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Field-induced local moments around nonmagnetic impurities in metallic cuprates
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We consider a defect in a strongly correlated host metal and discuss, within a slave-boson mean field
formalism for the 7-t’-J model, the formation of an induced paramagnetic moment which is extended over
nearby sites. We study in particular an impurity in a metallic band, suitable for modeling the optimally doped
cuprates, in a regime where the impurity moment is paramagnetic. The form of the local susceptibility as a
function of temperature and doping is found to agree well with recent NMR experiments, without including

screening processes leading to the Kondo effect.
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I. INTRODUCTION

The remarkable character of disorder effects in low-
dimensional, strongly correlated materials has been empha-
sized in recent work on these systems (for a review, see Ref.
1). Doping a Mott insulator usually involves atomic substi-
tutions which generate random electric potentials in the ma-
terial and frequently structural changes as well; these defects
induce large scale perturbations very different from analo-
gous defects in noninteracting systems. Early studies of cu-
prate high temperature superconductors” led to the discov-
ery that nonmagnetic point defects (typically Zn and Li
defects) enhance local antiferromagnetic (AF) correlations
over a wide range of temperatures and dopings. Defects pro-
duced by electron irradiation also appear to produce very
similar physical effects as Zn and Li in many cases.' Nuclear
magnetic resonance (NMR) spectroscopy revealed the main
features of this impurity-driven magnetic polarization in the
normal (N) and superconducting (S) states of underdoped
(UD), optimally doped (OP), and overdoped (OD)
YBa,Cu;0,_5 (YBCO) samples. In the presence of a uniform
field B, a staggered magnetization (SM) pattern due to mo-
ments on the Cu(2) ions is formed around the impurity, with
a spatial extent & related to the correlation length of the pure
system. This highly correlated, dynamic entity produces a
paramagnetic polarizability dy which is Curie-like in the UD
system, evolving to Curie-Weiss-like behavior 8y~ (T
+0)7! in the OP to OD range.* Although these were con-
trolled experiments on systematic impurity substitutions for
Cu, it is important to realize that similar magnetic phenom-
ena are to be expected to occur for intrinsic disorder due to
the doping process itself, and may dominate some of the
low-frequency properties of most cuprate samples, particu-
larly in the UD regime.

Because O increases rapidly with doping, and because
resistivity measurements show that these defects cause very
rapid scattering at low 7, it has sometimes been interpreted
as a Kondo temperature, enhanced in the presence of higher
carrier densities capable of screening the magnetic moment
induced by the impurity.* Several observations are at odds
with a simple Kondo picture: magnetic and transport signa-
tures are quite strong above ® in the UD regime, £ is con-
siderably larger than the lattice spacing, and the amplitude of
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the SM is much bigger than what one would expect from the
Friedel response to a Kondo screened moment.

The problem of a single nonmagnetic impurity in a corre-
lated host material has already received considerable theoret-
ical attention. In the weak-coupling limit, several authors’~
modeled the problem with a localized potential added to a
Hubbard Hamiltonian treated in a Hartree-Fock approxima-
tion. They used NMR and transport data for the pure system
to assign values to the parameters of the model, and obtained
good agreement between theory and experiment for impurity
Knight shifts (in the N and S states) and resistivities (in the
N state!?) if the Hubbard U was tuned to a value quite close
to a long range AF instability and if the impurity potential
was chosen to be nonlocal in the N state. The strong-
coupling, U— o, limit was considered along two main lines.
One assumes that a magnetic moment has formed as a result
of the impurity, and the Kondo-screening response of the
correlated medium is then studied.!"'?> The other approach
models the pseudo gap in the UD regime, and finds an in-
duced SM (a spinon bound state) around the impurity.'>!4
The problem has also been studied in essentially numerical
treatments.'~1

In this paper, we provide a semiquantitative solution to
the problem of a single pointlike, nonmagnetic impurity in
the OP to OD regimes, with negligible pseudogap, i.e., in the
metallic N state of a strongly correlated material described
by the 7-t'-J model. Within a mean field slave-boson formal-
ism, appropriate to the U—cc limit, we derive the set of
equations describing the paramagnetic moments on the pla-
nar Cu sites created by a uniform magnetic field. We give an
approximate analytical solution to these equations, which al-
lows us to capture the physics at play: a resonant state is
formed, producing a spatial SM pattern. Its amplitude, which
is related to the staggered response of the pure system, can
be quite large, but it decays spatially as one moves a few
lattice spacings away from the impurity. The local polariz-
ability Sy has a Curie-Weiss form with a © that depends
sensitively on doping. The widths of the spinon and holon
bands decrease significantly as one moves toward the impu-
rity, suggesting a local near-critical region in the vicinity of
the defect. These results are qualitatively corroborated by a
fully self-consistent numerical solution of the equations. The
formation of these moments and their screening by the cor-
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related medium stem from the same set of carriers, in con-
trast with the standard Kondo scenario.

II. HOMOGENEOUS MODEL

Our starting point is the 7-t'-J model on a square lattice,
which is commonly considered to capture the low energy
physics of the CuO, plane common to all cuprate materials.
The additional constraint of non-double-occupancy of the
sites is handled via the slave-boson formalism in which a
projected fermion is represented by a product of auxiliary
(“slave™) fields. The Hamiltonian of the impurity-free system
in the presence of an applied magnetic field B then reads?®?!

- 3 tbblfidfio= o8 E

(ij)o

+2J(Si'5j—_”z"j>—Mozf;rafjo- (1)
(i.j) i

It describes strongly correlated fermions cT :-'U [b; are
bosons (holons) and f are pseudofermlons with spin o
(spinons)] on a square lattice, with hopping amplitudes 7 (¢")
between nearest-(next-nearest-) neighbor sites and nearest-

neighbor antiferromagnetic interactions J between spins rep-

resented by S;= f | (r f;- The fields are subjected to a local
constraint E(Tn,,,+b bi=1 (n,=f; afm) which projects out
double occupancy from the Hilbert space; it is enforced in
the functional form of Eq. (1) with Lagrange multipliers \,.

We use a variant of the Ubbens-Lee?> mean field decou-
pling scheme, appropriate to the gapless spin liquid regime
when magnetic solutions are included, and introduce the fol-
lowing order parameters:

<fj'.af/’0'> = Xij» <S§> =m,

(blb) =0y, 2 (bjb) =N, (2)
where the last expression implements the local constraint on
the average and has been given in terms of the average hole
doping per site d. The functional form of the resulting La-
grangian for the Bose (b) and for the Grassmann (f) fields,
and the phase diagram determined in this approximation are
given in Ref. 22.

The homogeneous paramagnetic normal state is obtained
with the choices

gMeBXo

N i)\i:A, (3)
1+4Jx0

Xij = X> Qij:Qs m;=m=
yielding a uniform stationary Lagrangian Ly(x,Q,A) (xo is
the noninteracting Pauli susceptibility for the renormalized
spinon band). Correlations affect the effective bandwidths of
the particles carrying spin and charge. In the homogeneous
case, these bands reduce to

dt=- 217,(cos ky + cos ky) +4ltf,|cos k, cos ky,  (4)

with #=(J/2)x+tQ, t;=t'Q", 1,=2ty, and 1,=2t"}".
Unprimed and primed variables refer to nearest- and next-
nearest-neighbor amplitudes, respectively.
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III. SEMIANALYTICAL CALCULATION OF LOCAL
MAGNETIZATION NEAR IMPURITY

We now assume the presence a single impurity, e.g., a
zinc atom. Since Zn** has a filled shell, there are no spinons
and no holons. We model this by adding a term to Hamil-
tonian (1) that effectively projects out site 0,

A(E Foufor+ bébo) (5)

with A — 0. In mean field, the charge and spin sectors can be
studied separately, and we denote by G” (G,) the Green func-
tions for the holons (spinons) species with the \ perturbation
when B is present. If an impurity-induced magnetic polariza-
tion develops in the system, with site dependent magnetiza-
tions m; # m [see Egs. (2) and (3)], we need to include pro-
cesses due to this magnetic scattering potential. It can be
written as V=2, V, JEw)(,(m —m)on,, if we replace B by
By= B—4Z" The full spinon Green’s function G, is then
formally given by

which gives a self-consistent set of equations for the magne-
tizations

m;=— 71—7 Im J dwf(w)E oG, (i,i;w), (7)

where f is the Fermi function. In the paramagnetic regime,
this gives us the linear response to the applied field B in the
form

—Im Jd—wf’(w)(g(i,i;w)—GO(i,i;w))

EM,, 5j= , (8)

—Im f d—wf’(w)GO(i,i;w)
T

where both G and G° (the Green’s function of the defect-free
problem) are spm mdependent in zero field, s;=(m;—m)/m
and M;;=9,- -JEk ( ) Im [dof(0)(G@i,k;w g(k i;w)) (k
and j, i and j are nearest neighbors). The stability of a para-
magnetic solution requires that all the eigenvalues of the
matrix M=(M;) be strictly positive. In order to determine
the s;, we need to determine G?,G. Since Eq. (5) describes
the removal of the site O, the solution in the case of a rigid
band would be

0/ 0 .
G(i.j) —— Vi) - TN

At G%0,0) ®)

and a similar form for G”. However, Eq. (2) shows that x;;,
Q,; are site dependent, whereas Eq. (3) holds only for the
homogeneous system. Preserving self-consistent determina-
tions of these parameters implies including scattering poten-
tials proportional to y;;—x and Q;;—Q in the Dyson equa-
tions for G’ G. Enforcing the non-double-occupancy
constraint also requires special care. A full solution for these
propagators involves a numerical calculation (see below).
Nevertheless, using perturbation theory and controlled ap-
proximations, we obtain an analytical solution which reveals
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FIG. 1. (Color online) Local spinon bandwidth #/(i) in units of J,
as a function of the distance from the impurity site r; in lattice
constants at different temperatures, for J/t=0.22 and 6=0.3.

the nature and main features of the induced polarization. To
zeroth order, we use Eq. (9) which allows us to compute the
densities of states and to determine x;;, Q;; in Eq. (2). On
sites close to the impurity, the potential Eq. (5) pushes states
away from the edges of the band [Eq. (4)] and redistributes
those inside the band. Holons, which sit primarily at the
bottom of the band, are drastically affected and Q;; is
strongly suppressed. x;; almost retains its defect-free value,
since its main contribution comes from spinons at the Fermi
level, well inside the band. Beyond a characteristic “healing
length,” these parameters recover their unperturbed values.
We then use these values of Q;; and y;; to generate the Green
functions G”, G to next order in perturbation. We do not
iterate the process any further, which implies that, within the
healing length, we do not obtain the bond order parameters
in a self-consistent manner and that the non-double-
occupancy constraint is not enforced properly. Yet, this trun-
cation, which allows us to handle analytically tractable ex-
pressions, is not too drastic a simplification, for two reasons.
One is that, for temperatures comparable to or larger than O,
this healing length is quite small, as is seen in Fig. 1, which
shows the local spinon bandwidth at site i, tf(i), as a function
of the distance r; from the impurity. The second is that at all
T, the amplitude of induced staggered polarization decays
very quickly with r;, and we may consider that the system
settles back into the unperturbed state for r; larger than &
(Fig. 2) of the order of a few lattice spacings.

Using these approximations, we solve Eq. (8), where we
consider that the only nonzero s; are for sites i sitting up to
three shells away from the impurity. We noticed (see below)
that the integral in the expression for M;; is proportional to
J/t(i), and the enhancement close to the impurity promotes
a tendency toward local moment formation, i.e., sizable val-
ues of the s;. Far from the impurity, this ratio is much smaller
and the magnitude of the impurity-induced polarization s;
goes to zero. Values ascribed to the hopping and correlation
amplitudes were r=0.45 eV, t'=-0.4¢, and J=0.1 eV, and
the field was set to B=7 T. The measured values of the
Knight shifts for the pure system and their ¢ and T variations
were well reproduced if we assign a value 6=0.3 to the hole
concentration at optimal doping. Experimentally, optimal
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doping corresponds to 6=0.15 rather than 0.3. A plausible
reason which explains this difference is that we are using a
mean field decoupling. Nevertheless, with our choice of pa-
rameters, we get a value of the homogeneous ¢, [Eq. (4)]
extremely close to that determined in the framework of a
projected Gutzwiller scheme, where the doping is set to
0.16.22° As we pointed out, the large amplitudes of the
staggered moments near the impurity appear to correlate
with the ratios J/14i). Indeed, the observed reduction of #,
compared to the homogeneous case, for sites close to the
impurity, has two main impacts. One is to create an extended
effective scattering potential, and this enhances the weight of
the staggered Fourier component of the local paramagnetic
magnetizations m;. The other is to increase the magnetic
response,’’ since in a Stoner-like picture a larger value of
J/ti) brings the system locally closer to a magnetic phase.
It is noteworthy that in the range of dopings and tempera-
tures that we investigated, the smallest eigenvalue of M de-
creases as one decreases ¢ and is always more than one order
of magnitude smaller than the others, which are of order 1.
Since it is positive, this confirms that the induced magneti-
zation vanishes in zero field. Its smallness indicates a reso-
nant state, close to a transition to a bound state, but the
accuracy of the calculation does not allow one to make a
stronger statement. It also shows that in the absence of the
impurity, where G= G°, the only solution to Eq. (8) is s5,=0,
for all i. A numerical inspection of the sum over k in the
expression of M;; reveals that the dominant contribution is
obtained when k=i, and that the integration of this term over
 is proportional to 1/#(i).

In order to give a functional expression for the staggered
polarization, we have sought to fit the solution of Eq. (8)
with a form

= (= 1)l (T, 8 (r—> o i

s;i= (= D)™ s, (T, 9)f] 41.9) 8(q-r) (10)
for a site at position r;=(x;,y;) away from the impurity. The
factor g(q-r;)=0.5[cos(mgx;)+cos(mqy;)] allows us to in-
clude both commensurate (¢=0) and incommensurate solu-
tions. We found that the best fit to the data was obtained for
a commensurate modulation when we chose for f(x;,y;) the
(square) lattice version of the Bessel function K, normalized
to a nearest-neighbor distance (Fig. 2). This is not a form
which emerges analytically from the current theory, but
rather one motivated by rigorous theories for similar prob-
lems in one dimension.! Note that according to Ref. 28, apart
from the underdoped regime, m does not vary significantly
with 7, so one may use the above fitting form either for the s;
or for the (m;—m)/B.

The relative polarization s;(7) is well represented by a
Curie-Weiss form C/(T+®), as found in experiment. The
magnitude of s; is strongly enhanced compared to what we
would have found as a result of a standard Friedel oscillation
[the solution of Eq. (8) when one sets /=0 in the definition
of M;;]. Let us emphasize once again that these features are
direct consequences of the correlation term J/[#(i)] and that
they are strikingly similar with those found in one dimension
for the case of a nonmagnetic impurity.! Our analytical solu-
tion allowed us to determine C, O, and &, for 6=0.28, 0.3,
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FIG. 2. Normalized staggered magnetization s(r) =[m(r)—m]/m induced by a nonmagnetic impurity in the 7-t'-J model in the presence
of a magnetic field B of 7 T, where m is the magnetization of the homogeneous system induced by the field. (a) Normalized magnetization
|s| near impurity at 7=25 K for J/¢=0.22 and §=0.3. Solid line: Fit to |s(r)| % s(1)Ko(r/ &)/ Ky(1/€) for £=3. (b) T dependence of nearest-
neighbor normalized magnetization s, for the same parameters. (c) Effective moment C and Curie-Weiss temperature ® vs doping &. (d)

Correlation length & vs T extracted from the fit illustrated in (a).

and 0.32, and the results are summarized in the plots of
Fig. 2.

IV. FULLY SELF-CONSISTENT EVALUATION

One uncertainty in the above discussion involves the fact
that while the system with impurity is electronically inhomo-
geneous, the slave-boson constraint has only been enforced
globally. To check the accuracy of this approximation, we
perform real space exact diagonalization of Eq. (1), plus the
impurity potential (5), solved together with the self-
consistently determined local slave-boson amplitudes.!6-2°-3!
The primary effect of the constraint, which we now impose
locally, appears to be to slave the spatial variation of the
holon density to that of the spinons, and thus, eliminate the
unphysical free bosonic length scale. In fact, the effects of
correlations are generally mitigated, e.g., the normalized

staggered magnetization is also reduced relative to Fig. 2. We
find that the results of the fully self-consistent evaluation
appear to agree qualitatively with those of the semianalytic
approach, but for a smaller, more realistic doping scale.
Figure 3 shows the reduction of #; in the vicinity of the
impurity. It is qualitatively similar to that found using the
analytical approach (Fig. 1), but we notice differences be-
tween the two results. In the fully self-consistent calculation,
both the spinon bandwidth healing length—which has a
smaller value than that given by the analytical calculation—
and /(i) are temperature independent. This is a direct conse-
quence of the enforcement of the constraint. Holons are
slaved to spinons, and the spatial variations of Q;; and y;;
with r; depend on one single characteristic (renormalized
Fermi) energy. By contrast, in the analytical calculation, ho-
lons are treated as quasifree bosons and so the spatial varia-
tions of Q;; depend on kT, while those of y;; are set by the
spinon Fermi energy, which is proportional to the homoge-
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FIG. 3. (Color online) Spinon bandwidth in fully self-consistent
evaluation as a function of distance from the impurity site at filling
6=0.15 and T=100 K (filled squares) and 300 K (filled circles).
Bandwidth from semianalytical calculation at 6=0.3 and 100 K is
shown (open circles) for comparison.
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neous 7. For experimentally relevant temperatures, kg7 <1y,
and so the spatial variations of 74i) track mainly those of the
holons.

In Fig. 4, we show results of the full evaluation which
again reproduce the qualitative aspects of experimental NMR
results on Zn and Li impurities. In Fig. 4(a), we show the
magnetization on the nearest-neighbor site in an applied 7 T
field. The low-temperature upturn of this magnetization in-
creases in strength as the doping is lowered. It is important to
recall that in the mean field treatment of the homogeneous
system, there is a transition to long range antiferromagnetic
order as the temperature and filling are lowered. Thus, the
enhanced upturns reflect the approach to this mean field tran-
sition, the best the mean field theory can do to simulate the
gradual freezing of spin fluctuations in the underdoped
phases, as documented, e.g., by NMR, muon spin resonance
(uSR), and neutron scattering experiments.3?-40

In each case, the upturn of the (normalized) magnetization
on the nearest-neighbor site has been fit to a Curie-Weiss
form, shown in the figure. The doping dependence of the
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FIG. 4. (Color online) Results for fully self-consistent evaluation of magnetization from slave-boson equations. (a) Normalized magne-
tization s, on nearest-neighbor site as a function of T for values of doping & from 0.14 to 0.30. Solid lines show fits to s;=C/(T+0). (b)
Effective moment constant C and Curie-Weiss constant ® extracted from fits in (a) vs 8. (c) Experimental data from Refs. 1 and 28 showing
the magnetization (S.) vs distance from impurity r (inset) and correlation length & vs T extracted therefrom. (d) Temperature dependence of

extracted theoretical correlation lengths & vs T.
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FIG. 5. (Color online) Top: Magnetization in real space obtained
in fully self-consistent evaluation for 6=0.15, B=7 T, and T
=100 K. Bottom: Magnetization m cut through impurity site along
x direction.

prefactor C and the Weiss temperature ® are shown in Fig.
4(b), respectively. Two types of terms control the T depen-
dence of s;. One is the Friedel-like response found in a nor-
mal metal, which is quasi-7T-independent and, thus, gives a
constant s; for 7> 0. The other is the large, staggered re-
sponse caused by a local reduction of 7. It gives the main
contribution to s;, at intermediate T (larger than or compa-
rable to ). For the lower dopings, the proximity to a mag-
netic phase affects the small 7 behavior. These factors
modify the Curie-Weiss fit, and hence, the (5-dependent) val-
ues of C and . Experimentally,"?® ® and C are obtained
with sizable error bars near optimal doping, since ® varies
rapidly with & in that range. Despite these limitations, a quite
reasonable qualitative agreement is found between our re-
sults and those of Ref. 28 over the range of dopings where
our theory applies. Below optimal doping, the current theory
is not valid, since the pairing field which gives rise to the
pseudogap in slave-boson mean field is not present. As in the
semianalytical calculations, the ® scale is somewhat larger
than experiment around optimal doping; this may be due to
the small pseudogap present even at optimal doping, which
is absent from the present theory. The pseudogap, as the
superconducting gap itself, is known' to promote bound state
formation and enhance the Curie behavior found in under-
doped samples.

In Figs. 4(c) and 4(d), we show the spatial extent of the
magnetic droplet which forms around the impurity compared
with the results of Ref. 28; here, too, the agreement is fairly
good. We note, furthermore, that the length scale extracted
here is comparable with the antiferromagnetic correlation
length of the defect-free system,*'*> as found explicitly in
one-dimensional (1D) spin chains.! Finally, Fig. 5 shows the
actual distribution of moments m; on the various sites. Far
from the impurity, this distribution tends to a finite value,
since m;—my as r;— . As the temperature is lowered fur-
ther or the coupling J increased, the magnetization oscilla-
tions are enhanced further and the values on nearby sites of
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the same sublattice as the impurity actually take on negative
values (not shown), as observed in experiment.?®

The reasonable agreement that is found between the re-
sults of the semianalytical and numerical calculations (see
Figs. 1-4) and experiment suggests that our approach con-
tains key ingredients required to capture the physical mecha-
nism of moment formation and screening in correlated sys-
tems.

V. CONCLUSIONS

We have shown that a simple theory of a nonmagnetic
impurity in a correlated host described by the slave-boson
mean field representation of the #-#'-J model can explain the
basic features of the measured paramagnetic response of Zn
impurities in YBCO. This theory differs from earlier
approaches'>' in that it explicitly treats the correlations in
the strong-coupling limit, yet assumes a metallic host suit-
able for discussion of optimal doping. Our study provides the
first strong-coupling treatment capable of calculating the
field and temperature dependence of the induced moment in
the normal state, suitable for comparison to NMR experi-
ments. The calculated susceptibility is found to be much
stronger than the weak Friedel-like response expected for a
normal metal, due not only to the enhanced background den-
sity of states in the host, but also to local suppression of the
effective fermionic bandwidth around the impurity. Qualita-
tively, the impurity carves a hole around itself of size
roughly the pure AF correlation length, and the response is,
therefore, somewhat similar to that calculated earlier in mod-
els of the pseudogap state;'>!* nevertheless, the temperature
dependence is Curie-Weiss-like, rather than Curie-like, in
agreement with experiment. The doping dependence is also
found to be qualitatively in agreement with experiment, al-
beit with a renormalized doping scale. By utilizing a fully
numerical treatment of the inhomogeneous slave-boson
problem, we have shown that the need for this renormaliza-
tion arises primarily from an overestimation of the local
bandwidth suppression due to the global enforcement of the
slave-boson constraint, which leads to an unphysical bosonic
length scale. When the constraint is enforced locally, corre-
lations are weaker and closer agreement with the realistic
doping scale is obtained. The good qualitative agreement of
the results in this work with experiment suggests that the
screening of the moment reflected in the Curie-Weiss form of
the susceptibility, which is observed to rise steeply as the
system is doped, need not be due to many-body effects of
traditional Kondo type. Instead, it arises from the correlation
“hole” induced around the impurity by the Hubbard interac-
tion, and can be captured by relatively simple mean field
theories which ignore the spin-flip scattering which usually
leads to Kondo physics. The cross section for quasiparticles
scattered by the magnetic droplet created by the impurity is,
of course, different for spins up and down; it is, furthermore,
strongly 7" dependent due not to Kondo screening but to the
temperature dependence of the paramagnetic moment, as in
1D spin chains.
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In principle, the slave-boson approach is capable of cap-
turing the entire crossover of the induced moment in a cor-
related host problem, from the metallic regime to pseudogap
regime. To do this within a single formalism would be a
useful step toward understanding the effects of disorder on
the cuprate phase diagram, but requires the inclusion of pair-
ing effects. Work along these lines is in progress.
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