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We study spin polarization in a split-gate quantum wire focusing on the effect of a realistic smooth potential
due to remote donors. Electron interaction and spin effects are included within the density functional theory in
the local spin density approximation. We find that depending on the electron density, the spin polarization
exhibits qualitatively different features. For the case of relatively high electron density, when the Fermi energy
EF exceeds a characteristic strength of a long-range impurity potential Vdonors, the density spin polarization
inside the wire is practically negligible and the wire conductance is spin-degenerate. When the density is
decreased such that EF approaches Vdonors, the electron density and conductance quickly become spin polar-
ized. With further decrease of the density the electrons are trapped inside the lakes �droplets� formed by the
impurity potential and the wire conductance approaches the pinch-off regime. We discuss the limitations of the
density functional theory in the local spin density approximation in this regime and compare the obtained
results with available experimental data.
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I. INTRODUCTION

The possibility of a spontaneous spin-polarization at low
electron densities in low dimensional electron systems has
attracted enormous interest over the past years. The phenom-
ena has been suggested to occur in various systems including
quantum point contacts1 �QPCs�, two-dimensional electron
gas �2DEG�,2,3 quantum wire,4 and open quantum dots.5 The-
oretical modeling with Hartree-Fock,6 the density functional
theory,5,7–9 and Monte Carlo simulations10 has reproduced
low density spin polarization in a number of systems. The
mechanism driving the polarization is the exchange energy
dominating over the kinetic energy at low densities, making
the spin-polarized state the energetically most favorable. The
electron density necessary for this polarization to occur is
generally very low, below ns�3�1014 m−2 �corresponding
to the interaction parameter11 rs=1 /a

B
*��ns�3.2, where a

B
*

is the effective Bohr radius� as indicated in, e.g., Refs. 12
and 13. At such low electron densities the electrostatic po-
tential due to impurities in the donor layer can significantly
affect the electronic and transport properties of the 2DEG.
For example, Nixon et al.14 showed that a monomode quan-
tum wire is difficult to achieve because of the pinch-off due
to a random potential from unscreened donors. This pinch-
off is characterized by the critical electron density nc, the
density where the 2DEG undergoes a metallic-insulator tran-
sition �MIT�.14–17 The MIT causes a localization of the elec-
tron gas with an accompanying abrupt change in the
conductance.15,16 Recent measurements of the thermody-
namic magnetization in silicon 2DEGs18,19 found an en-
hancement of the spin susceptibility close to nc. Interestingly,
theoretical considerations6,20 indicate that the spin-
susceptibility in a disordered potential increases for electron
densities close to nc. These studies considered the general
behavior of a 2DEG in an impurity potential but did not
elaborate on specific geometries, e.g., quantum dots or wires.

In the present paper we study spin polarization in a split-
gate quantum wire focusing on the effect of a realistic
smooth potential due to remote donors. For this purpose we,

starting from a heterostructure and a gate layout, model
GaAs /AlGaAs quantum wires within the density functional
theory in the local spin density approximation �DFT-LSDA�
accounting for a long-range impurity potential due to ionized
dopants. A gate voltage applied to a top gate allow us to tune
the electron density in the wire close to nc. We find that
depending on the electron density, the spin polarization ex-
hibits qualitatively different features. For the case of rela-
tively high electron density, when the Fermi energy EF ex-
ceeds a characteristic strength of a long-range impurity
potential Vdonors, the density spin polarization inside the wire
is practically negligible and the wire conductance is spin-
degenerate. When the density is decreased such that EF ap-
proaches Vdonors, the electron density and conductance
quickly become spin polarized. With further decrease of the
density the electrons are trapped inside the lakes �droplets�
formed by the impurity potential and the wire conductance
approaches the pinch-off regime.

II. MODEL

We study the conductance and electron density of a
GaAs /AlGaAs quantum wire with a realistic long-range im-
purity potential due to remote donors. In the wire, sketched
in Fig. 1, the confinement is induced by two metallic side
gates situated 700 nm apart on the top of the heterostructure.
The heterostructure consists of the cap layer, the donor layer,
and the spacer. Electrons from the fully ionized donor layer
form a two-dimensional electron gas at a GaAs /AlGaAs in-
terface situated at the distance d2DEG below the surface. The
confining potential from the donor layer is different in the
leads and in the central region of the device. The leads,
which extend to electron reservoirs at infinity, are considered
ideal and the ionized donors in the lead regions are treated as
a uniform layer with the density �d at the distance dd from
the surface. Thus the leads guide charges from the reservoirs
to and from the middle region without any scattering. In the
middle section the average donor density is still �d, but a
gradual transition from the uniform donor density in the
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leads to random placement of the dopants is implemented.
As a results, the electrons are scattered in the middle region
of the wire due to the long-range impurity potential. The
donor potential on the depth of the 2DEG is calculated ac-
cording to the procedure outlined by Davies et al.14 An ad-
ditional top gate in the middle section allows us to control
the electron density in this region. The potential on the top
gate, Vg, ranges from zero voltage up to −0.07 V, which is
the pinch off voltage for at least one of the spin species. The
self-consistent potential at the GaAs /AlGaAs interface for
different gate voltages is illustrated in Fig. 2. The shape of
the impurity potential depends on the spacer thickness. We
consider two cases when the width of the spacer layer is,
respectively, 30 and 60 nm. In both cases the average elec-
tron density is similar �n↑+n↓�1�1015 m−2 at Vg=0�. This

is achieved by choosing slightly different impurity concen-
trations for different spacer layers ��imp=1�1024 m−3 and
�imp=1.07�1024 m−3 for, respectively, 30 and 60 nm spac-
ers�. The effective width of the wire in the 2DEG is 500 nm
for both cases. For the case of a 60 nm spacer, the donors in
the central region are situated further away from the 2DEG
which results in a smoother profile in comparison to the
30 nm case, cf. Figs. 2�a�, 2�c�, and 2�e� and 2�b�, 2�d�, and
2�f�.

Using the Kohn-Sham formalism we write the Hamil-
tonian for the quantum wire as21

H� = −
�2

2m*
�2 + V��r� , �1�

where m*=0.067me is the effective mass in GaAs, r= �x ,y�,
and � stands for spin up and down electrons �↑ , ↓ �. The total
potential V��r� can be written as the sum of the classical
Hartree potential, VH�r�, the correlation and exchange poten-
tial, Vxc

� �r�, and the external potential due gates, donors, and
Schottky barrier, Vext�r�.

V��r� = VH�r� + Vxc
� �r� + Vext�r� . �2�

With mirror charges at distance d2DEG above the surface the
Hartree potential is written as

VH�r� =
e2

4���0
� dr�n�r��� 1

�r − r��
−

1

��r − r��2 + 4d2DEG
2 	 ,

�3�

where n�r� is the total �n↑+n↓� electron density. Within the
LSDA approximation the exchange and correlation potential
is given by

Vxc
� �r� =

�

�n� 
n�xc�n�� . �4�

For �xc the parametrization by Tanatar and Ceperly22 was
implemented. Finally, for Vext�r�=Vgates�r�+Vdonors�r�
+VSchottky�r� we use analytical expressions for Vgates�r� �Ref.
23� and Vdonors�r� �Refs. 24 and 14, respectively, for the
lead- and middle sections of the wire�; the Schottky barrier
VSchottky�r� is set to 0.8 eV.

Note that the Hamiltonian �1� does not include the spin-
orbit �SO� interaction.25 This is because the strength of the
SO interaction in GaAs electron systems is small in compari-
son to other systems, e.g., InAs, where this interaction can
lead to significant modification of the spin and transport
properties of quasi-one-dimensional structures.25,26 Note that
using a similar spin density functional approach, Tutuc et
al.27 studied the effect of the finite layer thickness on the spin
polarization of the GaAs structures in parallel magnetic field.
They also performed calculations where SO interaction was
included and, as expected, they found practically no differ-
ence with the results calculated without SO interaction.28

Using the recursive Green’s function technique with
mixed basis set29 we compute the conductance through the
scattering region �middle section� and the self-consistent
electron density in the system. Details of our implementation
can be found in Refs. 9, 30, and 31 and the procedure will
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FIG. 1. �Color online� Schematic view of the system studied.
The heterostructure consists of �from bottom to top�, a GaAs sub-
strate, a 30–60 nm AlGaAs spacer, a 26 nm donor layer, and a
14 nm cap layer. The side gates define a quantum wire and the top
gate controls the electron density in the section with randomly dis-
tributed dopants �d�r�.
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FIG. 2. �Color online� The self-consistent spin up and down
potential along a slice in the middle of the wire �y=0� for increas-
ing gate voltages, Vg. �a�, �c�, and �e� show the 30 nm spacer
sample while �b�, �d�, and �f� the 60 nm spacer.
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only be briefly sketched here. The Hamiltonian Eq. �1� is
discretized on an equidistant grid and the retarded Green’s
function is defined as

G� = �E − H� − i��−1. �5�

The electron density is integrated from the Green’s function
�in the real space�,

n� = −
1

�
�

−	

	

I
G��r,r,E��fFD�E − EF�dE , �6�

fFD being the Fermi-Dirac distribution. First we compute the
self-consistent solution of Eqs. �1�–�6� for an infinite homog-
enous wire by the technique described in Ref. 30. The con-
verged solution for the infinite wire is used to find an ap-
proximation for the surface Green’s function of the left and
right leads. This approximation can be justified because of a
sufficient separation between the leads and the inhomoge-
neous potential in the middle section such that any inhomo-
geneous contribution to the potential from the middle section
is negligible at the leads. Next we apply the Dyson equation
to couple the left and right surface Green’s function and re-
cursively compute the full Green’s function for the middle
section. We then iterate Eqs. �1�–�6� to find a self-consistent
solution for the middle section. On each iteration step i the
electron density is updated from the input and output densi-
ties of the previous step, ni+1

in �r�= �1−��ni
in�r�+�ni+1

out�r�, �
being a small number, �0.05. Convergence is defined as a
ratio between the relative change in input-output density at
the iteration step i, �ni

out−ni
in � / �ni

out+ni
in�
10−5. Finally the

conductance is computed from the Landauer formula, which
in the zero bias limit is

G� = −
e2

h
�

−	

	

dET��E�
� fFD�E − EF�

�E
, �7�

where T��E� is the transmission coefficient for spin channel
�. T��E� can be found from the Green’s function between the
leads.32 Calculations are done at zero magnetic field. In order
to find spin separated solutions a small magnetic field,
�0.05 T, is applied for the first �100 �out of 1000–20 000�
iterations. Although the direct effect of the magnetic field is
very small it is sufficient to lift spin degeneracy and for the
converged solution to be spin polarized. The temperature in
all simulations was chosen to 1 K.

III. RESULTS AND DISCUSSION

The top panels in Fig. 3 show the spin up and down
electron densities and the spin polarization �n↓−n↑� at Vg=0.
For this gate voltage the impurities in the middle section
cause a clear modulation of the electron density with a neg-
ligible spin polarization inside the wire. However, the elec-
tron density exhibits a pronounced spin polarization near the
wire edges. Because incoming states in the leads are spin
degenerate, the polarization along the edges was quite unex-
pected. To understand the origin of this spin polarization, we
study an infinite ideal homogeneous wire, where the confine-
ment is modeled by a parabolic potential,

Vpar�y� = V0 +
m

2
��y�2, �8�

V0 being the bottom of the parabola. Note that the parabolic
confinement represents an excellent approximation to the
electrostatic potential from a gated structure.11,30,33 At the
same time, by changing the saddle point of the parabola, V0,
and the confinement strength, ��, it is convenient to control
both the electron density and the smoothness and/or steep-
ness of the potential. The self-consistent solution of Eqs.
�1�–�6� can be spin degenerate and spin polarized 
left and
right panels in Figs. 4�b� and 4�c��. As for the case of the
quantum wire of Fig. 1, a small magnetic field was tempo-
rarily introduced to trigger spin degenerate solutions for
some initial iterations. Figure 4�c� shows a representative
spin-polarized electron density in an ideal infinite quantum
wire. As the electron density decreases at the edge of the
wire, it becomes spin polarized and exhibits a spatial spin
polarization yielding a separation, dsep, between the spin up
and down densities. This is summarized in Fig. 4�a� for a
series of wire configurations. Along the V0 axis in Fig. 4�a�
the width of the wire is held constant whereas the electron
density grows as �V0� is increased �we keep the Fermi energy
EF=0�. Conversely, changing the width of the wire along the
w axis by decreasing the confinement strength, ��, and
keeping V0 constant, a more shallow wire is studied. The
behavior of the spatial spin polarization presented in Fig.
4�a� shows that dsep increases as the electron density is de-
creased and the confinement becomes smoother. Note that
this dependence of the dsep as a function of the electron
density and the confinement strength is consistent with the
corresponding behavior of dsep near the edges of a quantum
wire in a perpendicular magnetic field,34 where dsep also in-
creases as the electron density is decreased and the confine-
ment becomes smoother. It should be noted that in the
present case of zero magnetic field, dsep shows a nonmono-
tonic dependence of the spin polarization and electron
density/slope of the confinement potential. This behavior of
dsep is a manifestation of the subband structure in a quantum

FIG. 3. �Color online� Electron densities n↑, n↓ �left and middle
columns� and spin polarization �n↓−n↑� �right column� for the
30 nm spacer sample at different gate voltages, Vg=0, −0.03, and
−0.07 V 
rows �a�–�c�, respectively�.
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wire of a finite width. For example, if there is some energy
level close to EF, the exchange interaction effectively splits it
into spin-up and spin-down subbands, see Figs. 4�c� and 4�f�.
As a result, the total charge density profile shows a spatial
spin separation dsep at the boundary of the quantum wire 
left
part of �c� in Fig. 4�. In contrast, a spin-degeneracy holds for
energy levels far away from EF, see Figs. 4�b� and 4�d�.

Having established that an infinite quantum wire can have
a spin-polarized solution, we conclude that this solution is
triggered in the finite quantum wire as well, even though the
electrons injected into the middle part of the wire are spin-
degenerate �we stress that we always select the spin-
unpolarized solution in the leads�. A word of caution is, how-
ever, in order concerning the reliability of the above
predictions for the spatial spin separation near the wire edges
obtained within the DFT-LSDA. Our recent comparison of
the DFT-LSDA and the Hartree-Fock �HF� approaches dem-
onstrates that the two methods provide qualitatively �and in

most cases quantitatively� similar results for electronic prop-
erties of ideal infinite quantum wires in the integer quantum
Hall regime.35 However, in contrast to the HF approach, the
DFT calculations predict much larger spatial spin separation
near the wire edge for low magnetic fields �when the com-
pressible strips for spinless electrons are not formed yet�.
Note that a comparative study of two methods cannot distin-
guish which approach gives a correct result for dsep for zero
field. This question can be resolved by a comparison to the
exact results obtained by, e.g., quantum Monte Carlo meth-
ods. We thus cannot exclude that the predicted spin polariza-
tion near the wire boundaries as B=0 can be an artifact of the
DFT-LSDA, and we defer this question to further studies.

Let us now focus on the spin polarization in the central
part of the wire. Depending on the electron density, we can
identify three regimes with qualitatively different behavior.
In the first regime the spin polarization of the electron den-
sity Pn= �n↑−n↑ � / �n↑+n↑� and the spin polarization of the
conductance PG= �G↑−G↑ � / �G↑+G↑� are negligible; for the
30 nm spacer sample this is roughly between −0.025 V
�Vg�0 V 
row �a� in Fig. 3� while for the 60 nm spacer
sample this happens between −0.045 V�Vg�0 V. In this
regime the decreasing gate voltage causes a decreasing con-
ductance �because of a reduction of the number of propagat-
ing subbands�, but no significant spin polarization, except at
the edges, occurs. The polarization at the edges is expected
since the wire under consideration is wide ��500 nm� and
shallow �minimum potential �−5 meV�, which corresponds
to the high polarization region of Fig. 4�a�. The self-
consistent potential, shown for a slice along the middle of the
wire in Figs. 2�a� and 2�b� is well below the Fermi energy,
such that the characteristic potential fluctuations of the long-
range impurity potential are much smaller than the average
distance from the potential bottom to EF.

As the gate voltage becomes more negative, the wire un-
dergoes a spin polarization in the central part, see Figs. 5�b�
and 5�c�. For the 30 nm spacer sample 
row �b� in Fig. 3� this
occurs for the gate voltages Vg�−0.025 V and for the 60 nm
sample, Vg�−0.045 V. The splitting results in the fragmen-
tation of spin up and down densities into spin-polarized is-
lands in the wire seen in row �b� of Fig. 3. The onset of spin
polarization is displaced towards a lower gate voltage for the
thicker spacer, Figs. 5�b� and 5�c�, but it is not clear whether
there is any other qualitative difference between the two
samples. To settle this would require further computations
over more samples with varying spacer thickness and donor
sheet configurations. However, because of the extensive
computational efforts needed to find a convergent solution
�sometimes requiring up to 20 000 iterations� we were in a
position to study only two representative wires with spacers
30 and 60 nm.

Finally we identify a third, nonconducting regime, corre-
sponding to a metal-insulator transition �MIT�; Vg�
−0.04 V for the 30 nm spacer and Vg�−0.07 V for the
60 nm spacer. Conductance is pinched off and electrons are
trapped in isolated pockets along the wire, Fig. 3�c�. This
electron-droplet state has been analyzed thoroughly in Refs.
17 and 36–38. Using arguments based on the screening of
the impurity potential by the 2DEG, Efros et al.17 gave an
expression for the critical density, nc, where the metal-
insulator transition �MIT� occurs,

b
c

FIG. 4. �Color online� �a� Spatial spin separation, dsep, at the
boundary of the quantum wire vs the saddle point potential V0 and
the wire width w. dsep is loosely defined as the distance between
spin species at the level 0.5�n�y=0�. V0 and w can be ascribed as
the electron density and potential profile smoothness, respectively.
In �b�–�f� the left and right panels show, respectively, the spin de-
generate solutions �black lines� and spin-resolved solutions �red and
blue lines�. �b� and �d�, electron density and band structure in the
wire indicated ⓑ in panel �a�. �c� and �f�, electron density and band
structure in the wire indicated ⓒ in panel �a�.
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nc = 
��d

dspacer
, �9�

where  is a numerical constant equal to 0.11 and �d the
donor density. We use this expression to find the approximate
point for the MIT in our samples. For the 30 nm spacer Eq.
�9� yields nc=5.9�1014 m−2 
see Fig. 5�a�� and for the
60 nm spacer nc=3.0�1014 m−2. The predictions for nc
agree rather well with the numerical results that show that
the wire undergoes a transition to a spin-polarized regime
before the MIT occurs 
see Figs. 5�b� and 5�c��. Thus close
to the pinch-off regime, the DFT-LSDA predicts the forma-
tion of the spin-polarized electron lakes trapped in the
minima of the long-range impurity potential. Such localized
states might be relevant to the experimental observations of
Bird et al. that provide evidence of bound state-mediated
resonance interaction between the coupled quantum point
contacts close to the pinch-off regime.39 While microscopic
origin on the effect is still under debate, our findings indicate
that because the spin-polarized localized states trapped in
minima of the impurity potential are a generic feature of
modulation-doped split-gate heterostructures, they might be
relevant for the interpretation of the effect reported by Bird
et al.39

Let us now compare our findings with available experi-
mental results. Spontaneous spin-polarization at low electron
densities has been probed in various systems, Refs. 2, 12, 13,
18, and 19. In Ref. 2, Ghosh et al. studied the evolution of

the zero bias anomaly �ZBA�40 in 2DEGs for low and zero
magnetic fields. The behavior of the ZBA was associated
with different spin states in the 2DEG and measurements
over different disorder configurations �cool downs� and tem-
peratures indicated that the spin polarization observed is a
generic effect for low density 2DEGs. The ZBA was most
easily observed in a small disorder window between the me-
tallic and insulating regime. This is qualitatively consistent
with the window of high spin polarization we find above

Figs. 5�b�–5�d��. Further experiments on the ZBA in
2DEGs13 suggested the formation of localized magnetic mo-
ments due to spin polarized regions in the 2DEG as the elec-
tron density is lowered. This was understood as an effect of
the potential due to background disorder which is similar to
the impurity induced spin polarized droplets we find in Fig. 3
�third column�. Many of the observations in Ref. 13 were
strongest for electron densities around �1–3��1014 m−2, a
slightly lower electron density than we find. In our case the
average density below the top gate for the onset of the spin
polarization is 6.4�1014 m−2 for the 30 nm spacer case and
5.1�1014 m−2 for the 60 nm spacer case.

A direct measure of magnetization of the 2DEG at low
electron densities was done in Ref. 18 and 19 for Si-SiO2
heterostructure 2DEGs. By modulating an in-plane magnetic
field and measuring the minute current between gate and
2DEG the thermodynamic magnetization of the 2DEG is
found through Maxwell’s equations.18,19 Both Prus et al.18

and Shaskin et al.19 find that the spin susceptibility is criti-
cally enhanced prior to the metal-insulator transition in the
2DEG. It is, however, not clear from the experiment whether
a spin polarized phase actually exists between the metal and
insulating phase or if there is only an increased magnetiza-
tion in the metallic phase.

Resonant inelastic light scattering measurements on GaAs
single wells showed direct evidence for spin polarization at
low densities.12 Calculations using time-dependent local
spin-density approximation in the same paper predicted a
stable polarized state below an electron density of 3.4
�1014 m−2. This is once again slightly lower than we en-
counter.

Finally, a comment is in order concerning applicability of
the method used. The main focus of our study is the spin
polarization of the electron density in the modulation-doped
quantum wires. We will argue below that our calculations
provide a reliable quantitative description of the spin polar-
ization in all three regimes including the pinch-off regime of
strong polarization. At the same time, as far as conductance
calculation is concerned, the applicability of the method at
hand does not include the pinch-off regime.

Indeed, it is now well-recognized that the DFT-based
quantum transport calculation is not expected to work in the
Coulomb blockade regime of weak coupling between the
leads and the device because of the spurious self-interaction
errors in open systems caused by the lack of the derivative
discontinuity of the exchange and correlation potentials in
the standard DFT-LSDA.9,21,41 Thus as far as the conduc-
tance calculation is concerned, the validity of the present
method is limited to the case of strong coupling when the
electron number in the structure is not quantized �i.e., the
Coulomb charging is unimportant� and the conductance of
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FIG. 5. �Color online� �a� The average electron density, n̄↑+ n̄↓,
directly beneath the top gate. The arrow indicates the critical elec-
tron density, nc, for the MIT according to Eq. �9� for the 30 nm
spacer sample. For the 60 nm spacer sample nc=3.0�1014 m−2 is
achieved for a gate voltage lower than −0.07 V. �b� The density
spin polarization, Pn; �c� the spin polarization of the conductance,
PG; and �d� the spin-resolved conductance G�.
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the systems exceeds the conductance unit G0=2e2 /h �see
Ref. 9 for a detailed discussion and further references�. Note
that in the regime of the strong coupling the present ap-
proach is shown to exhibit not only qualitative but rather
quantitative agreement with the corresponding experimental
data for similar structures.42 Therefore we expect that the
present approach provides reliable conductance of the struc-
ture at hand for the first two regimes of the spin polarization,
whereas an accurate quantitative description of the conduc-
tance in the pinch-off regime �when electron lakes weakly
coupled to the leads form in the structure� would require
methods that go beyond the standard DFT-LSDA scheme
utilized in the present calculations.

In contrast to the conductance calculations we expect that
the present method provides reliable results for the spin-
polarized electron density even in the pinch-off regime. This
is because the weakly coupled electron lakes formed in this
regime are big and contain a large number of electrons N
�1. Thus even though the self-interaction errors of the DFT-
LSDA are not corrected �which is manifested in the noninte-
ger number of electrons in the lakes�, the effect of the extra
densities due to deviation from the integer electron number is
negligibly small because N�1. Due to this we expect that
calculated density and confining potential are sufficiently ac-
curate and the accounting for the self-interaction would lead
only to minor correction of the obtained results for spin po-
larization.

IV. CONCLUSIONS

Using the spin density functional theory we have studied
spin polarization of a 2DEG in split-gate quantum wires

formed in modulation-doped GaAs heterostructures focusing
on the effect of the long-range impurity potential originating
from the remote donors. We find that depending on the elec-
tron density, the spin polarization exhibits qualitatively dif-
ferent features in three different regimes. For the case of
relatively high electron density, when the Fermi energy EF
exceeds a characteristic strength of a long-range impurity
potential Vdonors, the density spin polarization inside the wire
is practically negligible and the wire conductance is spin-
degenerate. We find, however, a strong spin polarization near
the wire boundaries. When the density is decreased such that
EF approaches Vdonors, the electron density and conductance
quickly become spin polarized. With further decrease of the
density the electrons are trapped inside the lakes �droplets�
formed by the impurity potential and the wire conductance
approaches the pinch-off regime. Experimentally, spin polar-
ization prior to localization of the 2DEG has been suggested
in Refs. 2, 12, and 13 The electron density where we find
spin polarization in the wire is roughly equal to what has
been determined experimentally in GaAs /AlGaAs.12,13 Di-
rect measurements of the magnetization of the 2DEG in
Si-SiO2 heterostructures suggests an increased spin
susceptibility18,19 close to the MIT but it is not clear in these
experiments whether a spin polarized phase, as we find, ex-
ists.
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