with in-
vertible matrices MK. No proof is given here, but we conjec-
ture that unstable states yield some inconsistencies concern-
ing the charged excitations as for the K=2 case.

VII. CONCLUSIONS

In conclusion, we have investigated the stability of Halp-
erin wave functions for K-component quantum Hall systems,
with a particular emphasis on the cases of K=2 and 4. The
associated SU�2� and SU�4� internal symmetries happen to
be the physically most relevant if one considers, e.g., bilayer
quantum Hall systems and graphene in a strong magnetic
field. The K=4 case occurs when the Zeeman effect is rela-
tively small with respect to the leading interaction energy
scales. In order to derive the stability criteria, we have gen-
eralized, in a systematic manner, Laughlin’s plasma analogy
to multicomponent systems. The validity of the criteria is
corroborated with the help of exact-diagonalization studies.

As for the conventional one-component quantum Hall
system, the quantum-classical analogy yields a compelling
physical interpretation of the trial wave functions in terms of
K correlated 2DOCP. Besides the stability of the trial wave
functions, it allows one to understand relevant ground-state
properties, such as the associated pair-correlation functions,
and fractionally charged quasiparticle excitations.

Whether the discussed trial wave functions correctly de-
scribe the true ground state in physically relevant multicom-
ponent systems, such as bilayer quantum Hall systems or
graphene, depends on the precise form of the interaction po-
tential. The plasma analogy with its rather artificial interac-
tion may not give insight here, and variational or exact-
diagonalization studies need to be performed to determine
the correct ground state for a physical interaction potential. It
has indeed been shown that in the case of Coulomb interac-

tion, a possible FQHE state at �=2 /3 is not described by a
generalized SU�4� Halperin wave function.22,23 More compli-
cated trial wave functions, such as composite-fermion22 or
even more exotic states, may describe FQHE states at this
and possibly other filling factors in a more appropriate man-
ner. However, in the U�1� one-component quantum Hall sys-
tem, the inevitable starting point in the understanding of the
FQHE is Laughlin’s wave function2; other wave functions
may be viewed as sophisticated generalizations of it. In the
same manner, the study of SU�K� Halperin wave functions
and the plasma analogy yield important physical insight into
multicomponent quantum Hall systems, and one may conjec-
ture that they play a similar basic role for possible generali-
zations as Laughlin’s in the U�1� case.

Furthermore, it has been shown in the SU�2� case that not
all possible, though stable from our analysis, Halperin wave
functions are valid candidates from a symmetry point of
view. Indeed, most of the �m ,m ,n� wave functions are not
eigenstates of the total spin operator, the Casimir operator of
SU�2�, as they should for spin-independent interaction
Hamiltonians.47 The �331� wave function discussed here is,
for example, not an eigenstate of the total spin. However, this
problem may be cured by attaching the permanent of the
matrix �zi

�1�−zj
�2��−1 to the �331� wave function.47,48 The situ-

ation is more complicated in the SU�4� case, where there are
more Casimir �spin-pseudospin� operators, and the wave
functions should be eigenstates of these operators. More de-
tailed theoretical investigations are required to settle the
question of whether some SU�4� wave functions may be cor-
rected in a similar manner.
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