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We study the intrinsic spin Hall conductivity �SHC� in various 5d transition metals �Ta, W, Re, Os, Ir, Pt, and
Au� and 4d transition metals �Nb, Mo, Tc, Ru, Rh, Pd, and Ag� based on the Naval Research Laboratory
tight-binding model, which enables us to perform quantitatively reliable analysis. In each metal, the obtained
intrinsic SHC is independent of resistivity in the low resistive regime ���50 �� cm� whereas it decreases in
proportion to �−2 in the high resistive regime. In the low resistive regime, the SHC takes a large positive value
in Pt and Pd, both of which have approximately nine d electrons per ion �nd=9�. On the other hand, the SHC
takes a large negative value in Ta, Nb, W, and Mo, where nd�5. In transition metals, a conduction electron
acquires the trajectory-dependent phase factor that originates from the atomic wave function. This phase factor,
which is reminiscent of the Aharonov–Bohm phase, is the origin of the SHC in paramagnetic metals and that
of the anomalous Hall conductivity in ferromagnetic metals. Furthermore, each transition metal shows huge
and positive d-orbital Hall conductivity �OHC�, independent of the strength of the spin-orbit interaction. Since
the OHC is much larger than the SHC, it will be possible to realize an orbitronics device made of transition
metals.
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I. INTRODUCTION

In recent years, spin Hall effect �SHE� in transition metals
has received considerable attention due to its fundamental as
well as technological interest. The SHE is the phenomenon
that an electric field induces a spin current in a transverse
direction. Recent experimental efforts have revealed that
many metallic compounds show sizable spin Hall conductiv-
ity �SHC�.1–4 In particular, Pt shows a huge SHC at
room temperature.1,4 The observed SHC in Pt is
�240�e−1 �−1 cm−14, which is about 104 times larger than
the SHC reported in n-type semiconductors. This unexpected
experimental fact cannot be understood based on the simple
electron gas models for semiconductors.5,6 To elucidate the
origin of the huge SHE in transition metals, several authors
have studied the SHC based on the multiorbital tight-binding
models7,8 and the first-principles band calculation.9 Refer-
ence 7 showed that the orbital degrees of freedom in transi-
tion ions, which are absent in electron gas models, are crucial
to realize the huge SHE in various transition metals.

The SHE has a close relationship to the anomalous Hall
effect �AHE� in the presence of the magnetization M, where
charge current is induced by an electric field E parallel to
M�E. In 1954, Karplus and Luttinger10 �KL� solved the
kinetic equation for ↑-, ↓-spin electrons in the multiband sys-
tem with the z component of the atomic spin-orbit interaction

�SOI� �1�l�l̂zŝz�l. Under the electric field E � ŷ, they showed
that the ↑-spin and ↓-spin electrons move to the opposite
direction parallel to the x̂ axis. Their analysis strongly sug-
gests that the AHE �SHE� occurs in ferromagnetic �paramag-
netic� multiband systems with the SOI. The Hall effect stud-
ied by KL, which is due to the interband particle-hole
excitation and is independent of impurity scattering, is called
the “intrinsic Hall effect.” However, this explanation, accord-
ing to the KL theory, is too naive in that they omitted the x

and y components of the SOI �2�l�l̂xŝx+ l̂yŝy�l. In the case of
�2�0, there is no simple relation between SHE and AHE
since sz= 	1 /2 is not a good quantum number.

Note that KL did not make mention of the SHC. The
analogous relationship between AHE and SHE was first
pointed out by Dyakonov and Perel.11

After KL, theories of the intrinsic AHE12–23 and
SHE5–8,24–26 have been improved based on several specific
theoretical models. Kontani and Yamada15 studied the intrin-
sic AHE based on the periodic Anderson model by consider-
ing the SOI unperturbatively. By using the microscopic
Fermi liquid theory, they derived the general expression for
the anomalous Hall conductivity �AHC� by considering all
the self-energy correction and the current vertex correction
�CVC�. Their study clarified that the intrinsic AHE �due to
the KL mechanism� remains finite even if all of the scattering
processes are taken into account rigorously, in contrast to
Smit’s claim.27 The obtained general expression succeeded in
explaining the huge AHC observed in heavy-fermion sys-
tems. It was found that the large anomalous velocity, which
is not perpendicular to the Fermi surface and is the origin of
the AHE, is caused by the k derivative of the phase factor in
the c-f mixing potential. That is, the f-orbital degree of free-
dom is significant for the AHE. Later, AHE in d-electron
systems has been studied intensively.17,20–22

Recently, Murakami et al.5 and Sinova et al.6 calculated
the intrinsic SHC in the Luttinger model and the two-
dimensional Rashba model, respectively. Later, several au-
thors studied the disorder effect on SHC.24,28,29 Inoue et al.23

proved that the intrinsic SHE in the Rashba model vanishes
due to the cancellation by the CVC due to impurities. In
analogy to the quantum charge Hall effect, it has been pre-
dicted that a large �and quantized� SHC may be realized in
massless Dirac electron systems, when the chemical poten-
tial lies inside the gap induced by the SOI. This mechanism
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has been predicted to be realized in some semiconductors30

and in graphene.31

However, in usual metallic systems, the existence of the
Dirac point just at the Fermi level cannot be expected in
general. Therefore, other novel mechanisms for large SHC
are expected to be realized in Pt and other transition metals.
In fact, Kontani et al.7 presented the first report on the theo-
retical study of SHE in transition metal compound Sr2RuO4,
which has no Dirac-cone-type dispersion at the Fermi level.
They found that the origin of the huge Hall effect is the
“effective Aharonov–Bohm �AB� phase” induced by
d-orbital degrees of freedom, which are absent in semicon-
ductors and in graphene. This mechanism is expected to pro-
duce huge SHE in various multiorbital d-electron systems
universally. Later, Refs. 8 and 9 succeeded in reproducing
the SHC in Pt theoretically.

In the present paper, we study the intrinsic SHE in various
4d and 5d transition metals by taking account of their real-
istic band structures. We employ the Naval Research Labo-
ratory tight-binding �NRL-TB� model,32,33 which enables us
to construct nine-orbital �s+ p+d� tight-binding models for
each transition metal. We find that both Pt �5d9� and Pd
�4d9�, which have a face-centered cubic �fcc� structure, show
large positive SHCs. On the other hand, the SHCs take large
negative values in Ta �5d4�, Nb �4d4�, W �5d5�, and Mo
�4d5�, which have body-centered cubic �bcc� structures. We
find that the SHC changes smoothly with the electron num-
ber n=ns+nd regardless of the changes of the crystal struc-
ture, where n
 represents the number of electrons on the 

orbital. Among them, Pt shows the largest SHC in the low
resistive regime. Usually, intrinsic SHC is independent of
resistivity in the low resistive regime ���50 �� cm�,
whereas it decreases in proportion to �−2 in the high resistive
regime. However, we find a condition that the intrinsic SHC
decreases as � approaches zero in the low resistive regime.
This anomalous phenomenon may be realized in Ta.

Furthermore, we study the d-orbital Hall effect �OHE�,
which is the phenomenon that an electric field induces a
d-orbital current in a transverse direction.7,8 We find that the
d-orbital Hall conductivity �OHC� is almost 1 order of mag-
nitude larger than the SHC, since the OHC occurs even in the
absence of the SOI. By using the large OHE in transition
metals, we will be able to construct an orbitronics device
made of transition metals. In a later publication, we will
present an intuitive �semiclassical� explanation for the origin
of the OHC.34

Finally, we comment on the extrinsic Hall effect. In 1958,
Smit35 studied the AHE due to the asymmetric scattering
around the impurity in the presence of spin-orbit coupling,
which is called the skew-scattering mechanism. The AHC
due to skew scattering is proportional to �−1 if elastic scat-
tering is dominant. In 1970, Berger proposed another mecha-
nism of extrinsic Hall effect: the side jump due to
impurities.36 This mechanism gives the AHC in proportion to
�−2. Both extrinsic Hall effects vanish where the inelastic
scattering due to electron-electron or electron-phonon inter-
action is dominant over the elastic scattering. Both mecha-
nisms �the skew scattering and the side jump� cause the
extrinsic SHE.37–40 In the present paper, we do not study
the extrinsic SHE, which is sensitive to the character of

the impurity potential. It is an important future problem to
study the extrinsic SHE in realistic multiorbital tight-binding
models.

II. MODEL AND HAMILTONIAN

In the present study, we use the NRL-TB model32,33 to
obtain the band structure in various transition metals. Here,
we shortly explain this model. The NRL-TB model employs
the scheme of two-center and nonorthogonal Slater–Koster
�SK� Hamiltonian.41 The SK parameters are represented with
distance- and environment-dependent parameters that are de-
termined so that the total energy and the band structures
agree with those obtained by full-potential linear augmented
plane wave local density approximation calculations. The
root mean square error in the fitting is about
0.002–0.004 Ry.42 This fitting error is small enough to per-
form reliable numerical calculations. To describe the elec-
tronic state in 4d �5d� metals, we consider 5s, 5p, and 4d
�6s, 6p, and 5d� orbitals, that is, we consider nine orbitals
per atom. Hopping integrals between a pair of atoms are then
expressed with ten SK parameters �ss�, sp�, pp�, pp
, sd�,
pd�, pd
, dd�, dd
, and dd��. In this study, we consider
hopping �and overlap� integrals up to sixth nearest neighbor
sites for metals with fcc and bcc structures, and up to ninth
nearest neighbor sites for hexagonal closed packed �hcp�
structures.

Table I shows the crystal structure, electron number per

atom, and the coupling constant � of SOI ��il̂iŝi �i=x ,y ,z�
for various 4d and 5d transition metals. �mddndmss

ns� repre-
sent the electronic configuration of an isolated atom, where

TABLE I. The crystal structure, electron number per atom, and
the coupling constant � of SOI for various transition metals.
�mddndmss

ns� represent the electronic configuration of an isolated
atom. Here, md and ms are the main quantum numbers, and ns and
nd are the numbers of electrons on s and d orbitals, respectively,
bcc, hcp, and fcc represent a body-centered cubic, hexagonal closed
packed, and face-centered cubic, respectively.

Metals Structure Electron number
SOI
�Ry�

Nb bcc 5 �4d45s1� 0.006

Mo bcc 6 �4d55s1� 0.007

Tc hcp 7 �4d65s1� 0.009

Ru hcp 8 �4d75s1� 0.01

Rh fcc 9 �4d85s1� 0.011

Pd fcc 10 �4d105s0� 0.013

Ag fcc 11 �4d105s1� 0.019

Ta bcc 5 �5d36s2� 0.023

W bcc 6 �5d46s2� 0.027

Re hcp 7 �5d56s2� 0.025

Os hcp 8 �5d66s2� 0.025

Ir fcc 9 �5d96s0� 0.025

Pt fcc 10 �5d96s1� 0.03

Au fcc 11 �5d106s1� 0.03
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md and ms are the main quantum number, and ns and nd are
the number of electrons on s and d orbitals, respectively. In
this table, we set �=0.03 Ry for a 5d electron in Pt and �
=0.013 Ry for a 4d electron in Pd, according to optical
spectroscopy.43 For other 4d and 5d transition metals, we
used Herman–Skillman atomic spin-orbit parameters:44

These parameters had been calculated by using the self-
consistent Hartree–Fock–Slater atomic functions. Here, we
consider only the d-orbital SOI and neglect other SOI terms
that may possess a k dependence. Hereafter, we set the unit
of energy Ry as 1 Ry=13.6 eV.

In the presence of SOI for 4d or 5d electrons, the total
Hamiltonian is given by

Ĥ = � Ĥ0 + �l̂z/2 ��l̂x − il̂y�/2

��l̂x + il̂y�/2 Ĥ0 − �l̂z/2
� , �1�

where the first and second rows �columns� correspond to sz

= +� /2 �↑ spin� and sz=−� /2 �↓ spin�. Ĥ0 is a 9�9 matrix
given by the NRL-TB model for bcc and fcc structures. In

the case of a hcp structure, Ĥ0 is an 18�18 matrix, since a
unit cell contains two atoms. The matrix elements of l for the
d orbital are given by43

lx =�
0 0 − i 0 0

0 0 0 − i − i	3

i 0 0 0 0

0 i 0 0 0

0 i	3 0 0 0

 , �2�

ly =�
0 i 0 0 0

− i 0 0 0 0

0 0 0 − i i	3

0 0 i 0 0

0 0 − i	3 0 0

 , �3�

lz =�
0 0 0 2i 0

0 0 i 0 0

0 − i 0 0 0

− 2i 0 0 0 0

0 0 0 0 0

 , �4�

where the first to fifth rows �columns� correspond to d orbit-
als xy, yz, zx, x2−y2, and 3z2−r2, respectively.

In the NRL-TB model, we use the nonorthogonal basis
since the atomic wave functions of different sites are not
orthogonal:

� dr�


*�r − Ri����r − Ri�� = O
��Ri − Ri�� , �5�

where �
�r−Ri� represents the atomic wave function at the
ith site, 
 and � are orbital state indices, and O
��Ri−Ri��
represents the overlap integral between different sites. When
the overlap integrals between different sites are negligible,
Eq. �5� is simplified as

O
��Ri − Ri�� = �
��ii�. �6�

This approximation is rather appropriate when 
 and � cor-
respond to d orbitals, since d-orbital atomic wave functions
are localized well. However, when 
 and � are either s or p
orbital, O
��Ri−Ri�� is large even when i� i� and, therefore,
Eq. �6� is not satisfied.

The band structures obtained for the present model in Au
and Ta are shown in Fig. 1. These band structures are derived
by taking the overlap integrals between different sites into
account correctly. The methods on how to calculate these
band structures are explained in Sec. III C. Near the Fermi
level, the obtained band structures are in good agreement
with the results of the relativistic first-principles
calculations.45,46 Since the Fermi surface is mainly composed
of d electrons in the transition metals, in which we study the
SHE and OHE, the band structure near the Fermi level is
described well when O
��Ri−Ri�� is approximated by Eq.
�6�. Therefore, the calculations of SHE and OHE using Eq.
�6� seem to give semiquantitatively reliable results.8 How-
ever, for a more quantitative study of SHE and OHE, we
need to consider the overlap integrals between different sites.

Until Sec. III C, we will use the simplified overlap inte-
grals given by Eq. �6� to simplify the explanation. In Sec.
III C, we will study the SHE and OHE by considering the
overlap integrals in Eq. �5� correctly. The 18�18 matrix
form of the Green function without impurities is given by

Ĝ0�k ,��= ��+�− Ĥ�−1, where � represents the chemical po-

tential. There is a k-dependent unitary matrix Û that diago-

nalizes the Hamiltonian Ĥ as follows:
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FIG. 1. �Color online� �Upper panel� Band structure
of Au. Here, �= �0,0 ,0�, X= �
 ,0 ,0�, W= �
 ,
 /2,0�, L
= �
 /2,
 /2,
 /2�, and K= �3
 /4,3
 /4,0�. �Lower panel� Band
structure of Ta. Here, �= �0,0 ,0�, H= �
 ,0 ,0�, N= �
 /2,
 /2,0�,
and P= �
 /2,
 /2,
 /2�. Near the Fermi level, we see that the band
structures obtained in the present model agree well with the result
of the relativistic first-principles calculation in Refs. 45 and 46
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�

�

Ul

† H
�U�m = Ek

l �lm, �7�

where 
 and � are the orbital indices, and l and m are the
band indices.

Here, we consider the quasiparticle damping rate �̂, which

is given by ��̂k�−i0�− �̂k�+i0�
 /2i, where �̂k��� is the self-

energy matrix. In the Born approximation for I�Wband, �̂ is

given by �̂=nimpI
2 1

2i �ĝ�−i0�− ĝ�+i0�
, where nimp is the im-
purity concentration, I is the impurity potential, Wband is the
bandwidth, and ĝ��� is the local Green function ĝ���
= 1

N�kĜ�k ,��, respectively. Here, N is the total number of
lattice points. In the T-matrix approximation for the general

strength of I, �̂ is given by �̂=nimpI�1 /2i�(�1 / �1− Iĝ�−i0�
�
− �1 / �1− Iĝ�+i0�
�). The retarded and advanced Green func-
tions are given by

ĜR�k,�� = �� + � − Ĥ + i�̂�−1, �8�

ĜA�k,�� = �� + � − Ĥ − i�̂�−1. �9�

In the present model, the charge current operator for the �
direction ��=x ,y� is given by

Ĵ�
C = � ĵ�

C 0

0 ĵ�
C� , �10�

where ĵ�
C=−e

�Ĥ0

�k�
, and −e�e�0� is the electron charge. Here,

atomic SOI is not involved in the charge current operator
since it is k independent. Also, the sz-spin current operator

Ĵ�
S = �Ĵ�

C , ŝz� /2= �Ĵ�
Cŝz+ ŝzĴ�

C� /2 �Refs. 24 and 47� is given by

Ĵ�
S = �− �/e�� ĵ�

C 0

0 − ĵ�
C� , �11�

and lz-orbital current operator is given by

Ĵx
O = �Ĵx

C, l̂z�/2. �12�

We will discuss the validity of these current operators in
more detail in Appendix B.

III. SPIN AND ORBITAL HALL CONDUCTIVITIES

A. Spin Hall conductivity and orbital Hall conductivity
without overlap integrals between different sites

In this section, we derive the general expressions for the
intrinsic SHE and OHE based on the linear-response theory.
As we will discuss in Sec. III B, we can safely neglect the
CVC in calculating SHC and OHC in the present model.
Therefore, the SHC at T=0 is given by �xy

z =�xy
zI +�xy

zII ac-
cording to Streda,48 where

�xy
zI =

1

2
N
�

k
Tr�Ĵx

SĜRĴy
CĜA
�=0, �13�

�xy
zII =

− 1

4
N
�

k
�

−�

0

d� Tr�Ĵx
S�ĜR

��
Ĵy

CĜR

− Ĵx
SĜRĴy

C�ĜR

��
− �R ↔ A�� . �14�

Here, I and II represent the “Fermi surface term” and the
“Fermi sea term,” respectively. In the same way, the OHC of
the Fermi surface term Oxy

zI and that of the Fermi sea term
Oxy

zII are respectively given by Eqs. �13� and �14� by replacing

Ĵx
S with the lz-orbital current operator Ĵx

O in Eq. �12�.
In the Born approximation, the quasiparticle damping rate

depends on orbital indices. If �=0, �̂ is diagonal with respect

to the orbital: �̂
�=�
�
�, where 
 and � are orbital indices.
Then, the off-diagonal terms are negligible when ��Wband.
�
 is the quasiparticle damping rate for the 
 orbital and is
proportional to the local density of states �LDOS� for the 

orbital, �
�0�. In the present model, d-orbital LDOSs are
almost equal in magnitude. Therefore, �
 is approximately
independent of 
 and can be approximated by a constant �:
�
�=��
�. By using this constant � approximation, we de-
rive the general expressions for the Fermi surface and Fermi
sea terms. In this case, the retarded and advanced Green

functions can be diagonalized by using the unitary matrix Û
given by Eq. �7� as follows:

�

�

Ul

† G
�

R U�m =
�lm

� − Ek
l + i�

, �15�

where l and m are the band indices. Therefore, we can re-

write Eqs. �13� and �14� by using Û as follows:

�xy
zI =

1

2
N
�

k,l�m

�Jx
S�ml�Jy

C�lm 1

�Ek
l − i���Ek

m + i��

=
− 1

2
N
�

k,l�m

Im��Jx
S�ml�Jy

C�lm�Im� 1

�Ek
l − i���Ek

m + i��� ,

�16�

�xy
zII = −

1

2
N
�

k,l�m
�

−�

0

d� Im��Jx
S�ml�Jy

C�lm�

�Im� 1

�� − Ek
l + i��2

1

�� − Ek
m + i��

−
1

�� − Ek
l + i��

1

�� − Ek
m + i��2� , �17�

where �Jx
S�ml is given by �
�Um


† �Jx
S�
�U�l. Note that we

dropped the diagonal terms l=m in the summations in Eqs.
�16� and �17� since they vanish identically. We also note that
the transformation from the first row to the second row in
Eq. �16� was performed since �l,mRe��Jx

S�ml�Jy
C�lm� identically

vanishes after k summation. After performing the � integra-
tion in Eq. �17�, the Fermi sea term is given by �xy

zII=�xy
zIIa

+�xy
zIIb, where
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�xy
zIIa =

− 1

2
N
�

k,l�m

Im��Jx
S�ml�Jy

C�lm�
1

Ek
l − Ek

m

�Im� Ek
l + Ek

m − 2i�

�Ek
l − i���Ek

m − i��� , �18�

�xy
zIIb =

1


N
�

k,l�m

Im��Jx
S�ml�Jy

C�lm�
1

�Ek
l − Ek

m�2

�Im�ln� Ek
l − i�

Ek
m − i�

�� . �19�

Here, we used the following relation to perform the � inte-
gration:

�
−�

�

dx� 1

�x − a�2�x − b�
−

1

�x − a��x − b�2�
=

a + b − 2�

�a − b��a − ���b − ��
−

2

�a − b�2 ln�a − �

b − �
� . �20�

In the case of �→0, �xy
zIIb given by Eq. �19� corresponds

to the Berry curvature term as follows:

�xy
zIIb =

1

N
�
k,l

f�Ek
l ��l�k� , �21�

where �l�k� represents the Berry curvature given by

�l�k� = �
m�l

2 Im��Jx
S�ml�Jy

C�lm�
�Ek

l − Ek
m�2 . �22�

The relation �xy
z =�xy

zIIb has been frequently assumed in litera-
tures such as Ref. 9 In this study, we calculate all the Fermi
surface and Fermi sea terms correctly, and we elucidate how
each term contributes to the SHC and OHC. In Sec. V B, we
will discuss the � dependences of �xy

zI ,�xy
zIIa, and �xy

zIIb in
detail.

B. Discussion on the current vortex correction

In Sec. III A, we have neglected the CVC. Here, we cal-
culate the CVC due to the local impurity potential in the
Born approximation and show that it is negligible in transi-
tion metals. In the Born approximation, the lowest order
CVC is given by

�Ĵ�
C =

1

N
nimpI

2�
k

ĜRĴ�
CĜA. �23�

Its diagrammatic expression is given in Fig. 2. The magni-
tude of CVC depends on the model. For example, the CVC
identically vanishes in the d-orbital tight-binding models
with atomic SOI.7,22 In contrast, the CVC plays an essential
role in a Rashba model: the SHC vanishes due to the cancel-
lation by CVC.23

Here, we study the CVC in fcc and bcc transition metals,
where each atomic site is a center of inversion symmetry.
The s- and d-orbital atomic wave functions have an even
parity with respect to k→−k, whereas the p-orbital atomic

wave functions have an odd parity. Therefore, the Hamil-
tonian for a fcc metal and that for a bcc metal has the fol-
lowing relationship:

„H0�k�…
� = p„H0�− k�…
�, �24�

where p=−1 only when either 
 or � is a p orbital, otherwise
p=1. It is easy to show that (G�k ,��)
� has the same parity
as (H0�k�)
�. Therefore, when both 
 and � are �s ,d� orbit-

als, ��Ĵ�
C�
�=0 since the �
 ,�� components of �� /�k��Ĝ

= ĜĴ�
CĜ are odd functions. On the other hand, ��Ĵ�

C�
��0

when either 
 or � is a p orbital since ��Ĝ /�k��
� is an even

function. Although ��Ĵ�
C�
� originating from the p orbital is

finite, it is small in magnitude since the 5p and 6p levels are
about 20 eV higher than the Fermi level � and the p-electron
density of states �DOS� at � is very small in all transition
metals.

Now, let us numerically verify that the contribution of
CVC to SHC is small in magnitude. The correction to the
SHC due to the lowest order CVC is given by

��xy
z =

1

2
N2nimpI
2�

k,k�

Tr�Ĵx
SĜk�

R
�Ĵy

CĜk�
A 


=
1

2
N2nimpI
2�

k,k�

Tr�Ĝk�
A Ĵx

SĜk�
R Ĝk

RĴy
CĜk

A
 . �25�

Its diagrammatic expression is given in Fig. 2. We numeri-
cally calculated ��xy

z and found that it is very small as com-
pared to �xy

z without CVC: the ratio ���xy
z � / ��xy

z � is �0.02 for
Ta and Pt, and �0.005 for W when �=0.002–0.02. The ratio
is independent of � because of the following reason: Since
�kGk

RGk
A�O��−1�, and ��nimpI

2, �J�
C in Eq. �23� is indepen-

dent of �. In the present model, the higher order correction to
the SHC should be negligible.

In the case of hcp transition metals, ��Ĵ�
C�
��0 even

when 
 and � are �s ,d� orbitals, since each atomic site is not
a center of inversion symmetry. To find out the importance of
the CVC in hcp metals, we performed the numerical calcu-
lation for Os and found out that the ratio ���xy

z � / ��xy
z � is

�0.06 in Os in the low resistive regime. Although it is much
larger than that in Pt, Ta, and W, the CVC is qualitatively
negligible even in hcp transition metals. Therefore, we are
allowed to neglect the CVC even for hcp transition metals.

� �

�

�

�

�

� �

�

	 �

�










�




�

�

�

	

�

�

�

FIG. 2. The diagrammatic expressions of the current vertex cor-
rection due to the local impurity potentials. Here, the diagram rep-

resents the lowest order correction to the current �Ĵx
C and spin Hall

conductivity ��xy
z .
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C. Spin Hall conductivity and orbital Hall conductivity
considering the overlap integrals between different sites

In the previous section, we studied the SHC and OHC
under the assumption that the atomic wave functions of dif-
ferent sites are orthogonal. However, for a more accurate
quantitative study of the intrinsic SHE and OHE, we need to
take the off-diagonal elements of O
� in Eq. �5� into account
correctly. In this section, we explain how to calculate the
SHE and OHE when the overlap integrals between different
sites are considered.

Here, we introduce the Bloch wave function, which is
given by

�k
�r� =
1

	N
�

i

eik·Ri�
�r − Ri� . �26�

In this case, the inner product between the Bloch wave func-
tions with different k and 
 is given by

� dr�k

* �r��k���r� = �kk�O
��k� , �27�

where

O
��k� = �
i

e−ik·RiO
��Ri� . �28�

Here, O
��Ri� in Eq. �28� is the overlap integral defined by
Eq. �5�. Therefore, when the overlap integrals between dif-
ferent sites are considered, the Bloch wave function given by
Eq. �26� is nonorthogonal.

By including the chemical potential �, the kinetic term of
the Hamiltonian is given by49

Ĥ0 = �
k,
,�

ck

† �h
��k� − �O
��k�
ck�, �29�

where ck
 is defined by

ck
 =
1

	N
�

i

eik·Rici
. �30�

Here, ci
 is an annihilation operator of an electron in the 

orbital state at the ith site. As the atomic wave functions at
different sites are nonorthogonal, creation and annihilation
operators ck


† , and ck
 do not satisfy the canonical anticom-
mutation relations but, instead, satisfy49

�ck
,ck��
† � = �kk�O
�

−1 �k� . �31�

Since matrix Ô�k� is a positive definite Hermitian matrix, we

can introduce the following matrix Ŝ�k� that transforms Ô�k�
into the unit matrix 1:

Ŝ†�k�Ô�k�Ŝ�k� = 1. �32�

We note that matrix Ŝ�k� cannot be determined uniquely: By

using an arbitrary unitary matrix X̂, Ŝ= ŜX̂ also satisfies Eq.
�32�. Here, we introduce the following new basis �c̄k
 , c̄k


† �
using Ŝ�k�:

c̄k
 = �
�

S
�
−1 �k�ck�. �33�

We can easily verify that these operators �c̄k
 , c̄k

† � satisfy the

canonical anticommutation relations �c̄k
 , c̄k��
† �=�kk��
�. In

this basis, Eq. �29� is rewritten as

Ĥ0 = �
k,
,�

c̄k

† �h̄
��k� − ��
�
c̄k�, �34�

where h̄
��k�= (Ŝ†�k�ĥ�k�Ŝ�k�)
�� (h̄
ˆ �k�)
�. Therefore, the

Green function in the �c̄k
 , c̄k

† � basis is given by

Ḡ
ˆ �k,�� = �� + � − h̄

ˆ �k�
−1. �35�

Next, we derive the expression for the current operator in
the �ck
 ,ck


† � basis. From the continuity equation �
�t n�r�

+� · j�r�=0, we obtain

�

�t
n�q� = − iq · j�q� , �36�

where n is the electron number density. �
�t n�q� can be calcu-

lated by the equation of motion as �
�t n�q�= i�H ,n�q�
. There-

fore, the x component of the current operator jx is given by

jx = lim
qx→0

�−
1

qx
�H,n�q�
� . �37�

In Appendix A, we will show that n�q� is given by

n�q� = �
k,
,�

O
�
−1 �k�ck−�q/2�,


† ck+�q/2�,�, �38�

which is an exact expression for the first order of �q�. By
using the following relationship: �AB ,CD
=A�B ,C�D
−AC�B ,D�+ �A ,C�DB−C�A ,D�B , �H ,n�q�
 is given by

�H,n�q�
 = �
k,
,�

ck−�q/2�,

†

„�ĥ�k − �q/2�
Ô−1�k − �q/2�
Ô�k��
�

− �Ô�k�Ô−1�k + �q/2�
ĥ�k + �q/2�
�
�
…ck+�q/2�,�.

�39�

By substituting Eq. �39� into Eq. �37�, we obtain the expres-
sion for the velocity in the �ck
 ,ck


† � basis as follows:

v̂x�k� =
�ĥ�k�
�kx

+
1

2
ĥ�k�D̂x�k� +

1

2
D̂x

†�k�ĥ�k� , �40�

where Dx�k� is given by

D̂x�k� = � �

�kx
Ô−1�k��Ô�k� = − Ô−1�k�

�

�kx
Ô�k� . �41�

Apparently, D̂x�k�=0 in an orthogonal basis. We call the sec-
ond and third terms in Eq. �40� the overlap integral current.

In the �c̄k
 , c̄k

† � basis, the velocity v̂̄x�k� is given by

v̂̄x�k� = Ŝ†�k�v̂̄x�k�Ŝ�k� . �42�

Therefore, even when the overlap integrals between different
sites exist, we can calculate the SHC and OHC in the basis
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�c̄k
 , c̄k

† � by using the matrix Ŝ�k�. In this basis, the Green

function Ḡ
ˆ �k ,�� is given by Eq. �35�. The charge current

operator J̄
ˆ

�
C and the spin current operator J̄

ˆ
�
S are given by

J̄
ˆ

�
C = �v̄� 0

0 v̄�
�, J̄

ˆ
�
S = �v̄� 0

0 − v̄�
� . �43�

Also, the lz-orbital current is given by J̄
ˆ

�
O= �J̄ˆ�

C , l̄
ˆ
z� /2, where

l̄
ˆ
z= Ŝ†�k�l̂zŜ�k�. Therefore, SHC and OHC can be calculated

by substituting Ĝ�k ,�� , Ĵ�
C, and Ĵ�

S in Eqs. �13� and �14� with

Ḡ
ˆ �k ,��, J̄

ˆ
�
C, and J̄

ˆ
�
S , respectively.

Figure 3 shows the obtained SHCs in Pt by considering
the overlap integrals between different sites in the NRL-TB
model. For comparison, SHC given by using Eq. �6� is also
shown. We find that the magnitude of the SHC is reduced by
about half when the overlap integral is considered correctly.
We have verified that this is mainly due to the changes of the
band spectra, whereas the modification due to the overlap
integral current, which is given by the second and third terms
in Eq. �40�, is less than 10% in magnitude. Since the CVC is
also little affected by the modification of the velocity, we can
also safely neglect the CVC when the overlap integrals be-
tween different sites are considered.

Here, we comment on the previous study in Ref. 8
Therein, the SHC in Pt using Eq. �6� was reported. Since the
Fermi surface is mainly composed of d electrons in Pt and
the d-orbital atomic wave functions are well localized, the
band structure near the Fermi level is described well in this
approximation. Therefore, the calculations of SHC and OHC
in the absence of the overlap integrals between different sites
give semiquantitatively reliable results, which can be recog-
nized from Fig. 3.

IV. NUMERICAL STUDY

A. Numerical results for spin Hall conductivity
and orbital Hall conductivity

In this section, we perform the numerical calculations for
the SHC and OHC in various 4d and 5d transition metals by

considering the overlap integrals between different sites
given by Eq. �5�. In particular, we clarify SOI ���, the qua-
siparticle damping rate ���, and the chemical potential ���
dependences of the SHC and OHC in each metal. Here, we
note that the units of the SHC and OHC are �e� /2
a and
1��e � /2
a
�1000 �e−1 �−1 cm−1 for a=4 Å.

First, we discuss the quasiparticle damping rate �̂ depen-

dence of SHC. In the Born approximation, �̂ depends on

orbital index. When ��Wband, �̂ is diagonal with respect to
the orbital: �
�=�
�
�, where �
��
�0�. On the other hand,
the quasiparticle damping rate �
 is independent of the or-
bital in the constant � approximation: �
�=��
�. In Fig. 4,
the SHCs for �=0.007 in these two approximations are
shown. We see that the obtained SHC is quantitatively simi-
lar in both approximations. This fact can be explained as
follows: In transition metals, the LDOS of t2g-�dxy ,dyz ,dzx�
and eg-�dx2−y2 ,d3z2−r2� orbitals are almost equal in magnitude.
Since �
��
�0� in the Born approximation, two approxima-
tion give similar results in transition metals. For this reason,
we use the constant � approximation hereafter. In contrast,
the SHC in Sr2RuO4 given by the Born approximation is
much larger than that given by the constant � approximation
since the 
 dependence of �
 is large.7

Figure 4 also shows the OHCs in these two approxima-
tions. As already pointed out in Refs. 7 and 8, a huge OHC
appears even if �=0, and it slowly increases with �. In
Sr2RuO4, in contrast, the OHC slowly decreases with �.7

Figure 5 shows the electron number n dependence of the
SHC, where n=ns+nd. Note that the crystal structure of vari-
ous transition metals is shown in Table I. The SHC obtained
in the present model for �=0.002 is shown in Fig. 5�a�, and
for �=0.02 and 0.2 in Fig. 5�b�. The SHC is negative for n
=5 and 6, and positive for n=9–11: The SHC changes its
sign at around n=7 and 8. The magnitude of SHC is largest
in Pt for �=0.002 and 0.02, where the corresponding resis-
tivities are �8 and �64 �� cm in Pt, respectively. When
�=0.2, however, the absolute values of SHCs in Ta and W
become larger than that in Pt, where ��220 �250� �� cm in
Pt �Ta and W�. Therefore, large negative values of SHCs in
Ta and W will be observed even in high resistive samples.
For comparison, we also calculated the SHC for n=5–9 by
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FIG. 3. �Color online� � dependence of SHC in Pt obtained by
using Eq. �5� �with overlap� and Eq. �6� �without overlap�. When
the overlap integrals between different sites are considered, the
magnitude of SHC is reduced by about half. The resistivity that
corresponds to �=0.01 is �160 �� cm in Pt.
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FIG. 4. �Color online� � dependence of SHC and OHC in Pt
given by the Born approximation and the constant � approximation.
The SHCs obtained in these two approximations give quantitatively
similar results. We stress that the OHC is finite even if �=0.
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using the band structure of Pt, which is represented by the
open symbols in Fig. 5�a�. We see that the magnitude of SHC
in Pt with n=9 does not reproduce that in Ir. The same is true
in Ta and W �bcc structure�. Therefore, we need to calculate
SHC using a correct band structure for each metal.

Next, we examine the � dependence of the SHC. We veri-
fied that the SHC in each metal increases approximately pro-
portional to � as shown in Fig. 4. To elucidate the origin of
SHC, we calculated the SHC when SOI is anisotropic:

�1��l̂zŝz�+�2��l̂xŝx+ l̂yŝy�. We find that the SHC for HSO

=���l̂zŝz���1=� ,�2=0� is as large as the SHC in the isotro-
pic case ��1=�2=��. In contrast, the SHC for HSO

=���l̂xŝx+ l̂yŝy���1=0 ,�2=�� is 1 order of magnitude
smaller than the isotropic case. Therefore, the z component
of the SOI gives the decisive contribution to the SHC. The

matrix element of l̂z is finite only for �yz�lz�zx�=−�zx�lz�yz�
= i and �xy�lz�x2−y2�=−�x2−y2�lz�xy�=2i. Note that dxy and
dx2−y2 orbitals �dyz and dzx orbitals� are given by the linear
combination of lz= 	2�lz= 	1�. Here, we examine which
orbitals cause a significant contribution to the SHC. The z

component of SOI is rewritten as �3�i�P�lz
2=1��l̂zŝz��i

+�4�i�P�lz
2=4��l̂zŝz��i, where P�lz

2=n� represents the projec-
tion operator. SHC caused by dxy and dx2−y2 orbitals is given

by setting �3=0 and �4=� which are represented as lz
= 	2 in Table II. Similarly, SHC caused dyz and dzx orbitals
is given by setting �3=� and �4=0, which are represented as
lz= 	1 in Table II. We see that the interorbital transition
between dxy and dx2−y2 orbitals causes a significant contribu-
tion to the SHC in many metals. Only in the case of Mo, W,
and Ir, the contribution of dzx and dyz orbitals is comparable
to that of dxy and dx2−y2 orbitals. In other metals, dxy and
dx2−y2 orbitals give the dominant contribution to the SHC.

Here, we show the OHCs for �=0.02 in various transition
metals in Fig. 6. We see that all the 4d and 5d transition
metals show huge and positive OHCs, which are almost 1
order of magnitude larger than the SHCs. In Au �Ag�, the
OHC takes a small value since the d-electron DOS is small at
the Fermi level. Therefore, a huge and positive OHC is a
universal nature of transition metals. As in the case of the
SHE, the intrinsic OHE shows the crossover behavior: the
OHC is independent of � in the low resistive regime,
whereas it decreases in proportion to �−2 in the high resistive
regime.7,8 In a later publication, we will present an intuitive
�semiclassical� explanation of the origin of the OHC.34

Now, we discuss the � dependences of SHC and OHC.
The � dependence of intrinsic SHCs in Ta and W are shown
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FIG. 5. �Color online� n dependence of SHC for �=0.002, 0.02,
and 0.2. In �a�, we see that Pt shows the largest SHC for �=0.002.
The open symbols represents the SHC in Pt for n=5–9. In �b�, the
SHCs obtained in the present model for n=7 and 8 �hcp structure�
are also shown. SHC in W takes the largest value for �=0.2.

TABLE II. SHC that originates from the dzx, dyz, dxy, and dx2−y2

orbitals. Here, we set �=0.02. lz= 	2 �lz= 	1� represents the SHC
caused by dxy and dx2−y2 orbitals �dyz and dzx orbitals�. The ratio
represents �SHC from lz= 	2�/�SHC from lz= 	1�. We see that dxy

and dx2−y2 orbitals cause a significant contribution to the SHC in
many metals.

Metals lz= 	1 lz= 	2 Ratio

Nb�4d45s1� −0.0332 −0.0770 2.32

Mo�4d55s1� −0.0474 −0.0587 1.24

Rh�4d85s1� 0.0847 0.269 3.18

Pd�4d105s0� 0.0847 0.455 5.37

Ag�4d105s1� 0.00224 0.0181 8.08

Ta�5d36s2� −0.0222 −0.254 11.4

W�5d46s2� −0.174 −0.205 1.18

Ir�5d96s0� 0.0123 0.0231 1.89

Pt�5d96s1� 0.136 0.678 4.98

Au�5d106s1� 0.0177 0.0987 5.59
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FIG. 6. �Color online� n dependence of OHC for �=0.02. The
obtained OHCs are positive for all metals, and they are about ten
times larger than the SHCs except for Pt and Pd.
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in Fig. 7. Usually, the intrinsic Hall conductivities are inde-
pendent of � in the low resistive regime where ���,
whereas it decreases approximately proportional to �−2 in the
high resistive regime where ���.15,22 Here, � represents
the band splitting measured from the Fermi level. In W, � is
�0.04, and in Pt, � is �0.035.8 We find that W shows a
typical coherent-incoherent crossover at ��� in Fig. 7�b�.
We have also verified that the coherent-incoherent crossover
behavior is universally seen in many transition metals in-
cluding Pt, which is shown in Fig. 3�a�. However, as shown
in Fig. 7�a�, SHC in Ta shows an exceptional behavior: It
takes a maximum value at around ��0.02 and decreases as
� decreases in the low resistive regime. We find that this
anomalous behavior can arise when almost degenerate anti-
crossing points exist slightly away from the Fermi level. We
will discuss the reason in detail in Sec. IV B.

In Fig. 7�b�, the � dependences of the Fermi surface term
�xy

zI and the Fermi sea terms �xy
zIIa,�xy

zIIb are also shown. In the
low resistive regime, the relation �xy

zI ��xy
zIIb holds well, and

�xy
zIIb reproduces the total Hall conductivity �xy

z .5 In the high
resistive regime, however, �xy

z ��xy
zI , whereas �xy

z is quite
different from �xy

zIIb in the high resistive regime. As a result,
the relationship

�xy
z � �xy

zI �Fermi surface term� �44�

is recognized for a wide range of �. We will discuss the
crossover behavior of the intrinsic Hall conductivity in more
detail in Sec. V B.

We also discuss the � dependence of OHC. The obtained
OHCs in Ta and W are shown in Fig. 7. The coherent-
incoherent crossover behavior of OHC is recognized in Fig.
7. In contrast to the � dependence of SHC in Ta, OHC shows
a typical crossover behavior. We also verified that OHC is
finite even if �=0 since the d-orbital current in Eq. �12� is
independent of the spin index.7

Now, we discuss the � dependence of SHC in Pt and Ta
by assuming that the band structure is rigid. Experimentally,
the chemical potential � can be controlled by composing
alloys. Figure 8�a� shows the � dependence of �xy

zIIb in Pt for
�=0.002, 0.007, and 0.02. Here, the chemical potential is
given by �=�0+��, where �0 represents the true value of
the chemical potential. We see that the SHC shows a peak at
around ��=0, and it decreases when � is raised or lowered
from its true value. This �� dependence of SHC obtained in
the present model in Pt seems to be in good agreement with
that in Ref. 9. We see that SHC for �=0.002 is about 45%
larger than that for �=0.02 at ��=0.

Here, we elucidate from which part of the surface the
SHC in Pt originates by calculating

�xy
z �k� �

1

8 �
kx�,ky�,kz�

�	kx,	ky,	kz�

Tr�Ĵx
SĜRĴy

CĜA
k�,�=0.

Note that 1
2
N�k�xy

z �k� is equal to Eq. �13�. �xy
z �k� is finite

only on the Fermi surface, and it takes a huge value at
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FIG. 7. �Color online� � dependence of SHC and OHC in �a� Ta
and �b� W. The corresponding resistivity � to �=0.1 is
�190 �� cm in Ta and �220 �� cm in W.
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�0.76
 ,0 ,0� �on �-X� and at �0.44
 ,0.44
 ,0.44
� �on L-��
since two bands are very close near the Fermi level in the
present model:8 �xy

z �k��3000 for the former point and
�xy

z �k��5000 for the latter point in the present model. How-
ever, the contribution of these points to the SHC is small
after taking k summation using 5123 k meshes. We verified
that the dominant contribution comes from a wide area
around �kx ,ky ,kz�= �0.54
 ,0.20
 ,0.21
�, as shown in
Fig. 9.

Figure 8�b� shows the � dependence of �xy
zIIb in Ta for �

=0.002, 0.007, and 0.02. In Ta, several “steady points,”
where the magnitude of SHC is approximately independent
of � in the low resistive regime, are recognized at ��=
−0.02 and at ��= +0.05 in Fig. 8�b�. When � decreases
across the steady point at ��=−0.02, the magnitude of SHC
increases and reaches a peak at around ��=−0.04. This peak
originates from the almost degenerate anticrossing bands,
which are discussed in more detail in Sec. IV B.

Finally, we explain why SHC in Ir is small in magnitude
by analyzing �k�xy

z �k�. Here, we divide the k summation into
the k+ and k− regions, where the k+ region �k− region� rep-
resents the region where �xy

z �k��0��xy
z �k��0
 holds:

�
k

�xy
z �k� = �

k+

�xy
z �k� + �

k−

�xy
z �k� � �xy

z+ + �xy
z−. �45�

In many transition metals, such as Pt and Ta, either �xy
z+ or

��xy
z−� is much larger than the other. In Ir, however, we have

verified that the relation �xy
z+���xy

z−� holds and, therefore, �xy
z

becomes small in magnitude.

B. Mechanism of impurity-assisted spin Hall conductivity

In the previous section, we have verified that the SHC in
all 4d and 5d transition metals except for Ta are independent
of � in the low resistive regime �����. Here, we show that
the SHC can show a nonmonotonic � dependence in the low
resistive regime when almost degenerate anticrossing points
exist slightly away from the Fermi level, because of the
impurity-assisted interband excitation. This is the origin of
the anomalous � dependence of the SHC in Ta for ��0.02
in Fig. 7�a�. We call this phenomenon the impurity-assisted
SHE.

In Ta, there are several accidental degenerate points with
�=0 slightly away from the Fermi level. We show the anti-
crossing bands of NRL-TB model for Ta in Fig. 10�a�. We
find an accidental degenerate point at �kx ,ky ,kz�
= �0,0.12
 ,0.33
� in the present model with �=0. Note that
this degeneracy splits with ��0, as recognized in Fig. 10�a�.

In usual band structures, we have shown that the domi-
nant contribution arises from the Fermi surface term �xy

zI and
that the relation given by Eq. �44� holds well. On the other
hand, in the exceptional case such as in Ta, the anomalous �
dependence of SHC can be explained by analyzing �xy

zIIb as
follows: By dropping the current operators in Eq. �19� for
simplicity, �xy

zIIb is given by

�xy
zIIb � �

k,l�m

1

�Ek
l − Ek

m�2 Im�ln� Ek
l − i�

Ek
m − i�

�� . �46�

For �� �Ek
l � �Ek

m�, we can approximate as follows,

Im�ln� Ek
l − i�

Ek
m − i�

�� � − 
��− Ek
l � + 
��− Ek

m� +
��Ek

l − Ek
m�

Ek
l Ek

m .

�47�
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FIG. 9. �Color online� The kx dependence of Ek
l for �ky ,kz�

= �0.20
 ,0.21
� in Pt is shown. The band splitting measured from
the Fermi level is ��0.035. A wide area at around �kx ,ky ,kz�
= �0.54
 ,0.20
 ,0.21
� gives a dominant contribution to SHC in
Pt.
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FIG. 10. �Color online� �a� Anticrossing bands in the NRL-TB
model for Ta. We find an accidental degenerate point at �kx ,ky ,kz�
= �0,0.12
 ,0.33
� in the present model with �=0. The band split-
ting at k* is �0.003. �b� Band structure around an accidental de-
generate point slightly away from the Fermi level. The regions
where k summation is performed for �→0 and finite � are repre-
sented by �A�, �B�, and �C�. � represents the band splitting mea-
sured from the Fermi level and k* represents the point of the mini-
mum band splitting around the accidental degenerate point.
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By substituting the above equation into Eq. �46�, we obtain
the following relation for small �:

�xy
zIIb � �

k,l�m
���− Ek

m� − ��− Ek
l �

�Ek
l − Ek

m�2 + �
���Ek

l � − �����Ek
m� − ��

Ek
l Ek

m�Ek
l − Ek

m� � ,

�48�

where the step function of the second term in the above
equation is introduced to skip the k summation in the case of
�� �Ek

l �, �Ek
m�.

Figure 10�b� is a schematic band structure around the ac-
cidental degenerate point slightly away from the Fermi level.
In this figure, � represents the band splitting measured from
the Fermi level and E* represents the eigenenergy measured
from the Fermi level: E*=Ek*

l �Ek*
m .

The first term of Eq. �48� is finite only in region �B�
where Ek

l �0 and Ek
m�0, and its sign is positive. The sign of

the second term is negative in region �B�, whereas it is posi-
tive in regions �A� and �C�. When �→0, �xy

zIIb is given only
by the first term in Eq. �48� since the second term vanishes.
When E*��, a large contribution to �xy

zIIb comes from the
second term in Eq. �48� from regime �C� in Fig. 10�b�. Since
the second term can be as large as the first term, �xy

zIIb takes
the sizable peak at finite � in the presence of almost degen-
erate anticrossing points near the Fermi level. The SHC
reaches the maximum value at ��E*. As a result, the
anomalous behavior of SHC in the NRL-TB model for Ta
originates from the anticrossing points, as shown in Fig.
10�a�. From this figure, we see that Ek*

l is �0.01. This fact is
consistent with the peak of SHC �xy

z at around �=0.02 in
Fig. 7�a�.

In the present model with �=0, there is another accidental
degenerate point at �kx ,ky ,kz�= �
 ,0.23
 ,
 /2�. The band
structure obtained for the NRL-TB model in Ta with �=0
and �=0.023 around this point is shown in Fig. 11. From this
figure, when � is lowered to ��=−0.04, we see that the
Fermi level begins to lie inside the gap. This fact causes a
sharp peak of �xy

zIIb at ��=−0.04 in Fig. 8�b�.

Here, we have shown that the presence of almost degen-
erate anticrossing points in Ta gives rise to the anomalous �
dependence in the low resistive regime based on the
NRL-TB model. In this exceptional situation, �xy

zIIb plays a
significant role. Except for this special case, however, SHC
is mainly given by the Fermi surface term �xy

zI . We may have
to confirm this anomalous behavior in Ta by checking the
accuracy of the NRL-TB model in detail.

V. DISCUSSIONS

A. Effective magnetic flux

In the previous section, we have discussed the SHC based
on a multiorbital tight-binding model by using the Green
function method. In this section, we give an intuitive reason
why a huge SHC appears in the present multiorbital model
based on the double layer bcc model in Fig. 12, which is a
simplified version of the bcc structure model. Here, we con-
sider only dxy, dx2−y2, and s orbitals considering the fact that
dxy and dx2−y2 orbitals give the dominant contributions to the
SHC in various transition metals, as explained in Sec. IV. In
Fig. 12, 	t represents the hopping integrals between nearest
neighbor dxy and s orbitals, and 	t� is for the next nearest
neighbor dx2−y2 and s orbitals. Note that both hopping inte-
grals change their signs by rotation by 
 /2. t0 represents the
hopping integral between s orbitals.

First, we explain that the electron can transfer from a
dx2−y2-orbital state to a dxy-orbital state and vice versa by

using SOI for ↑-spin electron ��l̂z /2, which plays a signifi-
cant role in the large SHE and OHE in transition metals.8
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FIG. 11. �Color online� Anticrossing bands near the Fermi level
with �=0 and 0.023 in Ta: The ky dependence of Ek

l for �kx ,kz�
= �
 ,
 /2� is shown. In the present model with �=0, we find an
accidental degenerate point at �kx ,ky ,kz�= �
 ,0.23
 ,
 /2�, which is
different point from that shown in Fig. 10�b�. The corresponding
minimum band splitting induced by SOI is �0.015.

FIG. 12. �Color online� Effective AB phase in a double layer bcc
model for a ↑-spin electron. This is the origin of the huge Hall
conductivities in various transition metals.
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The �x2−y2� state is transferred to the �xy� state by rotating

the wave function around the z axis by 
 /4. Since l̂z is a

generator of the rotation operator about the z axis R̂z���
=e−i�lz, the relation between l̂z and R̂z��� is given by

�
i

2
l̂z = R̂z�	




4
� �49�

for the lz= 	2 basis. Therefore,

l̂z�x2 − y2� = 2iR̂z�


4
��x2 − y2� = 2i�xy� , �50�

l̂z�xy� = − 2iR̂z�


4
��xy� = − 2i�x2 − y2� . �51�

As a result, we obtain the off-diagonal matrix element of SOI
for ↑-spin electron as follows:

�xy���l̂z/2�x2 − y2� = − �x2 − y2���l̂z/2�xy� = i�� . �52�

Figure 12 shows the most important process �interorbital
hopping process� for SHE in real space. By considering the
signs of interorbital hopping integrals �	t and 	t�� and ma-
trix elements of SOI in Eq. �52�, we can verify that a clock-
wise �counterclockwise� movement of a ↑-spin electron
along the path “0→3→1 or 2→0,” for example, causes the
factor +i �−i�. This factor can be interpreted as the
Aharonov–Bohm phase factor e2
i�/�0 ��0=hc / �e�
, where �
represents the effective magnetic flux �= �Adr= 	�0 /4.
Since the effective magnetic flux for ↓-spin electron is oppo-
site in sign, electrons with different spins move in the oppo-
site direction. Therefore, the effective magnetic flux gives
rise to the SHC of order O���. This mechanism will be real-
ized in various multiorbital transition metals.7,8

B. Coherent-incoherent crossover of intrinsic
Hall conductivities

In Sec. IV, we studied the � dependence of the SHC in Ta
and W numerically. Therein, we have verified that a typical
crossover behavior of the intrinsic SHC at ��� is realized
in many transition metals unless almost degenerate anticross-
ing points exist slightly away from the Fermi level. This
crossover behavior of �xy was shown in Refs. 15 and 22
Here, we analytically discuss the crossover behavior of in-
trinsic Hall conductivities by dividing into three regimes
with respect to �: ���, ����W, and W��, where � and
W represent the band splitting near the Fermi level and the
bandwidth, respectively. The first regime corresponds to the
low resistive regime, and the second to the high resistive
regime. Here, we discuss the regime W�� only briefly since
the Ioffe–Regel condition ��W is violated.

Now, we analyze Eqs. �16�, �18�, and �19� to obtain the �
dependence of the Fermi surface term �xy

I and the Fermi sea
term �xy

II . The � dependence of �xy
I is estimated by analyzing

Eq. �16� for ��W by considering the following relationship:

Im� 1

�El − i���Em + i��� =
��Ek

l − Ek
m�

��Ek
l �2 + �2
��Ek

m�2 + �2

�53a�

�



�

��Ek
m − Ek

l ����Ek
l � + ��Ek

m�

�Ek

m − Ek
l �2 + �2 .

�53b�

After k summation, Eq. �53b� is proportional to �0 for �
�� and is proportional to �−2 for ����W. On the other
hand, in the regime W��, we can estimate Eq. �53a� as

�
k

��Ek
l − Ek

m�
��Ek

l �2 + �2
��Ek
m�2 + �2


�
�

�4�
k

�Ek
l − Ek

m� � �−3.

�54�

In a similar way, the � dependence of the Fermi sea terms
�xy

IIa and �xy
IIb can be estimated from Eqs. �18� and �19�, re-

spectively. The longitudinal conductivity �xx is given by

�xx =
1

2
N
�

k
Tr�Ĵx

CĜRĴx
CĜA −

1

2
�Ĵx

CĜRĴx
CĜR + �R ↔ A��� .

�55�

In Table III, the � dependences of �xy
I , �xy

IIa, �xy
IIb, and �xx are

shown. In the metallic systems, the relations �xy ��xy
I �Fermi

surface term� and ��xy
I �� ��xy

II � hold well for a wide range of �
since the Fermi sea terms �xy

IIa and �xy
IIb almost cancel each

other.22 Therefore, we discuss the � dependence of the Fermi
surface term in detail. From Table III, the Fermi surface term
�xy

I is independent of � in the low resistive regime, whereas
�xy

I decreases approximately proportional to �−2 in the high
resistive regime. On the other hand, the longitudinal conduc-
tivity �xx decreases approximately proportional to �−1 in
both low and high resistive regimes. Therefore, the coherent-
incoherent crossover behavior of intrinsic Hall conductivities
at ��� are reproduced by considering the Fermi surface
term �xy

I correctly, as reported in Refs. 15 and 22:

�xy � �xx
0 for � � � , �56�

�xy � �xx
2 for � � � � W . �57�

In the case of W��, the relation �xy ��xx
1.5���−3� holds.

However, this relation is not reliable since the Ioffe–Regel
condition �W /��EF��1� is violated in this regime.50

Finally, we comment on the �xy
IIb term, which is called the

Berry curvature term. In electron gas models, the relation
�xy =�xy

IIb holds for �= +0 since �xy
I +�xy

IIa=0.18,19 However,

TABLE III. � dependence of the Fermi surface term �xy
I , Fermi

sea terms �xy
IIa and �xy

IIb and the longitudinal conductivity �xx.

��� �low �� ����W �high �� W��

�xy
I �0 �−2 �−3

�xy
IIa �0 �0 �−1

�xy
IIb �0 �0 �−1

�xx �−1 �−1 �−2
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�xy ��xy
IIb for finite �, and the crossover behavior cannot be

explained by analyzing �xy
IIb, which is shown in Table III. In

conclusion, the relationship �xy ��xy
I and ��xy

I �� ��xy
II � hold

well in the real metallic systems, and the correct crossover
behavior given by Eqs. �56� and �57� are reproduced by the
Fermi surface term �xy

I .
Now, we comment on the Ioffe–Regel limit in transition

metals: The Ioffe–Regel limit l /a�kFl�1 is approximately
estimated as EF /��1, where l, a, kF, EF, and � represents an
elastic mean free path, a lattice constant, a Fermi wave num-
ber, a Fermi energy, and a quasiparticle damping rate, respec-
tively. From the band structure for Ta and Pt in the present
model, we verified that EF is �1 in Ta and �0.5 in Pt.
Therefore, the Ioffe–Regel limit lies at around ��1 in Ta
and at ��0.5 in Pt, respectively. Since the localization effect
of the electron is not taken into account, the present calcula-
tion will be inadequate for EF /��1.

VI. SUMMARY

In this paper, we studied the intrinsic SHE and OHE in
various 4d transition metals �Nb, Mo, Tc, Ru, Rh, Pd, and
Ag� and 5d transition metals �Ta, W, Re, Os, Ir, Pt, and Au�
based on a multiorbital tight-binding model. We derived the
general expressions for the intrinsic SHC and OHC in the
presence of overlap integrals given by Eq. �5�. We found that
the huge SHCs in Pt �5d96s1� and Pd �4d105s0� are positive,
whereas the SHCs in Ta �5d36s2� and W �5d46s2� take large
negative values. We also found that the SHC changes
smoothly with the electron number n=ns+nd, regardless of
the changes of the crystal structure. Among the 4d and 5d
transition metals, the magnitude of SHC in Pt shows the
largest value in the low resistive regime. However, the mag-
nitude of SHC in Ta and W exceeds that in Pt in the high
resistive regime. Therefore, large negative values of SHCs in
Ta and W will be observed even in the high resistive
samples. In this paper, we also calculated the SHC for n=7
and 8 �hcp structure�.

We also showed that the CVC due to the local impurity
potential can be safely neglected in calculating the SHC and
OHC in the present model. The obtained SHCs in various
transition metals are sensitive to the changes of the chemical
potential �, which reflect the multiband structure around the
Fermi level �. This suggests that the intrinsic SHC can be
controlled by composing alloys. As for the � dependences of
SHC and OHC, we obtained the coherent-incoherent cross-
over behaviors in many transition metals by calculating both
Fermi surface and Fermi sea terms on the same footing: �xy

z

is independent of � in the low resistive regime where �
��, whereas �xy

z decreases approximately proportional to
�−2 in the high resistive regime. The physical meaning of the
crossover behavior can be explained as follows: In the low
resistive regime, SHC is proportional to the lifetime of the
interband excitation � /� since it is caused by the interband
particle-hole excitation induced by the electric field.5–7,10,15,22

However, in the high resistive regime, SHC decreases with �
since the quasiparticle lifetime � /� becomes shorter than
� /�.15,22

Here, we comment on the effect of Coulomb interaction
on the SHC and OHC. In the microscopic Fermi liquid
theory, the Coulomb interaction is renormalized to the self-
energy correction and the CVC. The renormalization factor
due to the self-energy, z= �1− � �����

�� ��=0�−1 exactly cancels in
the final formulas of the SHC and OHC, i.e., Eqs. �16�, �18�,
and �19�. As shown in Ref. 15 the CVC due to the Coulomb
interaction does not cause the skew scattering. Therefore, �
dependences of intrinsic SHC and OHC are unchanged by
the CVC due to Coulomb interactions. However, it is well
known that the CVC causes various anomalous transport
phenomena in the vicinity of the magnetic quantum critical
points �QCPs�.51–55 In the same way, a prominent CVC near
the magnetic QCP may cause a different temperature depen-
dence of the SHC and OHC. This is an important future
problem.

Owing to the present study of SHE and OHE in various
transition metals, it has been revealed that the huge SHE and
OHE are ubiquitous in multiorbital d-electron systems. In
Sec. V A, we discussed that the origin of these huge SHE is
the “effective AB phase” induced by the atomic SOI with the
aid of interorbital hopping integrals.7,8 The present study
strongly suggests that “giant SHE and OHE � will be seen
ubiquitously in multiorbital f-electron systems with atomic
orbital degrees of freedom. These facts will enable us to
construct efficient spintronics or orbitronics devices made of
transition metals. Furthermore, in f-electron systems, a larger
SHE may appear as compared to that in d-electron systems
since the angular momentum of the atomic orbital is larger
and the band splitting near the Fermi surface is smaller.

In the presence of anticrossing bands, a huge SHC can be
realized when the Fermi level lies inside the gap induced by
SOI.30,31 In this case, �xy

I =0 and �xy
II takes a large �and al-

most quantized� value. In the present study, however, we
could not find any elemental metals in which the Dirac-cone-
type band structure has a dominant contribution to SHE in
the low resistive regime. The large SHCs in transition metals
are mainly given by the Fermi surface term, �xy

I . Therefore,
the existence of a Dirac point is not a necessary condition for
a large SHE: As shown in Fig. 9, the band structure where
the band splitting near the Fermi level is small is significant
for a large SHE. However, only in the case of Ta, almost
degenerate anticrossing points that exist slightly away from
the Fermi level give rise to an anomalous � dependence in
the low resistive regime. The anomalous � dependence of
SHC in Ta may be realized.

Finally, we discuss the quantitative accuracy of the ob-
tained numerical results, which depends on the accuracy
of the band structure of the model near the Fermi level.
SHC and OHC depend on the multiband structure near the
Fermi level with a small interband splitting �, and they
are proportional to �−1 according to Eq. �16�. According
to Ref. 42, the possible error in the NRL-TB model is
about 0.002–0.004 Ry, which is much smaller than � ��
�0.035 Ry in Pt�, which gives the minimum energy scale in
the intrinsic Hall effect. Therefore, it is expected that the
NRL-TB model is accurate enough to qualitatively derive
reliable results of SHC and OHC. Thus, the overall n depen-
dence of the SHC in Fig. 5 will be reliable.
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APPENDIX A: DERIVATION OF EQUATION (38)

Here, we derive Eq. �38�. n�q� is given by a Fourier trans-
form of the electron number density n�r� as follows:

n�q� =� drn�r�e−iqr =� dr †�r� �r�e−iqr

= �
k,k�

�

,�

�� dr�k

* �r��k���r�e−iqr�ck


† ck��, �A1�

where  �r� represents the electron field operator; this opera-
tor can be expanded with the atomic wave function �kl�r� as
follows:

 �r� = �
k,


�k
�r�ck
. �A2�

We used this relation to transfer from the second row to the
third row in Eq. �A1�.

From Bloch’s theorem, the atomic wave function can be
rewritten as

�k
�r� =
1

	N
uk
�r�eik·r, �A3�

where

uk
�r� = �
i

eik�Ri−r��
�r − Ri� . �A4�

Then, it is straightforward to show that the equation in
square bracket in Eq. �A1� is rewritten as

��k + q − k���
unit

druk

* �r�uk���r� . �A5�

Therefore, Eq. �A1� is rewritten as

�
k,
,�

��
unit

druk

* �r�uk+q,��r��ck


† ck+q,�. �A6�

Here, we expand �·
 in Eq. �A6� in powers of q /2�q
= �q�� as follows:

�
unit

druk+�q/2�−q+2,

* �r�uk+�q/2�+�q/2�,��r�

= �
unit

dru
k̃


* uk̃� +
q

2
A
� + O�q

2
� , �A7�

where k̃ is given by k̃=k+ �q /2�, and q
2A
� is given by

�
unit

dr�
i,j
�q

2
�Ri − r�e−ik̃�Ri−r��



*�r − Ri�eik̃�Rj−r����r − R j�

+
q

2
�R j − r�e−ik̃�Ri−r��



*�r − Ri�eik̃�Rj−r����r − R j�� .

�A8�

First, the first term on the right hand side in Eq. �A7� can
be calculated as follows:

�
unit

dr�
i,j

e−ik̃�Ri−r��


*�r − Ri�eik̃�Rj−r����r − R j� = O
�

−1 �k̃� .

�A9�

Next, we show that q
2A
� given by Eq. �A8� vanishes by

rewriting Eq. �A8� as follows:

�
k̃�

�k̃k̃�
q

2
· � �

�k̃
−

�

�k̃�
���

unit

dr�
i,j

e−ik̃�Ri−r�

��

†�r − Ri�eik̃��Rj−r����r − R j��

=
q

2N
· � �

�k̃
O
�

−1 −
�

�k̃
O
�

−1� = 0. �A10�

Therefore, the final result for n�q� is given by

n�q� = �
k,
,�

O
�
−1 �k�ck−�q/2�,


† ck+�q/2�,�, �A11�

which is exact up to O�q�.

APPENDIX B: DEFINITIONS OF SPIN AND ORBITAL
CURRENT OPERATORS

In the present study, we assume that the spin and orbital
current operators are given by Eqs. �11� and �12� according
to literature.24,47 Here, we show the validity for these defini-
tions in a microscopic way. Since the spin and orbital opera-
tors are not conserved in the present model with SOI, we
cannot define spin and orbital current operators from the con-
tinuity equations. However, it is possible to make a natural
definition for each current operator, as follows.

First, we consider the spin current operator. Since the SOI
in the present model is local, we can virtually apply a mag-
netic field �vector potential� to ↑-spin and ↓-spin electrons
separately. Here, we denote the vector potential for ↑ spin
and ↓ spin as A↑ and A↓, respectively. By considering a trans-
formation k�→k�−eA�, where � is a spin index, the x com-
ponent of current operators for ↑-spin and ↓-spin electrons
are given by

J↑x =
�Ĥ

�A↑x
= − e�vx 0

0 0
� , �B1�

J↓x =
�Ĥ

�A↓x
= − e�0 0

0 vx
� . �B2�

Therefore, the natural definition of a spin current operator in
the present model is given by
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Jx
S =

1

�− e�
�J↑x − J↓x� . �B3�

This expression is equivalent to Eq. �11�. We note that the
above discussion cannot be applied to systems in the pres-
ence of nonlocal SOI, such as a Rashba type SOI.

Next, we consider the orbital current operator. The charge
current operator Jx

C=J↑x+J↓x is expressed in the real space
representation as

JC = �
im,jm�

Jim,jm�
C , �B4�

Jim,jm�
C = − e�ri − r j� · tim,jm��cim

† cjm� − cjm�
† cim� , �B5�

where i is the position of ith lattice point, m represents the

eigenvalue of l̂z, and tim,jm� represents the hopping integral
between �m� state at ith site and �m�� state at jth site, respec-
tively. Then, the natural definition of the orbital current op-
erator will be given by

�JO�im,jm� =
1

2�− e�
�m + m���JC�im,jm�, �B6�

in the basis of lz=2,1 , . . . ,−2. By performing Fourier trans-
forms of Eq. �B6�, we obtain the following expression for the
orbital current operator in the present model:

„JO�k�…mm� =
1

2�− e�
�m + m��„JC�k�…m,m�. �B7�

In a general basis, the above equation can be rewritten as

JO = �JC,lz�/2�− e� . �B8�

This expression is equivalent to Eq. �12�. In summary, we
have introduced a natural definition of the spin and orbital
current operators, and we have shown that they are equiva-
lent to Eqs. �11� and �12�, respectively.

In the same manner, if we define the spin current operator
�in the presence of the intersite SOI� as �JS�im�,jm���
= 1

2�−e� ��+����JC�im�,jm���, we can derive the spin current
JS= �JC ,sz� /2�−e� immediately. This is another microscopic
derivation of the spin current operator in Eq. �11�.
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