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We present a linear scaling ab initio total energy electronic structure calculation method, which is simple to
implement, easily to parallelize, and produces essentially the same results as the direct ab initio method, while
it could be thousands of times faster. Using this method, we have studied the dipole moments of CdSe quantum
dots, and found both significant bulk and surface contributions.
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I. INTRODUCTION

In the past decade, we have witnessed an increasing num-
ber of experimental investigations of structural, electronic,
and optical properties of ever more complex nanostructures.
This trend calls for a corresponding set of theoretical ab
initio calculations on these nanosystems, some of which may
contain tens of thousands of atoms. However, due to the
O�N3� computational scaling1 of the direct density functional
theory �DFT�, it can only be applied to about one to two
thousand atoms despite the ever increasing computer powers
and parallelism.2 Over the past 15 years, many linear scaling
O�N� electronic structure algorithms have been proposed.3 A
common algorithm is based on localized orbitals. Unfortu-
nately, the use of localized orbitals can lead to local mini-
mum in the energy functionals, causing convergence prob-
lem in the calculations.4 Besides, it is difficult to represent
the local orbitals with plane wave basis which is widely used
in materials science simulation. The overlaps between neigh-
boring local orbitals also make the code parallelization not so
straightforward. Overall, there is a continuous need for new
and simple O�N� ab initio methods which can be used by a
wider population in the computational electronic structure
community.

In this paper, we present a new O�N� ab initio electronic
structure method and use it to study dipole moments in CdSe
quantum dots. This method satisfies the following criteria for
a good modern O�N� algorithm: �1� it is accurate, obtaining
essentially the same results compared to the direct ab initio
method; �2� it is simple, which makes it easy to be imple-
mented from an existing ab initio code; �3� it is trivially
parallelizable, which makes it suitable for large-scale com-
putation; �4� it is applicable to any ab initio method, not
restricted to DFT.

II. FORMALISM

Our method is based on the observation that the total en-
ergy of a given system can be split into two parts: the elec-
trostatic energy and the quantum mechanical energy �e.g., the
kinetic energy and exchange correlation energy�. While the
electrostatic energy is long range and must be solved via a
global Poisson equation, the computationally expensive
quantum mechanical energy is short range5 and can be
solved locally. Our idea is to divide the whole system into
small fragments, calculate the quantum mechanical energies

of these fragments, and then sum the separate fragment en-
ergies to obtain the energy of the whole system. The core of
our algorithm is a patching scheme that sums the fragment
energies in such a way that the artificial boundary effects
caused by the division of the system essentially cancel out.

Our division and patching scheme is illustrated in Fig. 1,
which uses a two-dimensional system for clarity. In Fig. 1, a
periodic supercell is divided into m1�m2 small pieces. From
each grid corner �i , j�, we can define four fragments, with
their sizes �S� equal to �in units of the smallest piece� S=1
�1, 1�2, 2�1, and 2�2, respectively. Suppose we calcu-
late the quantum energy Ei,j,S and charge density �i,j,S of all
of these fragments. Then the total quantum energy of the
system can be computed by E=�i,j,S�SEi,j,S and the total
charge density by ��r�=�i,j,S�S�i,j,S�r�. Here, �S=1 for the
S=1�1 and 2�2 fragments, and �S=−1 for the S=1�2
and 2�1 fragments.6 By using the above summation, the
long surface �the edge of �i , j�− �i+2, j� in Fig. 1� of the 2
�1 fragment will cancel the same surface of the 2�2 frag-
ments, and the surface of the 1�1 fragment will cancel out
the new unwanted short surfaces �the edge of �i , j�− �i , j
+1�� of the 2�1 fragment. Such cancellation is complete for
all the surfaces �edges in Fig. 1� and corners after the sum-
mation �i,j,S�S is carried out for all i, j, and S in the total
energy and charge expression.

FIG. 1. �Color� A schematic view of the division of the space
into fragments. The dashed line denotes the region of the 2�2
fragment.
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The above scheme can be extended to a three-dimensional
system in a straightforward manner. Here, a periodic super-
cell is divided into m1�m2�m3 fragments, and from each
grid point corner �i , j ,k� we can define eight fragments, with
sizes S��S� equal to 1�1�1�−�, 1�1�2�+�, 1�2�1�+�,
2�1�1�+�, 1�2�2�−�, 2�1�2�−�, 2�2�1�−�, and
2�2�2�+�. Now, E=�i,j,k,S�SEi,j,k,S. This formula has the
same property of canceling out all the surface, edge, and
corner effects.

We can now compare our linear scaling three-dimensional
fragment �LS3DF� method to other divide-and-conquer ap-
proaches. In the method proposed by Yang,7,8 the spatial do-
main is divided into overlapping subdomains. A positive spa-
tial partition function P�r�, where P�r� equals 1 near the
center of the subdomain and gradually goes to 0 near the
boundary, is used for patching the subdomains. The idea is to
use only the central part of each subdomain, instead of using
boundary effect cancellations as in our method. The use of
the partition function P�r�, however, creates some technical
problems including how to partition the kinetic energy,8 how
to express the total energy in a variational form and how to
maintain charge neutrality. Note that by reducing the size of
our 2�2�2 fragments,6 we can also reduce the overlap
between fragments, much as in the method proposed by
Yang.7,8

We can also compare our LS3DF method with the frag-
ment molecular orbital �FMO� method.9,10 FMO is specifi-
cally designed for biological systems where a long chain
molecule is divided into many small pieces �monomers�. In
the FMO method, all of the monomer and monomer-
monomer pairs are calculated to take into account the co-
valent bonds that are broken in the subdivision. In con-
trast, we have three-dimensional fragments with different
sizes in a spatially compact form. If we identify our small-
est 1�1�1 fragment with the monomers in FMO, then
we calculate up to eight monomer clusters �the 2�2�2
fragments�. In summary, LS3DF uses regular spatial loca-
tion and division and has a rigorous boundary effect can-
cellation, unlike FMO. In fact, as we will show below, the
error in LS3DF will drop rapidly as the fragment size in-
creases.

In our implementation of the LS3DF method, we start
with a 3D periodic supercell that is divided into
an M =m1�m2�m3 grid. Each atom is assigned to one
fragment depending on its spatial location �which square
it falls into in Fig. 1�. The artificially created surfaces of
the fragments are passivated with hydrogen or partially
charged pseudohydrogen atoms to fill the dangling bonds.11

We will denote the fragment wave function as �F,i�r�,
where i is the wave function index, and F= �i , j ,k ,S� is the
index for the fragment. Note that �F,i�r� is only defined
within its own fragment’s spatial domain �F, which is
of size S plus a surface buffer region as indicated by the
dashed line in Fig. 1. We can now write the total energy Etot
of the system as a variational expression in terms of the
fragment wave functions �F,i�r� �for zero temperature calcu-
lation�:

Etot = 2�
F

�F �
i=1,NF/2

� �
F,i
* �r��−

1

2
�2��F,i�r�d3r

+ Vion�r��tot�r�dr +
1

2
� �tot�r��tot�r��

	r − r�	
d3rd3r�

+� �xc��tot�r���tot�r�d3r + �
F

�F� �VF�r��F�r�d3r ,

�1�

where �tot�r�=�F�F�F�r�, �F=�S, and the fragment charge
density �F�r�=2�i=1,NF/2	�F,i�r�	2, where NF is the total num-
ber of electrons in fragment F after passivation. Vion�r� in Eq.
�1� is the total ionic potential. The term �VF�r� is an addi-
tional surface passivation that is only nonzero near the
boundary of the fragment. For different fragments sharing a
same boundary B, their �VF�r� at that boundary B should be
the same. Due to the fragment cancellations, the net value of
the last term in Eq. �1� should be small. The amplitude of this
term can be used as a measure of the accuracy for this
method.

The total energy Etot is a variational minimum �or maxi-
mum, depending on the sign of �F� with regard to �F,i�r�,
subject to the orthonormal constraints: 
�F

�
F,i
* �r��F,j�r�dr

=	i,j. Thus, we can derive the fragment Kohn-Sham equation
from 	Etot /	�

F,i
* �r�=2�F�F,i�F,i�r�, which results in

�−
1

2
�2 + VF�r���F,i�r� = �F,i�F,i�r� , �2�

where

VF�r� = Vtot�r� + �VF�r� for r � �F, �3�

and Vtot�r� is the usual local density approximation �LDA�
total potential calculated from �tot by solving a global Pois-
son equation for the whole system. Of practical importance
is the observation that the calculations in Eq. �2� can be
carried out independently for each fragment making the
computation trivially parallel. The charge density self-
consistency can be achieved iteratively using the usual po-
tential mixing scheme1 for Vtot. Due to the variational prin-
ciple, atomic forces can be calculated using the Hellman-
Feyman theory. To compute the surface passivation potential,
we have used the atomic charge densities to construct a
�F,atom�r�, �tot,atom�r�, and Vtot,atom�r�. From �F,atom�r�, we
have also calculated a VF,atom�r� using a LDA formula for the
fragment. We then have �VF�r�=VF,atom�r�−Vtot,atom�r�. To
assure that �VF�r� at a given boundary B is the same for
fragments sharing this common boundary, we take the aver-
age among all of the fragments sharing this boundary. With
the vacuum buffer region, we have used a plane wave expan-
sion for the wave functions �F,i�r� and norm conserving
pseudopotentials for the Hamiltonian. Equation �2� is solved
using a conjugated gradient method based on the plane wave
code, PETOT.12

III. NUMERICAL TEST

We first compare the LS3DF method against the direct
LDA method for a Si235H104 quantum dot �QD� with surface
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hydrogen passivation and a plane wave basis set cutoff of
35 Ry. The smallest 1�1�1 fragment is an eight atom unit
cell. With these parameters, the total energy difference be-
tween the LS3DF method and the direct LDA method is
3 meV/atom. The average charge density difference is 0.2%,
while the average atomic force difference is 5�10−5 a.u. We
also tested Si slabs and rods, and CdSe quantum dots �where
an internal electric field exists�. The errors for those tests are
similar to the above Si QD results. To test the fragment size
effects more systematically, we have calculated the bulk Si
with LS3DF method. Our results, shown in Table I, indicate
that the errors drop rapidly as the fragment size increases
from 0.5a to 1.5a �a is the lattice constant of bulk Si�. We
note that the total energy error does increase a bit in going
from 1.0a to 1.5a, however. This is due to the use of negative
fragments, which allows the computed energy to approach
the exact result from both above and below. A more robust
number is the charge density error, which drops rapidly with
the fragment size. We also calculated the quantum dot polar-
ization under an external electric field in a Si quantum dot
using the 1.0a fragment size. The LS3DF and direct LDA
differences for the response charge and total induced dipole
moment are both about 2%. Thus, we claim that, with a 1.0a
fragment size, the LS3DF method is accurate enough for
most practical calculations.

Figure 2 shows the convergence of the self-consistent it-
erations. One can see that the LS3DF method has a conver-
gence rate similar to the direct LDA method, avoiding the
convergence problems seen in some of the other O�N�
methods.4 Since each fragment Kohn-Sham equation is
solved independently, the parallelization of this method is

straightforward. The time spent on the global Poisson equa-
tion is only a fraction of the total computational time. As a
result, we have been able to achieve an excellent �up to 80%�
linear scaling with the number of processors �up to 8000
processors in our tests�. Based on actual computer total
floating point operations counts, the crossover size of the
linear scaling LS3DF method and the O�N3� scaling di-
rect LDA method is around 500 atoms with the 1.0a
fragment size. To demonstrate the power of the LS3DF
method, we have calculated a 15 000 atom Si quantum
dot, which took 30 min for one self-consistent iteration
using 2048 processors on an IBM SP Power3 machine.
By comparison, if a direct LDA method had been used,
it would have taken weeks using similar number of
processors.13

The reported crossovers with direct LDA calculation for
localized orbital and density matrix methods are about 500
atoms. Since these crossovers are similar to ours for similar
accuracy, we can deduce that the LS3DF method should
be as efficient as those O�N� methods.4 Alternatively, one
can also estimate the computational cost �for a system
with 2N electrons� as follows. First, note that for an accu-
rate LS3DF calculation, it is not necessary to have small
quantum confinement effects for the fragments. It is only
necessary for one side of the fragment to have a small effect
on the opposite side in terms of density and kinetic energy
density. Such effects should have a similar decay length as
the localized Wannier function, because the densities can
be expressed as the sum of the Wannier function squared. In
practice, we do find that the 64 atom 2�2�2 fragment size
is similar to the orbital size in the localized orbital method
for similar accuracies.4 Most of the LS3DF computational
cost is in the computation of the 2�2�2 fragments. There
are M =m1�m2�m3 such fragments, each with 16N /M
electrons. Thus, in total, there will be 8N fragment wave
functions each in a domain of �2�2�2. In the localized or-
bital method, the number of localized wave functions is
about
N to 2N depending on the implementation.4 Our method
can be as efficient as the localized orbital method because
the iterative convergence of the fragment wave functions
is fast due to the wave function decoupling of the
fragments, and the O�N3� step for each fragment cal-
culation is not dominating for the fragment sizes we are
using.

We next study the total dipole moments of CdSe quantum
dots, which only becomes computationally amenable due to
the development of our LS3DF method. This is a longstand-
ing physics problem that stems back more than ten years.14

Experimentally, it was found that not only there are dipole
moments for wurtzite structure CdSe quantum dots and
rods,15,16 there are also similar magnitude dipole moments
for zinc blende structure ZnSe quantum dots15 �which should
not have a bulk contribution due to the zinc blende symme-
try�. As such, there has been a controversy regarding the
cause of the measured dipole moment: intrinsic bulk dipole16

or surface passivation?15

We first calculated the dipole moments for a small 178
atom wurtzite CdSe quantum dot. Using a 1�1�1 fragment
of 12 Cd+Se atoms, the LS3DF z-direction �c-axis� dipole

TABLE I. The convergence of the LS3DF results compared with
direct LDA results for bulk Si calculations. The fragment sizes 0.5a,
1a, and 1.5a correspond to 8, 64, and 216 Si atoms in the
2�2�2 fragments, respectively. �E is the total energy error, and
�� is the total charge density error.

Fragment size 0.5a 1a 1.5a

�E �meV/at� 30 2.9 4.0

�F�F
�VF�Fdr �meV/at� 213 5.5 1.0

�� 1.1% 0.14% 0.08%
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FIG. 2. Self-consistent convergence curves for LS3DF and di-
rect LDA method.
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moment was computed to be 3.52 a.u., while the LDA
result was 3.49 a.u. The absolute difference �0.03 a.u.� is
much smaller than the error introduced by using different
pseudopotentials. In the dipole moment calculation, the
Poisson equation is solved using an open boundary condi-
tion, instead of a periodic boundary condition for the whole
system, so there are no neighboring dipole-dipole interac-
tions.

We have calculated four similarly sized elongated CdSe
quantum dots �rods� containing a few thousand atoms, as
shown in Fig. 3. Two dots are in a wurtzite �WZ� structure
and two are in a zinc blende �ZB� structure. Experimental
crystal structures and internal atomic coordinates are used for
the CdSe WZ structure. Due to the lack of experimental sur-
face passivation details at the atomic level, we used
pseudohydrogen atoms to fill the surface dangling bonds,
representing an ideal passivation situation.11 These surface H
atoms are placed at the center positions of the cutoff bonds.
To study the effects of different surface passivations, we
chose two types of surface models, one with both Cd and Se
atoms on the surface �Cd+Se terminated� and the other with
only Cd atoms on the surface �Cd terminated�.

Our final results are listed in Table II. We can see that the
total dipole moment depends sensitively on the crystal struc-
ture. For ZB structure, the dipole moment is negative, while
it is positive for WZ structure. Due to the symmetry, ZB
does not have bulk dipole contribution. So the dipole mo-
ments of the ZB quantum rod structures must come from the
their surface passivations. This effect of the surface contri-
bution is tested by changing the Cd and Se terminated sur-
face to Cd only terminated surface �Fig. 3�. We see that this
change adds a positive dipole moment to both the ZB and
WZ nanorods. Overall, the WZ nanorods have much larger
dipole moments. One can attempt to separate the bulk and
surface contributions of the WZ dipole moments by assum-
ing that the the surface dipole moments for ZB and WZ
nanorods are the same for the same type of surface termina-
tion �either Cd termination or Cd+Se termination�. Thus, by
subtracting the ZB dipole moments from the corresponding
WZ dipole moments, we get the bulk dipole contributions of
73.3 and 84.1 a.u. for the Cd714Se724 and Cd916Se724 WZ
quantum dots, respectively. They are exactly proportional to
their total number of Cd and Se atoms. The spontaneous
polarization bulk dipole moment of WZ structure can been
calculated from a bulk WZ/ZB supercell,17 and we have P0
=0.0143�NCd+NSe� a.u. Using this formula, the total bulk
contributions for the above two WZ quantum dots should be
20.5 and 23.5 a.u., respectively. Curiously, these estimated
bulk contributions are about 3.6 times smaller than the direct
calculated results. Further work is under way to explain this
difference.

Finally, to study the effect of the dipole moment on
the internal electronic structure of nanorods, we have taken
the potential Vtot of Eq. �3� and calculated the band
edge electron and hole states of the whole quantum dot using
the folded spectrum method.18 As shown in Fig. 4, the
electrons and holes are localized on opposite ends of the
rod, indicating the importance of the possible internal elec-
tric fields induced by the dipole moments in such quantum
dots.19 We are carrying out further study to investigate this
effect.

IV. CONCLUSION

In conclusion, we have presented a divide-and-conquer
linear scaling method for ab initio total energy calculations.
The current method has the following features: �1� it has a

TABLE II. The total z- �c-axis� direction dipole moments of
CdSe quantum rods �the x ,y dipole components are very small�.
The total atomic number Natom includes the numbers of Cd, Se, and
surface H atoms.

QD Natom Struct. Termin.
Dipole
�a.u�

Cd954Se718 2616 ZB Cd −13.1

Cd961Se724 2633 WZ Cd 71.0

Cd715Se718 1955 ZB Cd+Se −21.5

Cd714Se724 1956 WZ Cd+Se 51.8

ZB + (Cd+Se) surface

WZ+ (Cd+Se) surface WZ+ Cd surface

ZB + Cd surface

FIG. 3. �Color� The four calculated CdSe nanorods. The green
atoms are Cd, yellow atoms are Se, and white atoms are surface
hydrogen.

FIG. 4. �Color� The electron �red� and hole �green� states shown
in their isosurfaces with an isovalue of 0.0002e /bohr3 in the
Cd961Se724 wurtzite structure quantum rods with Cd atom
terminations.
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variational formalism, which allows the calculation of
atomic forces using Hellman-Feyman theory; �2� it is very
accurate, with a total energy error of about a few meV/atom;
�3� it is simple, and can be implemented by modifying exist-
ing ab initio packages; �4� it can be parallelized easily, and
can scale to thousands of processors; �5� it can be applied to
quantum mechanical methods other than the density func-
tional theory.
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