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We uncover a disorder-driven instability in the diffusive Fermi liquid phase of a class of many-fermion
systems, indicative of a metal-insulator transition of first-order type, which arises solely from the competition
between quenched disorder and interparticle interactions. Our result is expected to be relevant for sufficiently
strong disorder in d=3 spatial dimensions. Specifically, we study a class of half-filled, Hubbard-like models for
spinless fermions with �complex� random hopping and short-ranged interactions on bipartite lattices in d�2.
In a given realization, the hopping disorder breaks time-reversal invariance but preserves the special “nesting”
symmetry responsible for the charge density wave instability of the ballistic Fermi liquid. This disorder may
arise, e.g., from the application of a random magnetic field to the otherwise clean model. We derive a
low-energy effective field theory description for this class of disordered, interacting fermion systems, which
takes the form of a Finkel’stein nonlinear sigma model �FNL�M� �A. M. Finkel’stein, Zh. Eksp. Teor. Fiz. 84,
168 �1983� �Sov. Phys. JETP 57, 97 �1983���. We analyze the FNL�M using a perturbative, one-loop renor-
malization group analysis controlled via an � expansion in d=2+� dimensions. We find that in d=2 dimen-
sions, the interactions destabilize the conducting phase known to exist in the disordered, noninteracting system.
The metal-insulator transition that we identify in d�2 dimensions ���0� occurs for disorder strengths of order
�, and is therefore perturbatively accessible for ��1. We emphasize that the disordered system has no local-
ized phase in the absence of interactions, so that a localized phase and the transition into it can only appear due
to the presence of the interactions.
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I. INTRODUCTION

In many experimental situations, the effects of both static
�“quenched”� disorder and interparticle interactions may play
comparatively important roles. These issues have, for ex-
ample, come again to the forefront of debate in view of dis-
cussions centered around the fascinating yet still controver-
sial “metal-insulator transition” observed in two-dimensional
�2D� semiconductor inversion layers.1 Unfortunately, theo-
retical descriptions of quantum many-particle systems incor-
porating both disorder and interactions are typically quite
challenging and difficult to reliably analyze.

With this state of affairs in mind, in this paper, we apply a
powerful analytical technique, known as the Finkel’stein
nonlinear sigma model �FNL�M� formalism,2,3 to a model of
spinless lattice fermions subject simultaneously to both static
disorder and short-ranged interactions. The isolated effects of
disorder or interactions on the lattice model that we consider
are already well understood yet still nontrivial. Our goal is to
gain insight into the possible interplay between the Fermi
liquid, the Mott insulating, and what we term the
“Anderson–Mott”4 insulating phases of interacting many-
body Fermi systems in spatial dimensions d�2. The
FNL�M formalism admits a renormalization group analysis
controlled via an � expansion in d=2+� dimensions, permit-
ting us to address the following general questions within the
context of our model: In the simultaneous presence of both
disorder and interactions, �i� does a conducting phase occur
in d=2, and �ii� is there a metal-insulator transition �MIT� in
dimensions d�2? If yes, what is its nature?

The primary purpose of this paper is to present a detailed
derivation and a thorough discussion of results previously

announced briefly in Ref. 5. A short summary of these results
and an outline of this work appear below in Sec. I C.

A. Interactions and sublattice symmetry

We study a class of “Hubbard-like” models6 for spinless
fermions at half-filling on bipartite lattices, possessing short-
ranged interparticle interactions and quenched disorder. We
work in d�2 spatial dimensions throughout. For concrete-
ness, in this introduction, we consider the hypercubic lattice.
By definition, any bipartite lattice may be subdivided into
two interpenetrating sublattices, which we will distinguish
with the labels A and B. The d=2 dimensional example of
the square lattice is depicted in Fig. 1.

Our starting point is the clean �zero-disorder�, generalized
Hubbard-like Hamiltonian
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B

FIG. 1. The square lattice. Labels A and B denote sites belong-
ing to the black and blank square sublattices, respectively.
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H0 = − t�
�ij�

cAi
† cBj + H.c. + V�

�ij�
�n̂Ai�n̂Bj

+ U� �
��ii���

�n̂Ai�n̂Ai� + �
��j j���

�n̂Bj�n̂Bj�	 , �1.1�

where cAi
† and cBj are creation and annihilation operators for

spinless fermions on the A and B sublattices of the bipartite
lattice, respectively. Here, i and j index, respectively, the A
and B sublattice sites, and the sums on �ij� run over all
nearest-neighbor A-B lattice bonds, while the sums on ��ii���
and ��j j��� run over all next-nearest-neighbor �same sublat-
tice� pairs of sites. The homogeneous hopping amplitude t is
taken to be real. The operators �n̂A/B
�cA/B

† cA/B− 1
2 � denote

deviations of the local sublattice �A or B� fermion densities
from their value at half-filling. Finally, the interaction
strengths V and U appearing in Eq. �1.1� couple to nearest-
neighbor and next-nearest-neighbor density-density interac-
tions, respectively.

The model at half-filling, given by Eq. �1.1�, possesses the
following special symmetry, which we refer to here as “sub-
lattice” symmetry �SLS� �this symmetry is termed “chiral” in
the classification scheme of Ref. 7 �see also Refs. 8–18��: the
Hubbard-like Hamiltonian in Eq. �1.1� is invariant under the
transformation

cAi → cAi
† , cBj → − cBj

† , �1.2�

where we simultaneously complex conjugate all scalar terms
in the Hamiltonian. �This transformation, like that of time
reversal, is antiunitary. In the presence of time-reversal in-
variance �TRI�, SLS is equivalent to the usual particle-hole
symmetry.� As is well known, the Fermi surface19 of the
half-filled, noninteracting model, Eq. �1.1� with U=V=0,
possesses perfect “nesting,”

��k + KN� = − ��k� , �1.3�

where ��k� is the noninteracting band structure, and KN is a
nesting wave vector. For the hypercubic lattice with lattice
spacing a=1, KN takes the form

KN 
 	�n1,n2, . . . ,nd� , �1.4�

where the numbers ns= 
1, with s� �1, . . . ,d�. Figure 2 de-
picts the Brillouin zone �BZ� associated with the square lat-
tice shown in Fig. 1. The set of nesting wave vectors �KN�
defined in Eq. �1.4� span the sublattice Brillouin zone �sBZ�,
appropriate to the A and B sublattices of the composite bi-
partite lattice. For the special case of the square lattice, the
boundary of the sBZ also serves as the Fermi line at half-
filling, shown in Fig. 2.

Nesting and SLS are tied together. Under the transforma-
tion given by Eq. �1.2�, the hopping part of the Hamiltonian
in Eq. �1.1� transforms as



BZ

ddk

�2	�d��k�ck
†ck → 


BZ

ddk

�2	�d�*�k�ck−KN
ck−KN

†

= 

BZ

ddk

�2	�d �− ��k + KN��ck
†ck,

�1.5�

where KN is a nesting wave vector as in Eq. �1.4�, and

ck 
 �
i�A

e−ik·RicAi + �
j�B

e−ik·RjcBj . �1.6�

Fermi surface nesting is, in a sense, the defining property
of Hubbard-like models for interacting lattice fermions in d
�2 dimensions. It is the nesting condition which makes the
ballistic Fermi liquid phase at half-filling in such models
unstable to Mott insulating order in the presence of generic,
arbitrarily weak interparticle interactions.22–24 Nesting insta-
bilities can occur for microscopically repulsive interparticle
interaction strengths and arise through the exchange of the
nesting momenta �KN� through the particle-hole channel of
these interactions. Such models may also exhibit the BCS
superconducting instability,25 which exists for any TRI Fermi
liquid with �effectively� attractive pairing interactions. The
ground state of such a half-filled, Hubbard-like model with
weak but nonvanishing interactions is typically a Mott insu-
lator, with lattice translational symmetry spontaneously bro-
ken at the nesting wavelength, a superconductor, or a mixture
of these, such as a “supersolid.”22,24,26,27

A simple calculation23 using the random phase approxi-
mation �RPA� predicts that the Fermi liquid phase of the
�nondisordered� model defined by Eq. �1.1� is unstable to
charge density wave �CDW� order for any V�U�0. The
CDW state is a Mott insulator, in which a greater proportion
of the fermion density resides on one sublattice than on the
other. For the 2D case of the square lattice, the RPA calcu-
lation predicts a transition to the CDW state at a temperature

Tc � 2t exp�− 	� t

V − U
� �1.7�

in the weak coupling limit 0�U�V� t. Alternatively, a
one-loop renormalization group �RG� calculation,24 per-

FIG. 2. BZ associated with the square lattice shown in Fig. 1.
The shaded subregion is the sBZ appropriate to the A and B sublat-
tices. This subregion also indicates the Fermi sea at half-filling, an
attribute particular to the square lattice model. The nesting wave
vectors K1 and K2 are reciprocal lattice vectors for the sBZ.
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formed on a low-energy effective field theory description of
the model given by Eq. �1.1�, shows that the effective CDW
interaction strength, which we define here as

Wc �
1

2
�U − V� �1.8�

�corresponding to a staggered charge density�, grows to large
negative values under renormalization if its initial value
Wc

�0��0, i.e., was negative to begin with. This run off to
strong interaction coupling is taken to signal the onset of
CDW formation.28 These and analogous results regarding the
Néel ground state of the half-filled, spin-1 /2 Hubbard model
in d�2 are well established, and the latter have been further
confirmed with extensive numerical work. �See, e.g., Refs.
22, 27, and 29.� The spinless Hubbard-like Hamiltonian in
Eq. �1.1�, on the other hand, has received less attention in the
numerical literature; early Monte Carlo studies23 of the 2D
version of this Hamiltonian, with U
0, show the existence
of a CDW ground state for positive V but were unable to
access the weak coupling limit V→0+.

B. Quenched disorder

Now, we turn to the incorporation of quenched �static�
disorder into the model given by Eq. �1.1�. First, note that the
addition of on-site �or “diagonal”� randomness, characterized
by a strength 
D, breaks sublattice symmetry �Eq. �1.2�� in
every realization of disorder. Thus, turning on diagonal dis-
order is expected to destroy the CDW ground state,30,31 at
least for sufficiently weak interactions. �By keeping the dis-
order strength 
D fixed, for example, we expect the absence
of zero temperature CDW order in a window of �small� in-
teraction strengths, e.g., for 0�V�Vc�
D�, with U=0.� The
proximity of a Mott insulating phase to the noninteracting
�ballistic� Fermi liquid is the most essential characteristic of
the Hubbard-like lattice model defined in Eq. �1.1�. We con-
clude that this characteristic is lost upon the incorporation of
diagonal disorder. Studies of Hubbard-like models subject to
diagonal disorder include those listed in Refs. 30–32 and
Refs. 33–35 for spinless and spin-1 /2 lattice fermions, re-
spectively.

Instead, we consider the Hamiltonian in Eq. �1.1�, weakly
perturbed by purely “off-diagonal” randomness, which is
taken to occur only in the intersublattice hopping amplitudes.
Such a model is invariant under the SLS transformation �Eq.
�1.2�� for each and every static realization of the disorder. We
consider complex random �nearest-neighbor� hopping that
breaks TRI. �Without interactions, the model is in the chiral
symmetry class AIII of Ref. 7.� The full lattice Hamiltonian
is given by H=H0+�H, where H0 was defined in Eq. �1.1�,
and

�H = − �
�ij�

�ti,jcAi
† cBj + H.c. �1.9�

Here, the random part of the hopping matrix element, �ti,j, is
taken to be a Gaussian complex random variable with zero
mean, independent on different lattice links. For our system
of spinless fermions, this is consistent with the application of
a random magnetic field to the otherwise clean model. For

noninteracting spin-1 /2 fermion systems, with nearest-
neighbor hopping on bipartite lattices at half-filling, in ran-
dom orbital and/or Zeeman magnetic fields, a general classi-
fication is �briefly� mentioned in Sec. II B, with more details
being provided in Appendix B. We will conclude from this
classification that the results of this paper also apply to a
related Hubbard-like model of spin-1 /2 fermions, subject to
an orbital magnetic field and to �homogeneous or random�
spin-orbit coupling. Independent work on the effects of in-
terparticle interactions on these and several other classes of
disordered spin-1 /2 fermions has very recently appeared in
Ref. 36.

Our principal motivation for studying the model in Eqs.
�1.1� and �1.9� is that, due to the presence of SLS, we expect
both disorder and interparticle interactions to play important
roles in the description of the low-energy physics. Because
random hopping preserves the special SLS, our disordered
model retains the nesting CDW instability of the associated
clean system. This instability can therefore compete with the
unusual localization physics arising from SLS in the disor-
dered but noninteracting model �see below�. The further as-
sumption of broken TRI guarantees that we do not have to
confront an additional superconducting instability.3,22–24,37

We note that the effects of hopping disorder on the Néel
ground state of the �slightly more complex� spin-1 /2 Hub-
bard model at half-filling were studied numerically in Refs.
38 and 39, although these studies were limited to d=2.

A second motivating factor is that, interestingly, and as
alluded to above, the presence of SLS radically changes the
localization physics of the disordered, noninteracting random
hopping model �Eqs. �1.1� and �1.9� with V=U=0�. SLS
enables the random hopping model �RHM� to evade the phe-
nomenon of Anderson localization. Specifically, the noninter-
acting system exhibits a critical, delocalized phase at the
band center �half-filling� in one, two, and three dimensions
for finite disorder strength, with a strongly divergent low-
energy density of states �DOS� in d=1,2.8–17 In particular,
there is no MIT and no Anderson insulating phase in d=3 �in
the absence of interactions�. The essential features of random
hopping model physics are summarized in Figs. 3 and 4.
These figures apply, for example, to spinless lattice fermions
with sublattice symmetry, with or without TRI �classes BDI
and AIII, respectively�,7 in d�2. Upon approaching the band
center ��=0� in two dimensions, both the density of states
���� and the localization length ���� strongly diverge, as
indicated in Fig. 3. By contrast, RHMs in d�2 support a
diffusive metallic phase,9,12 characterized by a band of delo-
calized states with energies �����c, represented by the
shaded regions in Fig. 4. ��= 
�c are particle and hole mo-
bility edges.� While �c is expected to decrease monotonically
with increasing disorder, as indicated by the arrows along the
dashed boundaries of the shaded region in Figs. 4�a� and
4�b�, it is believed that in d�2, there always remains a re-
gion of delocalized states of finite thickness in energy, cen-
tered around �=0, for any finite disorder strength in a non-
interacting system with SLS.

Indeed, random hopping models have been of significant
theoretical interest in the recent past both because of the
unusual delocalization physics described above and also be-
cause these models have proven amenable to a variety of
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powerful analytical techniques in d�2, with many exact
and/or nonperturbative features now understood.8,13,15,17 This
situation should be contrasted with our understanding of the
conventional noninteracting �“Wigner–Dyson”� MIT, which
is based largely on perturbative analytical results in d�2
using the � expansion.40

C. Summary of results and outline

In this work, we analyze the stability of the diffusive
Fermi liquid phase of the Hubbard-like model defined by
Eqs. �1.1� and �1.9� in the simultaneous presence of both
disorder and interactions. We derive a low-energy, con-
tinuum field theory description of this system, which takes
the form of a �class AIII�7 FNL�M.2,3 We employ the
Schwinger–Keldysh41 method in order to ensemble average
over realizations of the hopping disorder. The FNL�M con-
tains parameters which specify the random hopping disorder
and the interparticle interaction strengths. We compute the
one-loop renormalization group flow equations for these pa-
rameters using a Wilsonian frequency-momentum shell back-
ground field methodology.2 We then discuss the physics of
our model in �i� d=2 and �ii� d�2 dimensions. We now
briefly summarize our results:

For the 2D case, we find that the conducting phase of the
disordered, noninteracting system is destabilized by the in-
teractions. By contrast, such a phase, a metallic “diffusive
Fermi liquid,” does exist �trivially� in d�2; we identify what
we call an Anderson–Mott disorder-driven instability of this
metallic diffusive Fermi liquid. This instability arises solely
from the competition between disorder and short-ranged in-
teractions and is perturbatively controlled via an � expansion
in d=2+�. The instability that we find is indicative of a
first-order MIT; it occurs for disorder strengths of order �,
and is therefore perturbatively accessible for ��1. We ex-
pect our result to be relevant for the Hubbard-like model in
Eqs. �1.1� and �1.9� in three spatial dimensions ��=1� for
sufficiently strong disorder, and we stress that this Anderson–
Mott instability is clearly distinct from the pure Mott nesting
instability, which is driven solely by interactions �and not by
disorder�, although the latter also appears in the phase dia-
gram of our model �see Fig. 23�. The noninteracting random
hopping model, Eqs. �1.1� and �1.9� with V=U=0, has no
localized phase with disorder in the absence of interactions
�see, e.g., Sec. V A 1�; therefore, a localized phase can only
appear due to the presence of the interactions. The discovery
of this disorder-driven, interaction-mediated diffusive Fermi
liquid instability was previously announced in Ref. 5. In this
paper, we present a derivation of this result, a detailed analy-
sis of the phase diagram of the model, and we discuss our
findings in view of previously known results for other related
disordered and interacting fermion systems.

We note that the � expansion is employed in this work as
a technical tool in the continuum FNL�M description and
should be thought of as a controlled approximation scheme
to access the physics of the disordered, interacting Hubbard-
like Hamiltonian in Eqs. �1.1� and �1.9� in three dimensions.
Clearly, we cannot easily define a bipartite lattice fermion
model in a fractional number of d=2+� dimensions; instead,
we work with a continuum field theory, the FNL�M, argued
to capture the low-energy physics of the lattice model in both
two dimensions ��=0� and three dimensions ��=1�, whose
internal structure is constrained by the crucial SLS �Eq.
�1.2��. The field theory action of the continuum FNL�M
�displayed in Eqs. �2.48�–�2.51�, Sec. II A 4� can be analyti-
cally continued between integer dimensions in the usual way.
The internal structure of the FNL�M, and thus SLS, is pre-

0

(a)

0

(b)

FIG. 3. Features of RHM physics in two dimensions in the
absence of interparticle interactions. �a� and �b� depict the qualita-
tive energy ��� dependence of the density of states � and inverse
localization length 1 /�, respectively, in the chiral �Ref. 7� orthogo-
nal �BDI� and unitary �AIII� class RHMs in d=2. Both � and �
diverge upon approaching the band center, taken to occur at �=0
�Refs. 9, 12, and 13�.

0 cc-

(a)

0 cc-

(b)

FIG. 4. Same as Fig. 3 but for spatial dimensionalities d�2,
e.g., noninteracting random hopping model physics in three dimen-
sions. Here, the shaded area represents a band of extended �delo-
calized� states; �c is the mobility edge. Increasing the strength of
the random hopping disorder narrows the region of extended states
in d�2, as indicated by the arrows in �a� and �b�. The DOS is finite,
albeit parametrically enhanced at the band center �Refs. 9 and 12�.
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served under this continuation; it is SLS then that gives
meaning to such an interpolation between lattice models in
disparate integer dimensions. The Anderson–Mott instability
of the diffusive Fermi liquid identified in this work occurs
for perturbatively accessible, weak disorder strengths only
for ��1, i.e., in 2�d�3. We conjecture that this instability
also exists in the three-dimensional �3D� FNL�M, and
should therefore be found �i.e., via numerics� in the 3D
Hubbard-like lattice fermion model. This conjecture cannot
be directly proven here since the instability of the 3D
FNL�M, if it exists, would occur in the strong coupling re-
gime.

The organization of this paper is as follows.
In Sec. II, we formulate a Schwinger–Keldysh41 path in-

tegral representation for the lattice model given by Eqs. �1.1�
and �1.9�; we then derive the low-energy, continuum
FNL�M description. The technical content of our work ap-
pears in Secs. III and IV. We set up our one-loop, frequency-
momentum shell renormalization group calculation in Sec.
III, specifying the parametrization of the FNL�M and stating
the necessary diagrammatic Feynman rules. The actual one-
loop calculation is chronicled in Sec. IV. We analyze and
discuss our results in Sec. V. The reader less interested in
calculational details may skip Secs. III and IV entirely and
proceed from the end of Sec. II directly to Sec. V.

A variety of elaborations, extensions, and technical details
are relegated to the Appendixes. In Appendix A, we relate
the structure of the continuum FNL�M to that of the nonin-
teracting random hopping model �Eqs. �1.1� and �1.9�, with
U=V=0� via a symmetry analysis. Appendix B describes the
random matrix symmetry classification �along the lines of
Ref. 42� of disordered, bipartite lattice models for spin-1 /2
electrons. �See also Sec. II B.� Appendix C provides a sur-
prising alternative interpretation of the class AIII Finkel’stein
NL�M, studied in this paper, in terms of the spin-1 /2 qua-
siparticles of a spin-triplet, p-wave superconductor. This qua-
siparticle system may be defined directly in the continuum,
without reference to a “microscopic” lattice model or an ad-
ditional sublattice symmetry. Finally, Appendix D collects
the loop integrals required in the RG calculation presented in
Sec. IV.

II. FINKEL’STEIN NONLINEAR SIGMA MODEL
FORMULATION

In this section, we derive the class AIII FNL�M descrip-
tion of the Hubbard-like lattice model given by Eqs. �1.1�
and �1.9� using the Schwinger–Keldysh41 method to perform
the disorder averaging. The results of the derivation are pro-
vided below in Eqs. �2.48�–�2.50� and interpreted in the dis-
cussion following these equations.

A. Class AIII Finkel’stein nonlinear sigma model

1. Schwinger–Keldysh path integral

To begin, we envisage a zero temperature,
�d+1�-dimensional real time-ordered �T-ordered� path inte-
gral ZT for the model defined in Eqs. �1.1� and �1.9�. As
usual, we need to normalize this path integral to unity in

order to perform the ensemble average over realizations of
the hopping disorder. We employ the Schwinger–Keldysh
�Keldysh� method,41 which exploits the identity 1 /ZT=ZT̄,

where ZT̄ is an anti-time-ordered �T̄-ordered� path integral for
the same model. We write the Keldysh generating function41

Z 
 ZTZT̄ =
 Dc̄Dcei�S1+S2�, �2.1�

where the noninteracting action is given by

S1 = �
a=1,2

�a
 d���
�ij�

ti,jc̄Ai
a ���cBj

a ��� + H.c.

+ �
i�A

c̄Ai
a ����� + i�a� sgn����cAi

a ���

+ �
j�B

c̄Bj
a ����� + i�a� sgn����cBj

a ���	 , �2.2�

with ti,j 
 t+�ti,j. The interactions reside in

S2 = �
a=1,2

�a
 dt�− V�
�ij�

nAi
a �t�nBj

a �t� − U �
��ii���

nAi
a �t�nAi�

a �t�

− U �
��j j���

nBj
a �t�nBj�

a �t�	 . �2.3�

The generating functional defined by Eq. �2.1� is an integral
over the Grassmann fields c̄iA

a , ciA
a , and c̄jB

a , cjB
a , defined on the

A and B sublattices of the bipartite lattice. In Eqs. �2.2� and
�2.3�, indices �i , i�� and �j , j�� label A and B sublattice sites,
respectively, while the “Keldysh” species index a�1,2 de-

notes the T-ordered �a=1� and T̄-ordered �a=2� branches of
the theory. The number �a takes the values

�a = � 1, a = 1 �T ordered�

− 1, a = 2 �T̄ ordered� .
� �2.4�

The factors i�a� sgn��� in Eq. �2.2� are frequency integra-

tion pole prescriptions appropriate to T- and T̄-ordered cor-
relation functions, with �→0+. Finally, the density fields in
Eq. �2.3� are defined via nAi/Bj

a �t�
 c̄Ai/Bj
a �t�cAi/Bj

a �t�.43

The FNL�M that we are after is a matrix field theory; it
therefore makes good sense to introduce a compactifying
matrix notation at this early stage. We think of the field cAi/Bj
�c̄Ai/Bj� as a column �row� vector with a single “superindex,”
which is a direct product of frequency ��� and Keldysh �a�
indices: e.g., cAi→cAi

a ���. In the Keldysh formalism, it is
often useful to further divide frequency into a product of
�discrete� sign and �continuous� modulus spaces: �
= ���sgn���. Next, we introduce two commuting sets of Pauli

matrices: the matrix �̂m acts in the sgn��� space, while the

matrix �̂n acts in the Keldysh species �T / T̄� space, with
m ,n� �1,2 ,3�. By employing the conventional basis for

all Pauli matrices, we identify �̂3→sgn ���,���
a,a� and

�̂3→�a��,���
a,a�, with ��,��
2	���−���. Finally, we de-

fine the single-particle energy matrix �̂
��̂��̂3, with
��̂�→ �����,���

a,a�.
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We make a change of variables c̄Ai/Bj→ c̄Ai/Bj�̂3 and re-
write the noninteracting sector �Eq. �2.2�� of the Keldysh
action as

S1 
 S1
0 + �S1. �2.5�

The clean bipartite hopping model appears in the term

S1
0 = 


sBZ

ddk

�2	�d��c̄Ak c̄Bk��i��̂3�̂3 − ��k�

− ��k� i��̂3�̂3

��cAk

cBk
�

+ �c̄Ak c̄Bk���̂3��̂� 0

0 �̂3��̂�
��cAk

cBk
�	 �2.6�


 c̄��̂3��̂� + i��̂3�̂3 − �̂1��k̂��c . �2.7�

The momentum integration in Eq. �2.6� is taken over the
sBZ; ��k� is the clean energy band structure.44 Equation
�2.7� gives the most compact representation that we will use
for the clean, noninteracting action. Here, we have intro-
duced a third set of Pauli matrices, �̂m, m� �1,2 ,3�, acting
in the sublattice flavor �A ,B� space, and we have also pro-

moted momentum to an operator, k→ k̂. The column vector
c carries indices in the momentum k, mod energy ���, sgn���
���, sublattice flavor ���, and Keldysh ��� spaces, i.e., c
→cA/Bk

a ��� with all indices displayed. The disorder is rel-
egated to the perturbation

�S1 = �
�ij�

�c̄Ai�ti,jcBj + c̄Bj�t
i,j
* cAi� . �2.8�

2. Disorder averaging and Hubbard–Stratonovich
decoupling

We now ensemble average over realizations of the com-
plex random hopping amplitudes ��ti,j� appearing in Eq.
�2.8�. In order to simplify the derivation of the FNL�M, we
employ the following artifice: we assume that of the zc
nearest-neighbor bonds surrounding a given site i belonging
to the A sublattice of the bipartite lattice under study, only
one such bond is disordered. �zc is the coordination number.�
We further assume that the same type of bond �specified by
its orientation� is made random at each and every A site, thus
allowing a unique, orientationally homogeneous pairing
�dimer covering� of the A and B sublattice sites of the bipar-
tite lattice. An example of such a pairing is provided for the
square lattice in Fig. 5. This seemingly pathological con-
straint on the disorder distribution allows for the quickest
derivation of the low-energy effective field theory.

With such a pairing established between each A sublattice
site i and its associated B sublattice site j�i�, we have

�ti,j = ��ti,j�i�, j = j�i�
0, j � j�i� .

� �2.9�

We take the “dimerized” bond amplitudes ��ti,j�i�� to be
Gaussian random variables, independent on different nearest-
neighbor lattice links �ij�i��, and identically distributed with
the following purely real mean and variance:

�ti,j�i� = �tdim �2.10�

and

�t
i,j�i�
* �ti,j�i� = 
�m�, �2.11�

respectively. The overbars in Eqs. �2.10� and �2.11� denote
disorder averaging. Although we will be ultimately interested
in the limit of zero mean bond dimerization, it will prove
convenient in the interim to retain �tdim�0. The superscript
“�m�” appearing on the right-hand side of Eq. �2.11� stands
for microscopic, indicating that the quantity 
�m� is defined at
the lattice scale. Using Eqs. �2.8�–�2.11�, we define the
disorder-averaged action �S1 via

ei�S1 

 �D�t�2 exp� − 1


�m� �
i�A

��ti,j�i� − �tdim�2 + i�S1�
= exp�
�m�

2 �
i�A

Tr�Âi
2� + i�Sdim	 , �2.12�

with

Âi 
� 0 Âi

Âj�i�
† 0

� =
�̂1 + i�̂2

2
Âi +

�̂1 − i�̂2

2
Âj�i�

† ,

�2.13�

where we have defined

Âi → Ai�,��
a,a� 
 cAi

a ���c̄Ai
a����� , �2.14a�

Âj�i�
† → Aj�,��

†a,a� 
 cBj
a ���c̄Bj

a����� . �2.14b�

In Eq. �2.12�, Tr denotes a matrix trace over indices in the
sublattice flavor ���, frequency ���, and Keldysh ��� spaces.

The field Âi, introduced in Eq. �2.12�, is a matrix of fermion
bilinears; Eq. �2.13� details the sublattice flavor space de-

composition of Âi in terms of the purely off-diagonal Pauli
matrices �̂1 and �̂2. Although they occupy the off-diagonal

blocks of Âi, the fields Âi and Âj�i�
† actually describe fermion

degrees of freedom residing entirely on the A and B sublat-

tices, respectively, as shown in Eqs. �2.14a� and �2.14b�. Âi

and Âj�i�
† each carry frequency �� ,��� and Keldysh species

FIG. 5. Homogeneous pairing �dimer covering� of nearest-
neighbor sites on the square lattice.
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�a ,a�� indices. Finally, a nonzero mean bond dimerization
�tdim �Eq. �2.10�� gives rise to the following homogeneous
term in Eq. �2.12�:

�Sdim = �tdim�
i

�c̄AicBj�i� + c̄Bj�i�cAi�

= − c̄��̂1�R�k̂� + �̂2�I�k̂��c . �2.15�

The second line of Eq. �2.15� expresses �Sdim in momentum
space; here, we have adopted the same compact notation
employed in Eq. �2.7�. The functions �R�k� and �I�k� in Eq.
�2.15� are real and imaginary components of the “dimeriza-
tion” function

�R�k� + i�I�k� 
 − �tdimeik·n. �2.16�

In this equation, n is a unit vector pointing in the direction
determined by the chosen bond dimerization �see Eqs. �2.9�
and �2.10� and Fig. 5�.

We have adopted a suggestive notation in Eqs. �2.14a� and

�2.14b� to denote the pure sublattice fields Âi and Âj�i�
† . Con-

sider the following spatially uniform deformation of these
fermion bilinears:

Âi → ÛAÂiÛB
† , Âj�i�

† → ÛBÂj�i�
† ÛA

† , �2.17�

where ÛA and ÛB are independent unitary transformations in
��� � � � � �frequency � Keldysh� space:

ÛA
†ÛA = ÛB

†ÛB = 1̂�������. �2.18�

The transformation in Eq. �2.17� is clearly a symmetry of the
disorder-averaged action �S1, as can be seen from Eqs.
�2.12�–�2.15�. In fact, there is a direct relationship between
this transformation and the symmetry structure of the nonin-
teracting Keldysh action �Eqs. �2.7� and �2.8�� in every fixed
realization of the static disorder; the connection is articulated
in Appendix A. Equation �2.17� suggests that we may regard

Âj�i�
† as the “Hermitian adjoint” of its associated nearest

neighbor Âi, justified on length scales much larger than the

lattice spacing. The identification Âj�i�
† � Âi

† implies the Her-

miticity of the composite matrix field in Eq. �2.13�: Âi
†

�Âi.
Next, we decouple all four fermion terms appearing in the

disorder-averaged and interacting sectors of the theory with
bosonic Hubbard–Stratonovich fields. In the disorder-
averaged sector �Eq. �2.12��, we write

exp�
�m�

2 �
i�A

Tr�Âi
2�	

=
 DQ̂ exp��
i�A

Tr� − 1

2
�m�Q̂i
2 + Q̂iÂi�	 .

�2.19�

The matrix field Q̂i is taken to be Hermitian and purely off-
diagonal in sublattice flavor space, i.e.,

Q̂i 
� 0 Q̂i

Q̂j�i�
† 0

� =
�̂1 + i�̂2

2
Q̂i +

�̂1 − i�̂2

2
Q̂j�i�

† ,

�2.20�

with

Q̂i → Qi�,��
a,a� , Q̂j�i�

† � Q̂i
† → Qi�,��

†a,a� . �2.21�

�Compare Eqs. �2.13�, �2.14a�, and �2.14b�.�
Turning to the interacting sector, we rewrite Eq. �2.3� as

S2 = − �
a=1,2

�a

2

 dtNTa�t�X̂Na�t� , �2.22�

where the superscript “T” denotes the matrix transpose op-
eration, and

X̂ 
 � Ux̂ Vŷ

VŷT Ux̂
� �2.23�

is a matrix in sublattice flavor space ���, with elements in-
volving the position space coupling functions x̂ and ŷ �de-
fined below�, while the fermion sublattice densities are en-
coded in the vector

Na�t� → �nA
a�t�

nB
a�t�

� . �2.24�

We have suppressed all position space indices in Eqs.
�2.22�–�2.24�. In Eq. �2.23�, the function ŷ→yi,j �x̂→xi,i��
equals unity for pairs of nearest-neighbor �next-nearest-
neighbor� lattice sites �i , j� ��i , i��� and vanishes otherwise.
Now, we decouple

eiS2 =
 D� exp� �
a=1,2

i
 dt� �a

2
�Ta�t�X̂−1�a�t�

+ �Ta�t�Na�t��	 , �2.25�

where

�a�t� → ��A
a�t�

�B
a�t�

� . �2.26�

Again, we have suppressed all position space indices in Eqs.
�2.25� and �2.26�.

3. Saddle point and gradient expansion

Gathering together the homogeneous hopping �Eq. �2.7��,
mean bond dimerization �Eq. �2.15��, disorder-averaged �Eq.
�2.19��, and interacting �Eq. �2.25�� pieces of our theory, we
perform the Gaussian integral over the fermion fields and
finally arrive at the following effective field theory:

Z =
 DQ̂D� exp�− SQ − S� − SDET� , �2.27�

where
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SQ =
1

2
�m� �
i�A

Tr�Q̂i
2� , �2.28�

S� = �
a=1,2

− i�a

2

 dt�Ta�t�X̂−1�a�t� , �2.29�

and

SDET = − Tr�ln�G0
−1 + i�̂1Q̂ + ��� . �2.30�

The trace in Eq. �2.30� is performed over indices in the po-
sition, sublattice flavor ���, mod energy ���, sgn��� ���, and
Keldysh species ��� spaces. The operator G0

−1 in Eq. �2.30�
represents the inverse of the �Keldysh� single-particle Green
function for the clean, noninteracting hopping model de-
scribed by Eq. �2.7�, incorporating, in addition, the mean
bond dimerization from Eq. �2.15�:

G0
−1 = �̂3��̂� + i��̂3�̂3 − �̂1���k̂� + �R�k̂�� − �̂2�I�k̂� .

�2.31�

The functions �R and �I are real and imaginary parts of the
dimerization function defined by Eq. �2.16�.

We look for a spatially homogeneous saddle point solu-
tion to the action given by Eqs. �2.28� and �2.30� in terms of

the matrix field Q̂, with �=�R=�I=0 in Eqs. �2.30� and
�2.31� �i.e., ignoring the interparticle interactions and consid-
ering the limit of zero mean bond dimerization�. In the low-
energy and long-time limit ���→0, the structure of the
saddle point solution is determined by the pole prescription
piece �the term proportional to �� in Eq. �2.31�. We make the
standard ansatz

Q̂SP 

1

2�
�̂1�̂3�̂3, �2.32�

with � the elastic scattering lifetime due to the disorder.
Then, the saddle point condition reduces to the usual self-
consistent Born approximation �SCBA� for the elastic decay
rate 1 /�:

1


�m� = 

sBZ

ddk

�2	�d��2�k� +
1

�2��2�−1

. �2.33�

For the 2D case of the square lattice �with its concomitant
van Hove singularities at half-filling�, Eq. �2.33� gives

1

2�
�


�m�

2	t
ln� t2


�m�	 �2.34�

in the weak disorder limit 
�m�� t2.
Next, we consider fluctuations about the saddle point so-

lution given by Eq. �2.32�. Dominant within the diffusive
metallic phase are the long-wavelength, low-energy Gold-
stone �diffusion� modes that preserve the saddle point norm
1 /2�. These modes are generated by applying a slowly spa-
tially varying generalization of the symmetry transformation

in Eqs. �2.17� and �2.18� to Q̂SP. �See also Appendix A.� In
terms of the sublattice flavor space decomposition �Eq.
�2.20��, we define

Q̂�r� 

�̂1 + i�̂2

4�
Q̂�r� +

�̂1 − i�̂2

4�
Q̂†�r� , �2.35�

where

Q̂�r� = ÛA�r�Q̂SPÛB
†�r� , �2.36a�

Q̂†�r� = ÛB�r�Q̂SPÛA
†�r� , �2.36b�

and

Q̂SP = �̂3�̂3. �2.37�

Alternatively, we note that Eqs. �2.18�, �2.36a�, �2.36b�, and
�2.37�, imply the unitary constraint

Q̂†�r�Q̂�r� = 1̂�������. �2.38�

Our FNL�M will therefore be a field theory of the unitary

matrix Q̂�r�→ Q̂�,��
a,a� �r�.

Finally, we assemble the action for the FNL�M from the
components given by Eqs. �2.28�–�2.30�. The unitary con-
straint �Eq. �2.38�� renders SQ in Eq. �2.28� an irrelevant
constant, so we concentrate on SDET in Eq. �2.30�. By keep-
ing only the most relevant terms in a gradient expansion, one
obtains

SDET � i2�
 ddr Tr„��̂3��̂� + i��̂3�̂3��Q̂†�r� + Q̂�r��…

+ �2v̄F��2
 ddr Tr„�Q̂†�r� · �Q̂�r�… + SDET
dim + SI,

�2.39�

where the terms SDET
dim and SI are defined below in Eqs. �2.40�

and �2.45�, respectively. Here, v̄F is the average Fermi veloc-
ity �at half-filling�, while the elastic scattering lifetime � is
determined by the SCBA �Eq. �2.33��.

The second term on the second line of Eq. �2.39� is a
perturbation arising from the presence of a nonzero mean
bond dimerization �tdim�0 �Eq. �2.10��:

SDET
dim 
 c

�tdim

t

 ddr Tr�Q̂†�r� � Q̂�r�� · n , �2.40�

where the unit vector n, originally introduced in Eq. �2.16�,
specifies the orientation of the mean bond dimerization and c

is a constant.
Consider the local vector operator

i � ��r� 
 Tr�Q̂†�r� � Q̂�r�� , �2.41�

where ��r� is the U�1� phase of the unitary matrix field

Q̂�r�. Equation �2.40� implies that i���r� provides a coarse-
grained measure of the local bond dimerization, i.e., of the
orientation of the strongest nearest-neighbor hopping bonds
within a neighborhood of size of the elastic scattering length,
in the sublattice symmetric random hopping model.

Given this interpretation, we can generalize Eq. �2.40� to
the case of a perturbation involving a static random vector
field n→ndim�r�:
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SDET
dim →
 ddr Tr�Q̂†�r� � Q̂�r�� · ndim�r� . �2.42�

In Eq. �2.42�, ndim�r� is taken to vary in both orientation and
magnitude and represents long-wavelength, quenched orien-
tation fluctuations in the bond strength dimerization of the
random hopping. Since Eq. �2.42� is consistent with the sub-
lattice symmetry of the underlying lattice model, its effects
should be included in the low-energy effective theory on the
grounds of universality.

We take ndim�r� to be a Gaussian random variable of van-
ishing mean, delta function correlated with the variance

ndim
i �r�ndim

j �r�� = 
A�i,j��d��r − r�� . �2.43�

Using Eqs. �2.42� and �2.43�, we define the disorder-
averaged action SDET

dim via45

e−SDET
dim



 Dndim exp� − 1

2
A

 ddr ndim

2 �r� + SDET
dim �

= exp�
A

2

 ddr�i � ��r��2	 , �2.44�

where the operator i�� was defined in Eq. �2.41�. In the
low-energy effective field theory, then, the random hopping
is characterized by the two parameters 
�m� �Eq. �2.11�� and

A �Eq. �2.43��; the former sets the elastic scattering lifetime
and the conductance,9,12,13 and therefore reflects the micro-
scopic structure of the random hopping up to small distance
scales of order of the Fermi wavelength �responsible for elas-
tic backscattering events involving large crystal momentum
transfers�, while the latter characterizes the orientational
fluctuations of the random hopping at larger distance scales
�of order of the mean free path�.

The last term on the second line of Eq. �2.39� is due to the
interactions and is given by

SI 
 i2� �
a=1,2


 dtddr��A
a�t,r�Qt,t

a,a�r� + �B
a�t,r�Qt,t

†a,a�r�� .

�2.45�

Using Eq. �2.29�, we can now perform the Gaussian integral
over the auxiliary field �, leading to the result

SI → i �
a=1,2

�a

2

 dtddr�Qt,t

a,a Qt,t
†a,a���U �V

�V �U
�� Qt,t

a,a

Qt,t
†a,a� ,

�2.46�

where

�U � �2��2U, �V � �2��2V �2.47�

�cf. Eqs. �2.22� and �2.23��, and 1 /� is the decay rate, Eqs.
�2.33� and �2.34��.

4. Finkel’stein nonlinear sigma model and its coupling
constants

By combining the results of the previous subsection, Eqs.
�2.39�, �2.44�, and �2.46�, we arrive at last to the final form
of the FNL�M description of the Hubbard-like model de-

fined in Eqs. �1.1� and �1.9�. The FNL�M is given by the
functional integral

Z =
 DQ̂e−SD−SI, �2.48�

where

SD =
1

2


 ddr Tr„�Q̂†�r� · �Q̂�r�…

+ ih
 ddr Tr„��̂3��̂� + i��̂3�̂3��Q̂†�r� + Q̂�r��…

−

A

2
2 
 ddr�Tr�Q̂†�r� � Q̂�r���2 �2.49�

and

SI = i �
a=1,2

�a
 dtddr„2�VQt,t
†a,a�r�Qt,t

a,a�r�

+ �U�Qt,t
a,a�r�Qt,t

a,a�r� + Qt,t
†a,a�r�Qt,t

†a,a�r��… �2.50�

The field variable Q̂�r� in Eqs. �2.48�–�2.50� is a complex,
infinite-dimensional unitary matrix,

Q̂†�r�Q̂�r� = 1̂, �2.51�

carrying Keldysh species ��a ,a��� and time ��t , t��� or fre-
quency ��� ,���� indices:

Q̂�r� → Q�,��
a,a� �r� or Q̂�r� → Qt,t�

a,a��r� . �2.52�

In Eq. �2.48�, DQ̂ is the invariant �Haar� functional measure

for the group manifold associated with Q̂. The matrix Q̂ and

its adjoint Q̂† may be interpreted as continuum versions of
the same-sublattice fermion bilinears

Qt,t�
a,a� � cA

a�t�c̄A
a��t�� , �2.53a�

Qt,t�
†a,a� � cB

a�t�c̄B
a��t�� , �2.53b�

which follows from Eqs. �2.13�, �2.14a�, �2.14b�, �2.19�, and
�2.20�. It is a peculiar feature of the random hopping model
that the low-energy fluctuations on a given sublattice are
described by a unitary, rather than a Hermitian matrix, famil-
iar from other models.

The Tr in Eq. �2.49� denotes a matrix trace over Keldysh
species and time or frequency indices; the diagonal Pauli

matrices �̂3→sgn ���,���
a,a� and �̂3→�a��,���

a,a� act in the
sgn��� and Keldysh species spaces, respectively, while ��̂�
→ �� ���,���

a,a� is a matrix of absolute frequencies. Here and
in Eq. �2.50�, the number �a was defined in Eq. �2.4�. The

saddle point configuration Q̂�r�= Q̂SP was determined above

in Eq. �2.37�. The structure of Q̂SP is set by the symmetry-
breaking �Keldysh pole prescription� term, proportional to
�→0+, in Eq. �2.49�.

The action given by Eq. �2.49� describes the low-energy
diffusive physics of the noninteracting random hopping
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model;9,12,13 a replica version of the noninteracting sigma
model with action SD was originally studied by Gade and
Wegner.9 This noninteracting sector of the FNL�M is param-
etrized by three coupling strengths: 
, 
A, and h. The cou-
pling constant 
 is a coarse-grained measure of the micro-
scopic hopping disorder strength, 
�m� �Eq. �2.11��;46 it can
be shown that 1 /
 is proportional to the dimensionless dc
conductance g of the system.2,3,40 The parameter 
A gives a
second measure of the disorder strength, unique to this “sub-
lattice symmetry class,” which strongly influences the behav-
ior of the low-energy, disorder-averaged single-particle den-
sity of states.9,12,13 �In Eq. �2.49�, we have rescaled 
A by a
factor of 1 /
2 relative to Eq. �2.44�, so that 
 and 
A now
share the same naive “engineering” dimension. See also Sec.
IV B.� As elaborated in the previous subsection, the param-
eter 
A may be simply interpreted as characterizing the
strength of long-wavelength, quenched orientational fluctua-
tions of bond strength dimerization in the microscopic ran-
dom hopping disorder. Finally, the parameter h in Eq. �2.49�
is a dynamic scale factor, introduced here in order to track
the scaling relationship between length and time as the
model is renormalized.2,3

The interparticle interactions appear in the second term SI,
given by Eq. �2.50�. With the advent of Eqs. �2.53a� and
�2.53b�, we may interpret Qt,t

a,a�r� and Qt,t
†a,a�r� as continuum

local density operators on the A and B sublattices, respec-
tively. Then, the coarse-grained interaction strengths �V�V
and �U�U in Eq. �2.50� couple to generic, short-ranged in-
tersublattice and same-sublattice density-density interactions,
respectively �compare to Eq. �1.1� above�.

We use the RG to study the model defined by Eqs.
�2.48�–�2.50�. It will prove convenient to define the linear
combinations of �U and �V,

�s 

1

2
��U + �V�, �c 


1

2
��U − �V� . �2.54�

In the continuum FNL�M �Eq. �2.50��, the interaction
strength �s couples to the squared �smooth� local charge den-
sity, �Qt,t

a,a�r�+Qt,t
†a,a�r��2, while �c couples to the squared

sublattice staggered charge density, �Qt,t
a,a�r�−Qt,t

†a,a�r��2. In
accordance with the discussion in the paragraph below Eq.
�1.8� in Sec. I, we expect �c�0 to promote charge density
wave formation, while �c�0 should suppress it.

We compute the one-loop flow equations for the coupling
constants 
, 
A, h, �s, and �c in the following two sections.
We analyze and discuss our results in Sec. V. The reader less
interested in calculational details may skip Secs. III and IV
entirely and proceed immediately to Sec. V.

B. Related models for spin-1 Õ2 fermions

To conclude this section, we briefly discuss some connec-
tions between various models of disordered �and possibly
interacting� spin-1 /2 fermions and their corresponding ran-
dom matrix theory classification and sigma model descrip-
tions. Details are provided in Appendixes B and C.

Consider a clean system of spinless or spinful fermions
with homogeneous, real nearest-neighbor hopping on a bi-
partite lattice at half-filling. In both the spinless and spinful

cases, such a tight-binding model possesses three additional
�non-space-time� discrete symmetries: TRI, SLS, and
particle-hole �PH� symmetry. For spin-1 /2 electrons, we also
have spin SU�2� rotational symmetry. Here, we define the
unitary particle-hole transformation as a product of antiuni-
tary time-reversal and sublattice symmetry transformations;
as a result, in the spin-1 /2 case, the PH transformation in-
volves a spin flip—see Appendix B for details. The introduc-
tion of quenched disorder may break or preserve each of
these internal invariances, and the resulting disordered �non-
interacting� Hamiltonian can be classified using random ma-
trix theory.7,42

Consider now the effect of random magnetic fields on the
otherwise clean spin-1 /2 hopping model. Here, it is crucial
to distinguish between the cases of random orbital and ran-
dom Zeeman magnetic fields. A random orbital field pre-
serves spin SU�2� rotational symmetry and SLS, while it
breaks TRI and PH symmetry in every static disorder real-
ization. A random Zeeman field, on the other hand, preserves
PH but breaks TRI, SLS, and spin SU�2� rotational symme-
try �completely�. These two cases actually fall into different
symmetry classes of noninteracting, disordered quantum sys-
tems. In the classification scheme of Ref. 7, the random or-
bital field model, with SLS �and spin SU�2�� only, belongs to
class AIII, while the random Zeeman field model, with PH
only, belongs to class C. These results are derived in Appen-
dix B. A model with both random Zeeman and orbital fields
falls into the standard unitary Wigner–Dyson class A since
all three of the discrete symmetries TRI, SLS, and PH are
broken. As discussed in the Introduction, known �noninter-
acting� realizations of the chiral class AIII,9–14,16 including
the noninteracting version of the �spinless� model �Eqs. �1.1�
and �1.9� with U=V=0� studied in this paper, possess a con-
ducting phase with extended states in d=2 spatial dimen-
sions. A system of noninteracting, spin-1 /2 superconductor
quasiparticles, with broken TRI and with spin SU�2� rota-
tional symmetry preserved in every instance of the static dis-
order, furnishes a better known realization of class
C.7,37,42,47–50 Noninteracting systems belonging to class C or
A do not possess extended states in two dimensions,40,47,51

except at their respective quantum Hall50,52 transitions.
From this discussion, we conclude that the FNL�M that

we study in this paper also applies to a related Hubbard-like
model for spin-1 /2 fermions, subject to a random orbital
magnetic field and possessing strong spin-orbit coupling.
Spin-orbit coupling is needed to suppress an additional hy-
drodynamic spin diffusion channel, which we do not treat in
this work. The 2D half-filled, spin-1 /2 Hubbard model sub-
ject to a random Zeeman field was studied numerically in
Ref. 39. The effects of interparticle interactions in the con-
text of the superconductor quasiparticle interpretation of
class C were analyzed using the FNL�M in Ref. 37; see also
Ref. 49. Very recently, Dell’Anna36 has independently stud-
ied several universality classes of Finkel’stein NL�Ms in-
cluding realizations of both the particle-hole symmetric class
C and the sublattice symmetric class AIII for electrically
charged spin-1 /2 fermions. In the latter case, Dell’Anna in-
cluded the spin diffusion channel �i.e., assumed no spin-orbit
coupling�. His results are discussed briefly in the conclusion
to this paper, Sec. V D. Finally, we note that different classes
appear in the presence of TRI.7,42
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Surprisingly, our AIII Finkel’stein NL�M equivalently
describes a system of spin-1 /2 superconductor quasiparti-
cles, subject to disorder and interactions, with TRI and a
U�1� remnant of the spin SU�2� rotational symmetry pre-
served in every static disorder realization. Such a �gapless�
quasiparticle system could occur, e.g., in the polar phase of a
p-wave, spin-triplet superconductor.53,54 This quasiparticle
system may be defined directly in the continuum, without
reference to a lattice model or an additional sublattice and/or
chiral symmetry. The connection is derived in Appendix C.

III. PARAMETRIZATION AND FEYNMAN RULES

We now turn to the setup of our perturbative, one-loop
renormalization group calculation for the FNL�M defined by
Eqs. �2.48�–�2.50�. The actual RG computation follows in
Sec. IV. Beyond developing the apparatus necessary for the
RG, the material in this section also serves to further eluci-
date the structure of the sigma model description of sublat-
tice symmetric disorder and interparticle interactions.

To begin, we shift the saddle point �̂3�̂3 �Eq. �2.37�� to the

identity 1̂ via left group translation of the unitary matrix field

Q̂�r�,

Q̂�r� → �̂3�̂3Q̂�r�, Q̂†�r� → Q̂†�r��̂3�̂3. �3.1�

The FNL�M action, Eqs. �2.49� and �2.50�, becomes

SD =
1

2


 ddr Tr��Q̂† · �Q̂� −


A

2
2 
 ddr�Tr�Q̂† � Q̂��2

+ ih
 ddr Tr„���̂��̂3 + 1̂i���Q̂† + Q̂�… �3.2�

and

SI = �
a

i�a
 d�1

2	

d�2

2	

d�3

2	

d�4

2	
ddr�1+3,2+4��U�s1s3Q1,2

a,aQ3,4
a,a

+ s2s4Q1,2
†a,aQ3,4

†a,a� + 2�Vs2s3Q1,2
†a,aQ3,4

a,a� . �3.3�

Equation �3.3� expresses SI in frequency space, where we
have implemented the compact notations

�1+3,2+4 
 ��1+�3,�2+�4
,

Q1,2
a,a�r� 
 Q�1,�2

a,a �r� ,

s1 
 ��̂3��1,�1
= sgn��1� , �3.4�

etc., i.e., numeric subscripts represent associated frequency
labels.

The saddle point shift defined by Eq. �3.1� modifies only
the symmetry-breaking term, proportional to h, in the nonin-
teracting sector of the theory �cf. Eqs. �2.49� and �3.2��. In
contrast, the transformation in Eq. �3.1� inserts explicit fac-
tors of sisj =sgn��i�sgn�� j�, i, j� �1,2 ,3 ,4�, into all terms
inhabiting the interacting sector SI �Eqs. �2.50� and �3.3��.
Below, we show that these factors function as projection ma-
trices, dividing the interaction-dressed diffusion modes into

smooth and sublattice staggered charge density diffuson
channels, characterized by interaction strengths �s and �c,
respectively. �See Eq. �2.54�, as well as Eqs. �3.16a�–
�3.18d�.�

We now parametrize the FNL�M for the RG computa-
tion. We employ a Wilsonian frequency-momentum shell,

background field methodology.2 The first step is to split Q̂

into “fast” Q̂F and “slow” Q̂S mode parts,

Q̂�r� 
 Q̂F�r�Q̂S�r� 
 Q̂F�r��1̂ + �Q̂S�r�� , �3.5�

where both the fast and slow matrix fields satisfy the unitary
constraint �Eq. �2.51��:

Q̂F
†�r�Q̂F�r� = Q̂S

† �r�Q̂S�r� = 1̂. �3.6�

On the second line of Eq. �3.5�, we have further

decomposed55 the slow mode field Q̂S into the homogeneous

saddle point 1̂ plus the “small” perturbation �Q̂S�r�

 Q̂S�r�−1̂.

We require a parametrization for the unitary fast mode

field Q̂F in terms of some unconstrained coordinates; we
choose geodetic coordinates on the group manifold,

Q̂F�r� 
 exp�iŶ�r�� � 1̂ + iŶ�r� + ¯ , �3.7�

where Ŷ†= Ŷ is a Hermitian matrix belonging to the Lie al-

gebra that generates Q̂F.
We now explain the meaning of the fast-slow decomposi-

tion defined by Eq. �3.5�. The spatial Fourier transform of the
slow mode fluctuation

�Q̂S�k� =
 ddr exp�− ik · r��Q̂S�r� → �QS�,��
a,a� �k�

�3.8�

is taken to possess support within a cube of linear size �̃ in
the �three-dimensional� absolute frequency and squared-
momentum space ���� , ���� ,Dk2�; the cube encompasses the
origin ���= ����=Dk2=0. Here,

D 
 1/�
h� �3.9�

is the effective diffusion constant. The linear size of the cube

satisfies �̃�1 /��D / l2 �measured in energy units�, where �
is the elastic scattering lifetime and l is the mean free path.
We take the support of the fast mode coordinate

Ŷ�k� =
 ddr exp�− ik · r�Ŷ�r� → Y�,��
a,a� �k� �3.10�

to lie within a thin frequency-momentum shell enclosing the
slow mode cube,

�̃ � Dk2 � �, 0 � ��� � �, 0 � ���� � � ,

�3.11a�

�̃ � ��� � �, 0 � Dk2 � �, 0 � ���� � � ,

�3.11b�
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�̃ � ���� � �, 0 � Dk2 � �, 0 � ��� � � ,

�3.11c�

where � / �̃�1+2dl is a ratio of energy cutoffs, with
0�dl�1. The regions of slow and fast mode supports are
illustrated in Fig. 6. In the next section, we will integrate out
the degrees of freedom in this shell and determine the result-

ing effect on the slow modes �Q̂S.
By substituting the fast-slow decomposition �Eq. �3.5��

into the action in Eqs. �3.2� and �3.3� and expanding to sec-

ond order56 in the fast mode coordinates Ŷ�r� using Eq. �3.7�,
the Keldysh generating functional Z �Eq. �2.48�� may be re-
written as

Z �
 DQ̂SDŶ exp�− S�Ŷ,�Q̂S�� . �3.12�

We divide the action S in Eq. �3.12� into terms containing �i�
only slow modes, �ii� only fast modes, and �iii� both fast and
slow modes:

S = SS��Q̂S� + SF�Ŷ� + SF/S�Ŷ,�Q̂S� . �3.13�

The pure slow mode sector of the theory is

SS��Q̂S� = SD�Q̂ → 1̂ + �Q̂S� + SI�Q̂ → 1̂ + �Q̂S� ,

�3.14�

with SD and SI as given by Eqs. �3.2� and �3.3�. Of the

remaining terms in Eq. �3.13�, SF�Ŷ� contains only fast mode

degrees of freedom, while SF/S�Ŷ ,�Q̂S� describes the cou-
pling between the fast and slow mode fields.

To one-loop order, we need only retain terms in SF�Ŷ�
�Eq. �3.13�� to second order in Ŷ�r�, thereby obtaining the
fast mode Gaussian diffusion propagator. We write

SF 
 SF
�D� + SF

�I�, �3.15�

where the sector of the fast mode theory independent of the
interparticle interactions is

SF
�D� =

1

2

 ddr�Tr� 1



��Ŷ�2 − ih���̂��̂3 + 1̂i��Ŷ2

− ihŶ���̂��̂3 + 1̂i��Ŷ� +

A


2 �Tr��Ŷ��2	 , �3.16a�

while the interactions give rise to the term

SF
�I� = − �

a

i�a
 d�1

2	

d�2

2	

d�3

2	

d�4

2	
ddr��1+3,2+4

���s�s1 − s2��s3 − s4� + �c�s1 + s2��s3 + s4��Y1,2
a,aY3,4

a,a� .

�3.16b�

We have expressed SF
�I�, Eq. �3.16b� containing the

interparticle interactions, in terms of the smooth and
of the sublattice staggered �CDW� charge density
interaction parameters �s and �c, defined by Eq. �2.54�. In
Eq. �3.16b�, �s and �c couple to the frequency index tensors
�s1−s2��s3−s4��1+3,2+4 and �s1+s2��s3+s4��1+3,2+4, respec-
tively, which project out the channels of the propagator
�Y1,2

a,aY3,4
a,a� off-diagonal and diagonal in sgn��� space, respec-

tively. These channels are orthogonal, so that Eqs. �3.16a�
and �3.16b� may be simply inverted to obtain the fast mode
propagator for the theory. Note that all Keldysh indices must
be identical to obtain a nonzero contribution from Eq.
�3.16b�.

The fast mode propagator cleanly decomposes into four
disparate components; in terms of the spatial Fourier trans-

form Ŷ�k� defined via Eq. �3.10�,

�Y1,2
a,b�− k�Y3,4

c,d�k�� 
 P
 + PA + PS + PC, �3.17�

where the four symbols P
, PA, PS, and PC represent the
components

P
 = �O
a,b���1�, ��2�,k��a,d�c,b�1,4�3,2, �3.18a�

PA = − �
A


2 k2�O
a,a���1�, ��1�,k��O

c,c���3�, ��3�,k��
��a,b�c,d�1,2�3,4, �3.18b�

PS = �2i�a�s�s1 − s2��s3 − s4��S
a���1 − �2�,k�

��O
a,a���1 − �2�,0,k���a,b�a,d�c,d�1+3,2+4,

�3.18c�

PC = �2i�a�c�s1 + s2��s3 + s4�

�
�O

a,a���1�, ��2�,k��O
a,a���3�, ��4�,k�

1 + �cfa���1 − �2�,k� �
��a,b�a,d�c,d�1+3,2+4. �3.18d�

Keldysh �a ,b , . . . � and frequency �1,2,…� indices in Eqs.
�3.18a�–�3.18d� should be matched to those in Eq. �3.17�.
Components P
 and PA �Eqs. �3.18a� and �3.18b�� follow
from the inversion of the disorder-only action in Eq. �3.16a�,
while PS and PC �Eqs. �3.18c� and �3.18d�� incorporate the
interactions from Eq. �3.16b�.

FIG. 6. Frequency-momentum shell of thickness �− �̃ support-

ing fast mode field coordinates Y�,��
a,a� �k�. The cubic volume of linear

size �̃ enclosed by the shell supports the slow mode fields

�QS�,��
a,a� �k� and �QS�,��

†a,a� �k�.
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The basic �heat� diffuson kernel in Eq. �3.18a� is

�O
a,b���1�, ��2�,k� 


1

h
�Dk2 − i��a��1� + �b��2���−1,

�3.19�

with the diffusion constant D defined via Eq. �3.9�. The dif-
fuson matrix propagator P
 in Eq. �3.18a� is pictured as a
thick line segment in Fig. 7�a�. As shown in Figs. 7�d�–7�f�,
each such thick line segment in Figs. 7�a�–7�c� can be taken
to represent a pair of single fermion particle and hole lines,
carrying counterpropagating arrows indicating the flow of
the conserved electric U�1� current �see, e.g., Eqs. �2.53a�
and �2.53b��. The numeric labels appearing along the termi-
nating thin lines in Fig. 7�a� encode the frequency and
Keldysh indices carried by the fast mode matrix fields

Ŷ →Y�,��
a,a� . These indices are propagated along �unbroken�

thick line segments without mixing, as in Fig. 7�d�. In both
Figs. 7 and 8, we employ the following convention: different
numerical labels encode independent frequency indices, and
numerical labels carrying different numbers of primes indi-
cate independent Keldysh species indices; numerical labels
with the same number of primes represent indices that share
the same Keldysh species.

Inversion of Eq. �3.16a� also gives the component PA pro-
portional to 
A �Eq. �3.18b��, which has a different frequency
and Keldysh index structure than the basic diffuson P
 �Eq.
�3.18a��. PA is depicted in Fig. 7�b�. The inversion of Eq.
�3.16a� gives only the sum of P
 and PA, i.e., terms up to
first order in 
A. We can try to build terms higher order in 
A
by cascading together multiple such sections, but it is clear
from Figs. 7�b� and 7�e� that such a construction necessarily
contains at least one closed “Keldysh” loop, defined here as
a simultaneous Keldysh species index summation and fre-

quency integration along a closed single fermion line. As
with the replica trick, such closed loops vanish in the
Keldysh formalism.

The smooth and sublattice staggered interparticle interac-
tions in Eq. �3.16b�, characterized by �s and �c, respectively,
dress the bare diffuson propagator P
 �Eq. �3.18a��, giving
rise to the propagator components PS and PC �Eqs. �3.18c�
and �3.18d�, respectively�. These equations show that the
component PS �PC� projects on the propagator channel off-
diagonal �diagonal� in sgn��� space. The kernel

FIG. 7. Feynman rules I: fast mode propagator, from Eqs.
�3.17�–�3.18d�. Components of the disorder-only sector P
 and PA
are depicted in �a� and �b�, respectively; �c� represents the sum of
interaction-dressed components PS+PC, which vanishes in the non-
interacting limit. �d�, �e�, and �f� show that each thick line in �a�,
�b�, and �c�, respectively, can be understood as a pair of particle and
hole lines, which carry counterpropagating arrows to indicate the
flow of the conserved electric U�1� current. The numeric labels
represent the frequency indices of single fermion lines, while the
primes denote the associated Keldysh species indices. The numeric
labels with the same number of primes share the same Keldysh
index, while the labels with different numbers of primes possess
independent Keldysh indices.

q

k

q+k

FIG. 8. Feynman rules II: vertices coupling together fast and

slow modes arising from the term SF/S�Ŷ ,�Q̂S� in Eq. �3.13�. Vertex
V��� is pictured in ���, with �� �a ,b ,c , . . . �. In this figure, the

black and blank triangular terminals indicate �Q̂s and �Q̂s
† slow

mode fields, respectively, while the half-black, half-blank terminals
indicate linear combinations of these. The unterminated thick lines

represent fast mode fields Ŷ. Vertices V�a� and V�b� are derived
from the stiffness and energy terms, respectively, of the noninter-
acting sigma model action �Eq. �3.2��, while vertices V�c�–V�k�
arise from the interparticle interactions �Eq. �3.3��. Momentum la-
bels q, k, and q+k have been furnished for the stiffness vertex
V�a�, as this vertex depends explicitly on these momenta.

METAL-INSULATOR TRANSITION FROM COMBINED… PHYSICAL REVIEW B 77, 165108 �2008�

165108-13



�S
a����,k� 


1

h
�Dk2 − i�1 − �s��a����−1 �3.20�

appears in PS, the channel of the interaction-dressed propa-
gator off-diagonal in sgn��� space �Eq. �3.18c��, and is
related2,3 to the diffusion of the physical, conserved electric
U�1� charge. In Eqs. �3.20� and �3.18d�, we have introduced
the relative interaction constants

�s 

4

	h
�s =

2

	h
��U + �V� , �3.21a�

�c 

4

	h
�c =

2

	h
��U − �V� , �3.21b�

where we have used Eq. �2.54�. Finally, the logarithmic func-
tion

fa����,k� 
 ln� 2�

��� + i�aDk2� , �3.22�

with � a hard frequency cutoff �cf. Eqs. �3.11a�, �3.11b�, and
�3.11c��, appears in PC, the channel of the interaction-
dressed propagator diagonal in sgn��� space �Eq. �3.18d��.
The structure3,57,58 of PC does not follow from any conser-
vation law, as the sublattice staggered electric charge density
�the “CDW” order parameter associated with the interaction
strength �c� does not represent a conserved quantity. In this
paper, we will work only to the lowest nontrivial order in �c;
practically, this means ignoring2,57 the logarithmic denomi-
nator �Eq. �3.22�� in PC �Eq. �3.18d��. This approximation is
adequate for all of the results presented in Sec. V. The sum of
the interaction-dressed propagator components PS+PC will
be depicted as a thick line with a black dot, as shown in Fig.
7�c�.

The channel of the fast mode propagator diagonal in
sgn��� space, including the components PA, proportional to
the disorder strength 
A �Eq. �3.18b��, and PC, proportional
to the CDW interaction strength �c �Eq. �3.18d��, is special
to a system with sublattice symmetry �Eq. �1.2��. �Recall
from Secs. II A 3 and II A 4 that 
A measures the strength of
quenched orientational fluctuations of bond dimerization in
the intersublattice hopping disorder.� The addition of SLS
breaking, e.g., in the form of on-site disorder, changes the
random matrix class7 of the �noninteracting version of the�
random hopping model studied in this paper, Eqs. �1.1� and
�1.9� with U=V=0, from the sublattice �chiral� class AIII to
the ordinary unitary metal class A. Equivalently, breaking
SLS reduces the size of the sigma model target manifold, as
discussed in Appendix A. The crossover is marked by the
appearance of a “mass” in the FNL�M propagator channel
diagonal in sgn���, which gaps out the propagator compo-
nents PA and PC �as well as “half” of the basic diffuson
modes P
 in Eq. �3.18a��. This is the reason that the coupling
strengths 
A and �c do not appear in the spinless unitary
class Finkel’stein NL�M,3 which retains the parameters 
, h,
and �s.

The fast and slow mode fields are coupled together by the

term SF/S�Ŷ ,�Q̂S� in Eq. �3.13�. SF/S�Ŷ ,�Q̂S� gives rise to
the Feynman vertices pictured in Fig. 8. We will refer to the

vertex pictured in Fig. 8 ��� as “V���,” with �
� �a ,b ,c , . . . �. In these figures, the vertex corners adorned
by thick line “spokes” that split into directed thin lines rep-

resent insertions of the slow ��Q̂S and/or �Q̂S
† � or fast �Ŷ�

mode matrix fields. Specifically, the triangular black and

blank spoke terminals denote the slow mode fields �Q̂S and

�Q̂S
† , respectively, while the half-black, half-blank terminals

denote linear combinations of these. Each unterminated thick

line spoke in Fig. 8 represents a fast mode field Ŷ, which
may be interconnected in pairs using the propagators shown
in Fig. 7, with amplitudes given by the associated expres-
sions in Eq. �3.18�. As in Fig. 7, we use numerical labels to
indicate frequency indices, with primes distinguishing inde-
pendent Keldysh species indices.

The factors associated with the vertices �V�a� ,V�b� , . . . �
are listed in Table I. In this table, the fast mode fields Ŷ have
been amputated from the vertex expressions; the structure of
the fast-slow mode coupling should be understood from Fig.
8. Vertices V�a� and V�b� are obtained from the noninteract-
ing sector of the FNL�M action �Eq. �3.2��, while vertices
V�c�–V�k� are derived from the interparticle interactions
�Eq. �3.3��, indicated by the black dots in Figs. 8�c�–8�k�.
The first entry of Table I gives the factor associated with the
“stiffness vertex” V�a�, shown in Fig. 8�a�. Here, we have
introduced the slow mode vector operator

L̂S�r� 
 Q̂S�r� � Q̂S
† �r� = �1̂ + �Q̂S�r�� � �Q̂S

† �r� .

�3.23�

TABLE I. Feynman rules III: factors associated with vertices
�V�a� ,V�b� , . . . �, pictured in Fig. 8, coupling together fast and slow
modes. Frequency �1, 2, 3,…� and Keldysh species �a ,a� ,a�� indi-
ces in the factor V��� should be matched to those in the correspond-

ing Fig. 8 ���. Fast mode fields Ŷ have been amputated from the
vertex factors in this table for brevity; the fast-slow mode coupling
structure may be understood from Fig. 8. The �spatial Fourier trans-

form of the� slow mode operator LS1,2
a,a� �q� is defined by Eq. �3.23�.

V�a� � −�i /2
���ddq / �2	�d��2k+q� ·LS1,2
a,a� �q�

V�b� � �ih /2��ddr���2��a��QS1,2
a,a� + ��1��a�QS1,2

†a,a��
V�c� � 2i�a�1+3,2+4��Us1s3−�Vs2s3��ddr�QS5,4

a�,a

V�d� � 2i�a�1+3,2+4��Us2s4−�Vs2s3��ddr�QS1,5
†a,a�

V�e� � i�a�1+3,2+4�ddr��s�s1+s2��s3�QS3,4
a,a +s4�QS3,4

†a,a ��
�+�c�s1−s2��s3�QS3,4

a,a −s4�QS3,4
†a,a ��

V�f� � 2�a�1+3,2+4�ddr��s�s1−s2��s3�QS3,4
a,a +s4�QS3,4

†a,a ��
�+�c�s1+s2��s3�QS3,4

a,a −s4�QS3,4
†a,a ��

V�g� � 2i�a�1+3,2+4�Us1s3�ddr�QS5,2
a�,a �QS6,4

a�,a

V�h� � 2i�a�1+3,2+4�Us2s4�ddr�QS1,5
†a,a��QS3,6

†a,a�

V�i� � −2i�a�1+3,2+4�Vs2s3�ddr�QS1,5
†a,a��QS6,4

a�,a

V�j� � i�a�1+3,2+4�ddr��Us1s3�QS5,2
a�,a �QS3,4

a,a �
�+�Vs1s4�QS5,2

a�,a �QS3,4
†a,a �

V�k� � i�a�1+3,2+4�ddr��Us2s4�QS1,5
†a,a��QS3,4

†a,a �
�+�Vs2s3�QS1,5

†a,a��QS3,4
a,a �
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Note that all fast-slow vertices pictured in Fig. 8, except

V�f�, are bilinear in the fast mode fields Ŷ�r� �represented by
unterminated thick lines�; the latter vertex involves only a
single fast mode field. Such a vertex would vanish in a pure
momentum shell treatment, in which one integrates undeter-
mined fast mode loop momenta over a thin shell while si-
multaneously integrating undetermined fast mode loop fre-
quencies over the entire real line. In Sec. IV, we show that a
diagram involving two copies of V�f� produces the term in
the RG flow equations that gives rise to the CDW instability
in the clean Hubbard-like model �Eq. �1.1��. As the CDW
term must be present in the advent of sublattice symmetry
�e.g., in the ballistic limit 
 ,
A→0�, we are forced to work
with the frequency-momentum shell method in this paper. A
similar term responsible for the BCS superconducting insta-
bility of the diffusive Fermi liquid also arises in the FNL�M
description of normal, TRI metals only in the frequency-
momentum shell scheme.2,3,57,58

IV. ONE-LOOP CALCULATION

In two dimensions, the disorder parameters 
 and 
A, as
well as the ratios �s and �c, defined by Eqs. �3.21a� and
�3.21b�, carry zero engineering dimension �demonstrated ex-
plicitly in Sec. IV B, below�. In the language of the RG, we
say that these parameters are marginal �in d=2� at tree level.
Here, we compute the one-loop RG flow equations for the
coupling strengths 
, 
A, and h, as well as �U and �V, or
equivalently, �s and �c �Eq. �2.54��. The loop expansion is
performed in d=2+� dimensions, with 0���1, and is for-
mally organized as an expansion in powers of the disorder
strength 
, which is inversely proportional to the dimension-
less dc conductance. As discussed below Eq. �3.22�, we
choose to work only to the lowest nontrivial order in the
CDW interaction parameter �c �or �c�; in contrast, the loop
expansion incorporates contributions from 
A, h, and �s to
all orders. We need make no assumptions about the small-
ness of these latter three parameters. The diagrammatics ap-
pear in Sec. IV A; the results of this section are combined
with dimensional analysis in Sec. IV B, yielding the desired
one-loop flow equations. The flow equations obtained here
are summarized and interpreted in Sec. V.

A. Renormalization

The calculation is performed in the frequency-momentum
shell background field formalism established in the previous

section. We integrate out the fast modes Y�,��
a,a� �k� �Eq. �3.7��

lying within the shell defined by Eqs. �3.11a�, �3.11b�, and
�3.11c�, where

�

�̃
� 1 + 2dl �4.1�

and 0�dl�1, as below Eqs. �3.11a�–�3.11c�. The fast mode
integration produces corrections to the action SS �Eq. �3.14��
for the slow mode fields �QS�,��

a,a� �k� and �QS�,��
†a,a� �k�. Note

that in the case of the fast mode field Y�,��
a,a� �k�, at least one of

the three variables  � �Dk2 , ��� , ����� is always fast, lying
within the range �̃� ��.

In the pure slow mode sector of the theory, with action SS
defined via Eqs. �3.14�, �3.2�, and �3.3�, all five parameters 
,

A, h, �U, and �V couple to local operators which contain
nonvanishing terms quadratic in �Q̂S and/or �Q̂S

† . In order to
renormalize the parameters of the theory, then, we need only
consider corrections to terms up to second order in �Q̂S �and
its adjoint� in the pure slow mode FNL�M action.

In this subsection, we furnish the set of 83 nonvanishing
diagrams that correct the marginal parameters in the FNL�M
and/or correspond to the generation of marginal operators not
originally present in the FNL�M action. All contributions of
the latter type must cancel if the theory is to be renormaliz-
able to one loop; we will show that this is indeed the case.
The required diagrams are organized into 14 categories,
shown in Figs. 10–22, renormalizing each of the coupling
strengths appearing in the FNL�M. To each category of dia-
grams, we provide the label Dm, with m� �1, . . . ,14�. Cat-
egory labels �D1,D2, . . . � appear in the captions of the as-
sociated figures �10, 11, …�. Individual diagrams and their
associated amplitudes will be referred to by a category label,
a letter, and if necessary, a subscript Roman numeral: D1�a�
refers to the diagram labeled �a� in the left-hand column of
Fig. 10 �category D1�, while D2�b�iii refers to the diagram
labeled �iii� in the right-hand column of Fig. 11 �category
D2�. Below, we examine each category of corrections in
turn. We also calculate the one-loop renormalization of the
single-particle DOS ����. Explicit frequency and Keldysh
indices �using the same conventions employed in Figs. 7 and
8� distinguish the diagrams in Figs. 10–22 whose detailed
evaluation is provided in this section.

The key ingredients for the renormalization process are
the fast mode propagators P
, PA, PS, and PC, depicted in
Figs. 7�a�–7�c�, with the associated amplitudes provided by
Eq. �3.18�, and the vertices V��� coupling together fast and
slow modes, with �� �a ,b ,c , . . . �, cataloged in Table I and
pictured in Fig. 8. Explicit formulas for the necessary
frequency-momentum shell loop integrations are relegated to
Appendix D.

1. Propagator with a twist

The basic diffuson propagator P
, given by Eq. �3.18a�, is
represented as the thick line segment shown in Fig. 7�a�. In
Fig. 9, we picture the same propagator shown in Fig. 7�a� but
with a twist of the right end relative to the left. The twist is
represented by the “!” symbol. We will use this twisted
representation of P
 whenever convenient to simplify the
diagrammatics.

2. Renormalization of �A

Diagrams D1�a�–D1�c� appearing in Fig. 10 renormal-
ize the disorder parameter 
A. The associated amplitudes in-

FIG. 9. Basic diffuson propagator P
 �Fig. 7�a� and Eq. �3.18a��
with a twist.
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volve pure momentum shell integrations since all propagator
frequency indices are slow. �See Eqs. �3.11a�–�3.11c� and
Fig. 6.� We will compute D1�a� explicitly; the labels
1→ ��1 ,a� and 3�→ ��3 ,a�� in Fig. 10 represent external,
slow frequencies ��1 ,�3� and Keldysh indices �a ,a��.

Using the Feynman rules, we find

D1�a� =
1

2!
�− i

2

	2
 ddq

�2	�dLS1,1
ia,a �q�LS3,3

ja�,a��− q�I1
i,j ,

�4.2�

where i and j denote vector components, with the pure mo-
mentum shell integration

I1
i,j =
 d2k

�2	�2 �2k + q�i�− 2k − q� j

���O
a,a����1�, ��3�,k��O

a,a����1�, ��3�,k + q��

�
− 4�i,j

2h2

1

2D2�2	�
�̃

� dx

x
=

− �i,j
2

2	
2dl , �4.3�

up to irrelevant slow mode frequency ��1 ,�3�- and momen-
tum �q�-dependent terms. On the last line of Eq. �4.3�, we
have performed the change of integration variables x
Dk2,
with D=1 /
h �Eq. �3.9��, and we have used Eq. �4.1�. By
combining Eqs. �4.2� and �4.3�, using Eq. �3.23�, and sum-
ming over slow mode frequency and Keldysh indices, we
obtain

D1�a� = �
22dl

8	
A
	 
A

2
2 
 ddr�Tr�Q̂S
† � Q̂S��2. �4.4�

D1�b� and D1�c� may be similarly evaluated; in fact, these
diagrams exactly cancel because of the directional depen-
dence of the stiffness vertex V�a� on the loop momenta—see
Table I. Thus, the complete 
A renormalization is given by
Eq. �4.4�.

3. Renormalization of � and h

The diagrams in category D2 �Fig. 11� renormalize the
disorder parameter 
, proportional to the inverse dimension-
less dc conductance. D2�a�i–D2�a�iv, shown in the left-hand
column of Fig. 11, possess no undetermined loop frequen-
cies, and therefore involve pure momentum shell integra-
tions, similar to that in Eq. �4.3�. In fact, D2�a�i and D2�a�iii
exactly cancel D2�a�ii and D2�a�iv. On the other hand, the
diagrams in the right-hand column of Fig. 11 involve simul-
taneous frequency and momentum loop integrations, and
their sum indeed yields a nonvanishing renormalization of 
.

Diagrams D2�b�i and D2�b�ii pictured in Fig. 11 give
identical contributions, and each involve two copies of the

stiffness vertex V�a�, with one basic diffuson P
 and one
interacting sector propagator PS+PC. We evaluate

D2�b�i =
2i�a��− i�2

2!�2
�2 
 ddq

�2	�dLS1,2
ia,a��q�LS2,1

ja�,a�− q�I2
i,j ,

�4.5�

where the frequency-momentum integral divides into two
pieces:

I2
i,j 
 I2S

i,j + I2C
i,j , �4.6�

corresponding to the PS and PC components of the interac-
tion sector propagator, respectively. In the former case, up to
irrelevant terms, we have

I2S
i,j =
 d� d2k

�2	�3 �2k�i�2k� j�s�s − s2��s2 − s �

���O
a,a��0, �� �,k��S

a���� �,k��O
a�,a���� �,0,k��

=
− 42�s�

i,j

2h3 

� �0

d� d2k

�2	�3 �k2�Dk2 − i�a�� �−2

��Dk2 − i�1 − �s��a�� �−1� . �4.7�

The “projection factor” �s −s2�2 appearing in the first line of
Eq. �4.7� is inherited from PS. Equation �4.7� yields a result
independent of the slow frequency �2, so we may take
sgn��2��0 without loss of generality. As a consequence, the
only effect of the aforementioned projection factor in Eq.
�4.7� is the restriction of the loop frequency integration to the
half-space � �0. Following a change of variables, Eq. �4.7�
gives

I2S
i,j =

− 42�s�
i,j

2h3 J1„�
a�;�1 − �s��a�

…

= −
− i�a��i,j
2

4	
2dl�1 +

1 − �s

�s
ln�1 − �s�� . �4.8�

The frequency-momentum shell integral J1�z ;z�� in Eq. �4.8�
is defined and evaluated in Appendix D �Eq. �D3��. The
CDW channel contribution I2C

i,j to Eq. �4.6� may be similarly
computed using the propagator PC and working only to low-
est order in �c �i.e., ignoring the logarithmic denominator
�Eq. �3.22�� in Eq. �3.18d��. By using Eq. �3.23� and sum-

FIG. 10. Category D1: Diagrams renormalizing 
A.

FIG. 11. Category D2: Diagrams renormalizing 
.
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ming the identical contributions from D2�b�i and D2�b�ii,
one finds

D2�b�i + D2�b�ii = �
2dl

4	
	�1 +

1 − �s

�s
ln�1 − �s� −

�c

2
�

�
1

2


 ddr Tr��Q̂S

† · �Q̂S� . �4.9�

If we set �c=0 in Eq. �4.9�, the remainder is recognized as
the usual correction to the “dimensionless dc resistance” 
 in
the presence of short-ranged density-density interparticle
interactions.2,59–61

The computation of the final two diagrams D2�b�iii and
D2�b�iv in Fig. 11 is more complicated, as each graph in-
volves two loop frequency integrations. We demonstrate the
evaluation of a diagram involving two frequency loops ap-
pearing in Fig. 15, below. Here, we simply give the result for
the sum:

D2�b�iii + D2�b�iv = �− 
2dl

4	
	�2 +

2 − �s

�s
ln�1 − �s��

�
1

2


 ddr Tr��Q̂S

† · �Q̂S� . �4.10�

The “anomalous” amplitude in Eq. �4.10� is precisely can-
celed by other diagrams.

We now turn to the renormalization of h by the diagrams
in Fig. 12. D3�a� and D3�b� involve the symmetry-breaking
vertex V�b�, fused with the propagators PA and PS+PC, re-
spectively. D3�a� involves a pure momentum shell integra-
tion, while D3�b� requires the integral J2�z ,z�� �Eq. �D4��.
The result is

D3�a� + D3�b� = �− 2dl

8	
	�
A + 
�ln�1 − �s� + �c��

�ih
 ddr Tr���̂��̂3�Q̂S
† + Q̂S�� .

�4.11�

The sum of the remaining diagrams D3�c�–D3�e� gives
zero.

To complete the renormalization of 
 and h, we must
compute the graphs pictured in Fig. 13. D4�a� and D4�b�

involve the cross pairing of the interaction vertices V�c� and
V�d�, with both noninteracting P
 and interacting PS+PC
propagator components. These diagrams are quite lengthy to
evaluate because they require two �D4�a�� and three
�D4�b�� frequency loop integrations and necessitate Taylor
expansions of the fast mode propagators in powers of the
external frequencies and momenta. Other diagrams with
multifrequency loop integrals will be tackled in detail below.
Here, we merely quote the result

D4�a� + D4�b�

= − D2�b�iii − D2�b�iv

+ �
2dl

8	
	��s + ln�1 − �s��ih
ddr Tr���̂��̂3�Q̂S

† + Q̂S�� .

�4.12�

As promised, the anomalous correction to 
 obtained in Eq.
�4.10� is completely canceled by the amplitude D4�a�
+D4�b�. In addition, we pick up a crucial renormalization of
h from Eq. �4.12�.

4. Renormalization of the density of states �(�)

Before we treat the interparticle interaction parameters �U
and �V, we pause to consider the local scaling operator

�a��,r� 
 
 d��

2	
�Q�,��

a,a �r� + Q�,��
†a,a �r�� . �4.13�

With the aid of Eqs. �2.53a� and �2.53b�, it can be seen that
the expectation value of �a�� ,r� in Eq. �4.13� represents a
measure of the disorder-averaged, coarse-grained, single-
particle DOS ���� in the diffusive Fermi liquid, with � mea-
sured relative to the Fermi energy. The scaling behavior of
���� as a function of energy scale � or system size L may be
determined through the renormalization of �a�� ,r�. By ap-
plying the Wilsonian background field decomposition �Eqs.
�3.5� and �3.7�� and the RG program �Eqs. �3.17� and �3.18�
and Table I� of the previous section to Eq. �4.13�, one en-
counters the same diagrams responsible for part of the renor-
malization of the frequency rescaling factor h, graphs D3�a�
and D3�b�, pictured in Fig. 12.

We obtain the renormalization

��a��,r��� � ��a��,r���̃�1 +
2dl

8	
�
A + 
�ln�1 − �s� + �c��	

�4.14�

similar to the amplitude expressed in Eq. �4.11�. In Eq.
�4.14�, the symbols �¯�� and �¯��̃ denote the expectation
value taken with respect to the generating functional Z in Eq.
�3.12� before and after the elimination of the fast modes

Y�,��
a,a� �k�, respectively. In Sec. IV B, we will use Eq. �4.14� to

FIG. 12. Category D3: Diagrams renormalizing h.

FIG. 13. Category D4: Diagrams renormalizing 
 and h.
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derive a flow equation governing the scaling behavior of the
DOS.

5. Renormalization of �U and �V

With the renormalization of the disorder-only sector pa-
rameters 
A, 
, and h complete, we now turn to the �much
more involved� renormalization of the interparticle interac-
tion parameters �U and �V. It will prove convenient to intro-
duce a set of six slow mode operators

�OU ,ŌU ,OV ,OX ,ŌX ,OY�, defined by the expressions given
in Table II. In this table, we have introduced the following
compact notation for the position and frequency space inte-
gral:


 d�1

2	

d�2

2	

d�3

2	

d�4

2	
ddr�1+3,2+4 
 


1,2,3,4
ddr . �4.15�

The operators OU+ŌU and OV correspond to terms in the
original FNL�M action �Eq. �3.3�� �after the saddle point

shift in Eq. �3.1�, with the replacement Q̂→ 1̂+�Q̂S, as in Eq.
�3.14��, coupling to the same-sublattice and intersublattice
interaction strengths �U and �V, respectively. The last three
operators listed in Table II are new; they do not correspond
to terms appearing in Eq. �3.3�. The structures possessed by

the operators OX, ŌX, and OY closely parallel those of OU,

ŌU, and OV, with a crucial difference: the former lack the
frequency-dependent vertex factors s1s3→sgn��1�sgn��3�,
etc., appearing in the latter. We will see that OX, ŌX, and OY
are generated at intermediate steps in the RG process; in
order for the theory to be renormalizable, these terms must
completely cancel upon summing all one-loop diagrammatic
amplitudes. Indeed, this occurs.

We first consider diagrams that �nominally� renormalize
the same-sublattice interaction strength �U, corresponding to

operators OU and ŌU in Table II. We begin with the category
D5 diagrams pictured in Fig. 14. The elements of these dia-
grams include single copies of the V�g� and V�h� vertices
and one of each “flavor” of the propagator components P
,
PA, and PS+PC. Diagrams D5�a�i and D5�a�ii yield pure
momentum shell integrations, with the result

D5�a�i + D5�a�ii = � �
 − 
A�2dl

4	
��UOU. �4.16�

D5�a�iii involves an undetermined loop frequency; we
evaluate this diagram explicitly. Note that in providing the
frequency labels for the single fermion lines in D5�a�iii �Fig.
14�, we have neglected irrelevant small shifts of the loop
frequency  →� by the slow mode frequencies �1,3�
→ ��1 ,�3�, necessary for strict energy conservation. We
have

D5�a�iii =
�2i�a�2

2!
�1+3,2+4�U
 ddr�QS1,2

a,a �QS3,4
a,a I3,

�4.17�

where the frequency-momentum integral divides into the
pieces

I3 
 I3S + I3C. �4.18�

We calculate I3C; up to irrelevant terms,

I3C =
 d� d2k

�2	�3 �− s 
2��c�s1 + s ��s3 − s ���O

a,a�0, �� �,k��2.

�4.19�

PC yields the projection factor �s1+s ��s3−s � in Eq. �4.19�;
this factor gives a nonzero contribution only for s1=−s3=s .
We therefore obtain

TABLE II. Slow mode operators that appear in the renormaliza-
tion of the interaction parameters �U and �V �or, equivalently, �s

and �c�. The operators in this table are summed over Keldysh spe-
cies index �a�, integrated over position space �r�, and integrated
over frequency indices �1,2 ,3 ,4�→ ��1 ,�2 ,�3 ,�4�; we have used
the compact notation introduced in Eq. �4.15� for this integration. In
the interacting sector of the pure slow mode FNL�M action �Eq.

�3.14��, the sum OU+ŌU couples to the same-sublattice interaction
strength �U, while OV couples to the intersublattice interaction con-

stant �V. The operators OX, ŌX, and OY do not correspond to terms
occurring in the original FNL�M action �Eq. �3.3�, after the saddle
point shift in Eq. �3.1�� but are generated at intermediate steps in the
renormalization process.

OU �ai�a�1,2,3,4ddrs1s3�QS1,2
a,a �QS3,4

a,a

ŌU
�ai�a�1,2,3,4ddrs2s4�QS1,2

†a,a �QS3,4
†a,a

OV �ai�a�1,2,3,4ddr2s2s3�QS1,2
†a,a �QS3,4

a,a

OX �ai�a�1,2,3,4ddr�QS1,2
a,a �QS3,4

a,a

ŌX
�ai�a�1,2,3,4ddr�QS1,2

†a,a �QS3,4
†a,a

OY �ai�a�1,2,3,4ddr2�QS1,2
†a,a �QS3,4

a,a

FIG. 14. Category D5: Diagrams renormalizing �U.
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I3C =
�c�s1 − s3�2

h2 

� �0

d� d2k

�2	�3 �Dk2 − i�a� �−2

=
�c�s1 − s3�2

h2 J3��a� =

i�a2dl

32	
�c�s1 − s3�2, �4.20�

where we have used Eqs. �3.21b� and �D5�. Evaluating I3S
�Eq. �4.18��, in a similar fashion using Eq. �D4�, and com-
bining this with Eqs. �4.17� and �4.20�, we find the result

D5�a�iii = �
2dl

8	
	��c − ln�1 − �s���U�OU − OX� .

�4.21�

The amplitude in Eq. �4.21� renormalizes the same-sublattice
interaction operator OU↔�U but also generates its “evil
twin,” OX, which does not appear in the original theory �Eqs.
�3.2� and �3.3��.

The amplitudes for D5�b�i–D5�b�iii mirror those found in
Eqs. �4.16� and �4.21�:

D5�b�i + D5�b�ii =
�
 − 
A�2dl

4	
�UŌU �4.22�

and

D5�b�iii = �
2dl

8	
	��c − ln�1 − �s���U�ŌU − ŌX� .

�4.23�

We next direct our attention to the large array of diagrams
shown in Fig. 15, denoted as category D6. The diagrams in
subcategory D6�a� �D6�b�� pair together two copies of the
vertex V�c� �V�d��. Moreover, as suggested by the figure,
diagrams D6�a�m and D6�b�m, with m� �i , . . . ,vi�, give
structurally similar results that renormalize same-sublattice
�Eqs. �2.53a� and �2.53b�� local operators involving

�QS1,2
a,a �QS3,4

a,a �OU or OX� and �QS1,2
†a,a �QS3,4

†a,a �ŌU or ŌX�, re-
spectively. We therefore evaluate the subcategories D6�a�
and D6�b� simultaneously.

D6�a�i and D6�b�i each possess a single frequency loop,
which may be evaluated using Eq. �D5� giving the result

D6�a�i + D6�b�i = �− 
2dl

8	
	� �U��s + �c��OU + ŌU�

+ �V��s − �c��OX + ŌX�
� .

�4.24�

D6�a�ii and D6�a�iii give identical contributions. We
evaluate D6�a�iii as an example of a diagram with two fre-
quency loop integrations over  →� and "→�". Using the
Feynman rules, we have

D6�a�iii =
�2i�a�3

2!
�1+3,2+4
 ddr�QS1,2

a,a �QS3,4
a,a I4,

�4.25�

where the frequency-momentum integral again separates into

I4 
 I4S + I4C, �4.26�

corresponding to the PS and PC components of the interac-
tion sector propagator in D6�a�iii �Fig. 15�. We first compute
I4S; up to irrelevant terms, one finds

I4S =
 d� d�"d2k

�2	�4 �s�s1 − s ��s +" − s"�s 
2��Us3 − �Vs �

���Us" − �Vs +"���O
a,a�0, �� �,k��2�S

a��� �,k� . �4.27�

Although this expression entails two frequency loop integra-
tions, the propagator kernels �O and �S in Eq. �4.27� depend
exclusively on a single frequency variable, � . The integral
over �" yields only a kinematical factor of �� �: the projector
s +"−s" in Eq. �4.27� gives a nonzero contribution as a func-
tion of �" only over a frequency segment of length �� �; over
this range, �Us"−�Vs +"=s"2�s. The factor s1−s limits the
range of the � integration to the half-line �as usual�; one
obtains

I4S =
− 4�s

2

	h3 ��Us1s3 + �V�

� �0

d� d2k

�2	�3 � 

��Dk2 − i�a� �−2�Dk2 − i�1 − �s��a� �−1.

�4.28�

We use Eq. �D6� to evaluate the integral, and we find the
result

I4S =
− 4�s

2

	h3 ��Us1s3 + �V�J4„�
a;�1 − �s��a

…

=
− 
2dl

32	
��Us1s3 + �V���s + ln�1 − �s�� . �4.29�

What we have found here is well known �see, e.g., Ref. 41�
from other Finkel’stein NL�Ms: in a one-loop calculation, a
given diagram may involve n= �0,1 ,2 , . . . � undetermined
frequency loops; however, for n�2, n−1 of the associated
frequency integrations typically give simple kinematical fac-

FIG. 15. Category D6: Diagrams renormalizing �U.
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tors, and the final diagrammatic amplitude can almost always
be expressed in terms of an integration over a single loop
frequency and a single loop momentum, as in Eq. �4.28� �but
see the evaluation of D9�b�i �Eq. �4.45�� and D13 �Eq.
�4.51���.

We can try to evaluate I4C in a similar fashion, but the
associated amplitude goes like 
�c

2�1+O��c��. In our one-
loop results �Eqs. �4.57a�-�4.57e�, �5.3a�-�5.3e��, we keep
only terms to second homogeneous order in 
 and �c in the
flow equations for the interaction constants �s and �c; there-
fore, we neglect the contribution of I4C.

By combining Eqs. �4.25� and �4.29� and accounting for
the identical contribution from D6�a�ii, we have

D6�a�ii + D6�a�iii = �
2dl

4	
	��s + ln�1 − �s����UOU + �VOX�

�4.30�

and, similarly,

D6�b�ii + D6�b�iii = �
2dl

4	
	��s + ln�1 − �s����UŌU + �VŌX� .

�4.31�

Diagrams D6�a�iv and D6�b�iv each contain two fre-
quency loops; the result obtained is

D6�a�iv + D6�b�iv = �− 
2dl

8	
	��s��s + ln�1 − �s�� − �c

�s
2

2
�

��OU − OX + ŌU − ŌX� . �4.32�

D6�a�v and D6�a�vi provide examples of the most compli-
cated type of diagram that appears to one loop, involving
three loop frequencies each. The computation nonetheless
proceeds similar to the above, and one finds that

D6�a�v + D6�b�v = �− 
2dl

8	
	�s��s�2 − �s

1 − �s
	 + 2 ln�1 − �s��

��OU + OX + ŌU + ŌX� . �4.33�

Finally, we give the result for the last two diagrams in Fig.
15,

D6�a�vi + D6�b�vi = �
2dl

8	
	��s��s�2 − �s

1 − �s
	 + 2 ln�1 − �s��

− �c�ln�1 − �s� + �s +
�s

2

2
��

��OU − OX + ŌU − ŌX� . �4.34�

We denote the sum of the amplitudes in each of the dia-
gram categories evaluated above using the category symbols
D5 and D6. We express our results in terms of the interac-
tion parameters �s and �c, defined via Eq. �2.54�, as well as
the relative versions �s and �c, introduced in Eqs. �3.21a�
and �3.21b�. We drop terms higher than first order in �c �or
�c�.

By summing results from Eqs. �4.16�, �4.21�–�4.24�, and
�4.30�–�4.34�, a large number of nontrivial cancellations oc-
cur, and we find the results

D5 + D6 = �− 2dl

8	
	�2�
A − 
���s + �c���OU + ŌU�

+ �− 2dl

8	
	�2
�s�s

1 − �s
��OX + ŌX� . �4.35�

The diagrams in category D7 �Fig. 16� nominally renor-
malize the intersublattice interaction strength �V, corre-
sponding to the operator OV in Table II. The computation of
these graphs closely parallels the results we have obtained
above in Eq. �4.35�. By summing the diagrams in category
D7, we obtain

D7 = �− 2dl

8	
	�− 2
A��s − �c��OV + �− 2dl

8	
	�2
�s�s

1 − �s
�OY .

�4.36�

In the partial results given by these equations, observe the
almost complete cancellation of all “junk” terms involving

the operators OX, ŌX, and OY, not present in the original
FNL�M action �Eqs. �3.2� and �3.3��. In fact, the remaining

terms proportional to OX+ŌX and OY in Eqs. �4.35� and
�4.36�, respectively, exactly cancel up to terms fourth order

in the slow mode fluctuations �Q̂S and �Q̂S
† . To see this, we

use Eqs. �3.5� and �3.6� to write

�Q̂S + �Q̂S
† = − �Q̂S�Q̂S

† . �4.37�

Repeated applications of Eq. �4.37� prove the identification

OY = − �OX + ŌX� + ��Q̂S�Q̂S
† �2. �4.38�

Thus, to our working order in the slow mode fields, the
FNL�M appears �so far� to be renormalizable.62 We must
complete the one-loop calculation to verify this.

6. (Further) renormalization of �s and �c

The interaction sector renormalizations described by the
remaining diagrams in Figs. 17–22 are most compactly

FIG. 16. Category D7: Diagrams renormalizing �V.
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stated in terms of corrections to the linear combinations �s
and �c �Eq. �2.54��, which couple to the slow mode operators

Os 
 OU + ŌU + OV

Oc 
 OU + ŌU − OV, �4.39�

respectively �Eq. �3.14��.
Category D8 diagrams are shown in Fig. 17. The dia-

grams in subcategory D8�a� involve vertices V�j� and V�k�,
with propagator components PA and PS+PC. The sum of
these four graphs gives

D8�a� = �− 2dl

8	
	�2
A + 2
��c + ln�1 − �s�����sOs + �cOc� .

�4.40�

The diagrams in subcategory D8�b� each pair together
two copies of the vertex V�e�, with various combinations
of the propagator components P
 and PS+PC. Graphs
D8�b�i–D8�b�vi each encompass two frequency loops, and
their evaluation proceeds along the lines of D6�a�iii �Eqs.
�4.25�–�4.30��. Diagrams D8�b�v and D8�b�vi precisely
cancel. The sum of all six graphs in D8�b� gives

D8�b� = �
2dl

8	
	�2�c�s

2�Os. �4.41�

The eight diagrams in category D9 �pictured in Fig. 18�
represent only two discernible amplitudes. These diagrams
also involve two copies of the vertex V�e�, with the 
A
propagator component PA in combination with P
 or PS
+PC. The four graphs in subcategory D9�a� each give iden-
tical contributions, with the sum

D9�a� = �
A2dl

8	
	�s�sOs. �4.42�

Likewise, each of the four diagrams in subcategory D9�b�
gives the same amplitude. Each of these graphs involves two
undetermined frequency loops. We explicitly evaluate
D9�b�i because the structure of the two frequency loop inte-
gration is quite different from that of Eq. �4.27�, studied in
the previous subsection. By using the Feynman rules, we
write

D9�b�i =
2�i�a�3

2!
�− 
A�s

2


2 	�1+3,2+4
 ddr��s1�QS1,2
a,a

+ s2�QS1,2
†a,a ��s3�QS3,4

a,a + s4�QS3,4
†a,a ��I5. �4.43�

In this equation, note that both of the two V�e� vertices con-
tribute only the portions of the associated vertex amplitudes
�Table I� proportional to �s; all other terms vanish. The inte-
gral I5 separates into parts:

I5 
 I5S + I5C, �4.44�

corresponding to interacting propagator components PS and
PS, respectively. From the figure and given the structure of
PS �Eq. �3.18c��, it can be seen that I5S=0. On the other
hand, I5C may be written as

I5C =
 d� d�"d2k

�2	�4 �c�2s �2�2s"�2k2��O
a,a��� �, �� �,k�

��O
a,a���"�, ��"�,k��2. �4.45�

FIG. 17. Category D8: Diagrams renormalizing �s and �c.

FIG. 18. Category D9: Diagrams renormalizing �s=
�U+�V

2 .

FIG. 19. Category D10: Diagrams renormalizing �s=
�U+�V

2 .
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Distinct from the two frequency loop integration previously
evaluated �Eq. �4.27��, the propagator kernels �O in Eq.
�4.45� depend on either of the two loop frequencies � or
�". Equation �4.45� should be understood as an integration
over the full frequency-momentum shell, �Eqs. �3.11a�-
�3.11c��, pictured in Fig. 6, in the space ��� � , ��"� ,Dk2�. It
may be evaluated using Eq. �D7�:

I5C =
26�c

h4 J5�2�a� =
− 
22dl

	�	h�2 �c. �4.46�

By summing identical contributions from all four diagrams
in D9�b�, we obtain

D9�b� = �− 
A2dl

8	
	�2�c�s

2�Os. �4.47�

The eight category D10 diagrams depicted in Fig. 19 pair
V�e� with the other “triangular” interaction vertices, V�c�
and V�d�. The evaluation of these graphs proceeds as in Sec.
IV A 5; we give only the result for the entire category:

D10 = �− 2dl

8	
	�s�
�2�c − 2 ln�1 − �s�� − 4
A�c�Os.

�4.48�

Categories D11 and D12 appear in Figs. 20 and 21, re-
spectively. The diagrams in these categories share the same
structural elements as those in D10, but there is no net con-
tribution to the RG from either D11 or D12. The graphs in
Fig. 20 cancel pairwise:

D11�a�i + D11�a�ii = D11�a�iii + D11�a�iv

= D11�b�i + D11�b�ii = D11�b�iii

+ D11�b�iv = 0. �4.49�

The individual diagrams in category D12 correspond to the
generation of new operators, not present in the original
FNL�M action �Eqs. �3.2� and �3.3��. Fortunately, their sum

gives zero �up to terms O��Q̂S
3 �, the cancellation of which we

have not checked in detail�.
Finally, we evaluate the single diagram in D13 �Fig. 22�.

In this figure, two copies of the vertex V�f� are connected by
a single, basic diffuson propagator P
. D13 is unique among
the graphs presented in this paper in that it involves a pure

frequency loop integration since the momentum carried by
P
 between the slow mode fields at the vertices is necessarily
slow. We will see that D13 drives the CDW instability in the
clean limit, 
, 
A→0. Such a contribution appears naturally
in the frequency-momentum shell RG but not in a pure mo-
mentum shell scheme.2,3,57,58 Using the Feynman rules, we
write

D13 =
�2�a�2

2!
�1+3,2+4�c

2
 ddr��s1�QS1,2
a,a − s2�QS1,2

†a,a �

��s3�QS3,4
a,a − s4�QS3,4

†a,a ��I6. �4.50�

In writing the amplitude for D13 �Eq. �4.50��, we have ex-
actly the opposite of the situation we had with D9�b�i �Eq.
�4.43��: both of the two V�f� vertices in Eq. �4.50� contribute
only the portions of the associated vertex amplitudes �Table
I� proportional to �c; all other terms vanish. The pure fre-
quency integral I6 may be evaluated as

I6 =
 d� 

2	
�2s �2�O

a,a��� �, �� �,q�

=
4

	h



�̃

�

d� �Dq2 − 2i�a� �−1 �
4i�a

2	h
2dl .

�4.51�

By combining Eqs. �4.50� and �4.51�, we obtain the result

D13 = �c�c2dlOc. �4.52�

This expression is second order in �c but zeroth order in the
disorder strength 
.

B. Dimensional analysis

We obtain the flow equations for the FNL�M parameters
in the usual way, by re-exponentiating the diagrammatic cor-
rections derived in the previous subsection and subtracting
them from the pure slow mode action SS �Eq. �3.14�� and by
rescaling position r and time t via

r → br , �4.53a�

FIG. 20. Category D11: Diagrams renormalizing �s=
�U+�V

2 .

FIG. 21. Category D12: Additional nonzero diagrams, which
cancel in pairs. Contributions from individual diagrams correspond
to the generation of local operators not present in the original
model.

FIG. 22. Category D13: Diagram renormalizing �c=
�U−�V

2 .
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t → bzt , �4.53b�

where b�1+dl is the change in length scale, and z is the �so
far undetermined, possibly scale-dependent� dynamic critical
exponent. Equivalently, Eqs. �4.53a� and �4.53b� imply that
momentum k and frequency � carry the engineering dimen-
sions

�k� = 1, �4.54a�

��� = z , �4.54b�

both stated in inverse length units. A similar analysis of the
FNL�M action, Eqs. �2.49� and �2.50� �or �3.2� and �3.3��,
gives the engineering dimensions of the field matrix ele-
ments:

�Q�,��
a,a� �r�� = − z, �Qt,t�

a,a��r�� = z , �4.55�

and of the model coupling constants,

�
� = �
A� = 2 − d , �4.56a�

�h� = ��s� = ��c� = d − z , �4.56b�

and

��s� = ��c� = 0, �4.56c�

where �s and �c ��s and �c� were defined in Eq. �2.54� �Eqs.
�3.21a� and �3.21b��.

By combining the above dimensional analysis with the
diagrammatic results �Eqs. �4.4�, �4.9�–�4.12�, �4.35�, �4.36�,
�4.40�–�4.42�, �4.47�, �4.48�, and �4.52��, we obtain the one-
loop RG equations

d


dl
= − �
 −


2

4	
�c +

2
2

4	
�1 +

1 − �s

�s
ln�1 − �s��

+ O�
2�c
2,
3� , �4.57a�

d
A

dl
= �
A +


2

4	
+ 2


A




d


dl
+ O�
3� , �4.57b�

d�s

dl
= �d − z��s +

1

4	
�2
A − 
���s + �c� +

1

4	
�2�
 − 
A�

��2 − �s��s�c − 
A�s�s�

+ O�
�c�c,
A�c�c,

2�s/c,

A�s/c� , �4.57c�

d�c

dl
= �d − z��c +

1

4	
�2
A − 
���s + �c�

+
1

4	
�2
�c ln�1 − �s�� − 2�c�c

+ O�
�c�c,
A�c�c,

2�s/c,

A�s/c� , �4.57d�

d ln h

dl
= �d − z� +

1

4	
�
A + 
��c − �s�� + O�
�c

2,
2,

A� .

�4.57e�

In Eqs. �4.57a� and �4.57b�, we have set d=2+� explicitly.
The flow equations �4.57a�-�4.57e� are given to the lowest

nontrivial orders in both the dimensionless dc resistance pa-
rameter 
 and the CDW interaction strength �c �or �c�. Spe-
cifically, we retain terms in Eq. �4.57a�-�4.57c� and �4.57e�
only to first order in �c, i.e., terms O�
2�c� �Eq. �4.57a�� and
terms O�
�c ,
A�c� �Eqs. �4.57c� and �4.57e��. In principle,
since we make no assumption about the smallness of 
A, we
should retain terms O�
A

n�c�, with n� �1,2 ,3 . . . �, but only
n=1 appears in the RG equations. The second order pure
CDW self-interaction, �−2�c�c� in Eq. �4.57d�, is the sole
exception to the rule; this term is tied to the ballistic Fermi
liquid physics in the presence of sublattice symmetry �and
therefore nesting� and must be retained in the weakly disor-
dered limit. We have checked by numerical integration that
all of the results presented in Sec. V, including the identifi-
cation of a disorder-driven, interaction-mediated instability
of the diffusive Fermi liquid phase in d=2+� dimensions,
are unmodified �within the perturbatively accessible coupling
strength regime� by the inclusion of higher order terms in �c.

By using Eq. �4.14�, one may also obtain a flow equation
governing the scaling behavior of the disorder-averaged
DOS ����. In the �Keldysh� sigma model formalism, Eqs.
�4.13� and �4.55� imply that the DOS carries zero engineer-
ing dimension, so that Eq. �4.14� implies the flow equation

d ln �

dl
= −

1

4	
�
A + 
 ln�1 − �s� + 
�c� . �4.58�

V. RESULTS AND DISCUSSION

In this section, we summarize and interpret the results of
the RG calculation, set up in Sec. III and performed in Sec.
IV, for the FNL�M originally defined by Eqs. �2.48�–�2.50�,
in Sec. II. The FNL�M action given by Eqs. �2.49� and
�2.50� is parametrized by five coupling constants: 
, propor-
tional to the dimensionless dc resistance of the system; 
A,
which gives a second measure of the hopping disorder �as-
sociated with quenched orientational fluctuations of bond
strength dimerization, as discussed in Secs. II A 3 and
II A 4�; h, which tracks the relative scaling of length and
time in the theory; �U and �V, which characterize the
strengths of generic short-ranged same-sublattice and inter-
sublattice interparticle interactions, respectively, in the
coarse-grained FNL�M description. Alternatively, we have
introduced the interaction parameters �s and �c �the sum and
difference of �U and �V, see Eq. �2.54��, which couple to the
square of the smooth and of the sublattice staggered local
charge densities, respectively. As discussed below Eq. �2.54�,
a staggered interaction �c�0 is expected to promote the
CDW instability in the clean limit �i.e., we identify �c�Wc,
with Wc defined by Eq. �1.8� for the Hubbard-like model
given by Eq. �1.1��. The RG calculation has been performed
with the aid of an epsilon expansion in d=2+� spatial di-
mensions, with 0���1.

The one-loop RG flow equations for the coupling
strengths 
, 
A, �s, �c, and h were obtained at the end of the
previous section, in Eqs. �4.57a�-�4.57e�. We restate them
below in a slightly more streamlined form. We will need the
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“relative interaction parameters” �s and �c, defined in Eqs.
�3.21a� and �3.21b�, repeated here for convenience:

�s 

4

	h
�s =

2

	h
��U + �V� , �5.1a�

�c 

4

	h
�c =

2

	h
��U − �V� . �5.1b�

Next, we perform a trivial rescaling of the coupling constants
appearing in Eqs. �2.49�, �4.57a�-�4.57e�,


 → 4	
, 
A → 4	
A, �5.2�

after which the one-loop RG flow equations for the couplings

, 
A, �s, �c, and h take the following form in d=2+� di-
mensions:

d


dl
= − �
 − 
2�c + 2
2�1 +

1 − �s

�s
ln�1 − �s�� ,

�5.3a�

d
A

dl
= �
A + 
2 + 2


A




d


dl
, �5.3b�

d�s

dl
= 
A�1 − �s���s + 2�c − 2�s�c�

− 
�1 − �s���s + �c − 2�s�c� , �5.3c�

d�c

dl
= 
A��c + 2�s� − 
��s + �c�

+ 
�2�c ln�1 − �s� + �s�c� − 2�c
2, �5.3d�

d ln h

dl
= �d − z� + 
A + 
��c − �s� , �5.3e�

where l is the logarithm of the spatial length scale. The pa-
rameter z in Eq. �5.3e� is the �as yet undetermined, possibly
scale-dependent� “dynamic critical exponent.”63 We have
also calculated the scale dependence of the disorder-
averaged, single-particle DOS ����. By implementing the
rescaling of Eq. �5.2� in Eq. �4.58�, the one-loop flow equa-
tion for � is

d ln �

dl
= − �
A + 
 ln�1 − �s� + 
�c� . �5.4�

Flow equations �5.3a�-�5.3e� and �5.4� are given to the
lowest nontrivial order in the parameters 
 and �c but con-
tain contributions from 
A and �s to all orders. This is an
advantage of the Finkel’stein NL�M formulation, which
provides3 a loop expansion that is controlled perturbatively
by the �small� dimensionless resistance 
, but which does not
require the coupling strengths 
A or �s to be small. We will
discuss the physics that emerges from an analysis of our
results �Eqs. �5.3a�-�5.3e�� in turn for d=2 and d�2 dimen-
sions.

A. Structure of the one-loop flow equations

To gain an understanding of the competing mechanisms
driving the RG flow, we isolate the effects of the various
terms in Eqs. �5.3a�-�5.4�. Fortunately, the most important
structures in these equations either occur generically in the
perturbative description of interacting, diffusive Fermi
liquids2,3,59–61 or can be tied specifically to the special SLS
�Eq. �1.2�� and its effects on the well-understood limits of �i�
disorder with vanishing interparticle interactions9,12,13 and
�ii� interactions with vanishing disorder.23,24

1. Noninteracting limit

We first consider the noninteracting limit. In d=2 spatial
dimensions, the FNL�M �Eqs. �2.48�–�2.50�� with �U=�V
=0 ��s=�c=0� and nonzero-disorder couplings 
 and 
A de-
scribes an unusual low-dimensional delocalized state,9,12,13

analogous in many ways to the type of critical state40,64,65

that occurs at a continuous, three-dimensional �Anderson�
MIT of noninteracting diffusive electrons in the absence of
SLS. At such an ordinary Anderson transition, the single-
particle wave functions at the Fermi energy are extended,
and thus capable of transporting charge, heat, etc., across the
system, but these states are also very far from the plane
waves of a clean Fermi gas and exhibit so-called multifractal
scaling64,65 �due to the presence of the disorder�. In d=2, the
extended single-particle wave functions reside only at the
band center �energy �=0� for arbitrarily weak disorder �i.e.,
wave functions are exponentially localized, with a localiza-
tion length that diverges upon approaching the band center
��→0��,9,12 so that the critical state appears only at half-
filling �a necessary but not sufficient condition for SLS, Eq.
�1.2��. The critical state at the band center ��=0� described
above characterizes the 2D noninteracting random hopping
model defined by the Hamiltonian in Eqs. �1.1� and �1.9�,
with U=V=0.9,12,13 This delocalized state turns into a some-
what more conventional metallic one in d�2, but it is still
distinguished by SLS �and broken TRI�. �See also the discus-
sion in the Introduction, Sec. I B, especially Figs. 3 and 4.�

These conclusions follow from the fact that a variety of
aspects of the class AIII non-interacting sigma model, argued
in Sec. II and in Refs. 9, 12, and 13 to capture the low-
energy physics of the sublattice symmetric random hopping
model lacking TRI, can be solved13 exactly in d=2 using
conformal field theory techniques. In particular, in the ab-
sence of interactions, it is possible13 to obtain the exact
renormalization group equations �to all orders in 
 and 
A� in
two dimensions for the disorder-only sector sigma model pa-
rameters 
 and 
A and for the average density of states � in
a particular RG scheme. These are of the following forms:66

d


dl
= 0, �5.5a�

d
A

dl
= f1�
� + 2


A




d


dl
, �5.5b�

= f1�
�
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d ln �

dl
= − 
Af2�
� − f3�
� , �5.5c�

with f i�
�, i� �1,2 ,3�, real analytic �RG-scheme-dependent�
functions of 
. By using the results of our perturbative analy-
sis �Eqs. �5.3a�, �5.3b�, and �5.4�� and setting �=0, we find
agreement with Eqs �5.5a�, �5.5b�, and �5.5c�, obtaining the
lowest order terms in the expansions

f1�
� = 
2 + O�
3� , �5.6a�

f2�
� = 1 + O�
� , �5.6b�

f3�
� = 0 + O�
2� . �5.6c�

The lowest order �one-loop� results in Eqs. �5.5a�-�5.6c�, are
universal and were originally obtained via perturbative meth-
ods by Gade and Wegner in Ref. 9. Equation �5.5a� states
that the dimensionless dc resistance 
 is exactly marginal in
d=2; equivalently, the dimensionless conductance g scales
classically since all quantum corrections to it vanish. The
exact marginality of 
 demonstrates that Anderson localiza-
tion effects are “disabled” by SLS at the band center in the
2D random hopping model. We can extend these results for
the one-loop RG equations of the NL�M to d=2+� dimen-
sions by simply adding the appropriate engineering dimen-
sion terms, i.e., −�
 to Eq. �5.5a� and −�
A to the second line
of Eq. �5.5b�.67 �See Eq. �4.56a�.� Moreover, this procedure
yields68,69 the exact result for the RG equation for 
, which
�from Eq. �5.5a�� reads in d=2+� dimensions as d
 /dl=
−�
. We conclude from this field theory treatment of the
system that, in the absence of interactions and in dimensions
d�2, the delocalized phase, characterized by a finite con-
ductivity, persists even for “strong” disorder; in particular,
even the strongly disordered system exhibits no transition
into a localized phase �as already mentioned in the Introduc-
tion�.

The behavior of the system in d=2 is special in that the
dimerization disorder70 parameter 
A is �logarithmically�
driven to strong coupling at a rate determined by f1�
� �Eq.
�5.5b��. The running 
A feeds into the average density of
states ����, as shown in Eq. �5.5c�. This equation in turn
implies the divergence of the low-energy DOS upon ap-
proaching the band center, taken to reside at �=0. Specifi-
cally, one finds that in two dimensions,9,12,13

���� �
1

�
exp�− c�ln �� � �5.7�

in the limit as �→0, where c=c�
� is a scale-independent
constant and the exponent  is 1 /2.71 Note that the DOS
divergence in Eq. �5.7� that occurs in the 2D random hopping
model has nothing to do with Fermi surface van Hove sin-
gularities, which may appear only in the clean limit,73 e.g., in
the case of pure nearest-neighbor hopping on the square lat-
tice, where such a singularity at half-filling gives a weaker,
logarithmic divergence. Returning to the random hopping
model, in d�2, the low-energy DOS is finite but parametri-
cally enhanced at the band center. �See Figs. 3 and 4 in Sec.
I B.� By contrast, the density of states in a noninteracting
ordinary diffusive metal �lacking SLS and being in one of the

three Wigner–Dyson classes� is typically not renormalized
by the disorder.40

2. Interparticle interactions: Diffusive Fermi liquid and clean
Hubbard-like model physics

We now turn to the interpretation of various pieces of Eqs.
�5.3a�-�5.3e� involving the interparticle interactions. We first
consider the term in square brackets on the right-hand side of
Eq. �5.3a�. This term can be recognized as the usual pertur-
bative correction to the inverse conductance in a diffusive
Fermi liquid in the presence of short-ranged interparticle
interactions2,59,60 and may be interpreted61 as coherent back-
scattering of carriers off of disorder-induced Friedel oscilla-
tions in the background electronic charge density. Back-
ground density fluctuations become a source of on-site
disorder in the presence of electron-electron interactions, so
that we may attribute this nontrivial correction to “dynamic
SLS breaking.”

Next, we note the nontrivial zero of the one-loop RG
equation �5.3c� at �s=1. �A factor of �1−�s� is expected in
all orders.� This zero follows from the established represen-
tation of the thermodynamic compressibility �n /�#
$ in
terms of the Finkel’stein model parameters,3

$ � h�1 − �s� = h −
4

	
�s, �5.8�

valid in the diffusive Fermi liquid regime, where we have
used Eqs. �5.1a� and �5.1b� and where we set z=d �see Eq.
�5.3e��. Equation �5.8� shows that the incompressible limit
$→0 is attained by sending �s→1 �for finite h�. From the
definition Eq. �5.1a�, we have

d�s

dl
= −

1

h

d

dl
�h −

4

	
�s	 + �1 − �s�

d ln h

dl

� −
1

h

d$

dl
+ �1 − �s�

d ln h

dl
. �5.9�

In an interacting, disordered normal metal, $ receives no
divergent corrections,3 so that the condition �d�s /dl���s=1�
=0 is satisfied automatically. In the advent of sublattice sym-
metry, however, $ does renormalize, so that the first term on
the right-hand side of Eq. �5.9� is typically nonzero. This can
be seen from the noninteracting limit, where $ is equivalent
to the single-particle density of states �; as shown in Eq.
�5.7� for the 2D case, ���� is strongly renormalized upon
approaching the band center ��→0�. Regardless of this, it is
plausible to expect that in the limit �s=1 and $=0, the in-
compressibility of the diffusive Fermi liquid is preserved un-
der the RG flow, so that d$ /dl��s=1�=0, and therefore
�d�s /dl���s=1�=0, as we have found in Eq. �5.3c�.

Finally, we note that the last term on the second line of
Eq. �5.3d� drives the CDW instability, which is a remnant of
the clean Hubbard-like model �recall that in our conventions,
�c�0 signals this instability�.

B. Results (i): No metallic phase in d=2

Finally, we analyze our results considering first the 2D
case. As discussed above in Sec. V A 1, the noninteracting
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NL�M describes in d=2 an unusual critical, delocalized
state of the random hopping model in Eqs. �1.1� and �1.9�
with U=V=0. Other noninteracting models of disordered
electrons are also known to possess delocalized states in d
=2, such as the spin-orbit �“symplectic”� normal metal class,
where, e.g., a delocalized �metallic� phase occurs for suffi-
ciently weak disorder.40 The latter delocalized phase is, how-
ever, destabilized3 by the introduction of �in this case, long-
ranged� 3D Coulomb interactions, yielding an insulator in
the presence of both disorder and interactions in d=2. What
is the analogous outcome in the presence of sublattice sym-
metry, i.e., for the Hubbard-like models which are the focus
of this work? The answer may be obtained by specializing
Eqs. �5.3a�-�5.3d� to the vicinity of �s=�c=0. The linearized
flow equations are given by �5.5a� and �5.5b� with �5.6a�,
and

d�U

dl
� �3
A − 2
��U, �5.10a�

d
V

dl
� − 
A�V, �5.10b�

where we have introduced the relative same-sublattice �inter-
sublattice� interaction strength �U
�s+�c ��V
�s−�c� �cf.
Eqs. �2.54�, �5.1a�, and �5.1b��. �Note that while this result is
valid only to first order in 
, no such restriction is placed on

A.� Equation �5.10a� shows that the same-sublattice interac-
tion strength �U positively feeds back upon itself via the
special sublattice class disorder coupling 
A�0. Since the
latter is always driven to strong coupling �see Eqs. �5.5b� and
�5.6a�� in d=2 for any 
�0, we see that same-sublattice
interactions are rapidly enhanced as we renormalize the
FNL�M. At the very least, our result implies that the nonin-
teracting description is unsuitable for describing the ground
state of the 2D version of the full interacting, disordered
Hubbard-like lattice model. This should be compared to an
analogous result18 previously obtained for a TRI, interacting
random hopping model on the honeycomb lattice. In both
models, the noninteracting phase is initially destabilized by
the growth of short-ranged same-sublattice interparticle in-
teractions, as in Eq. �5.10a�, and this growth is mediated by
a special disorder coupling, here 
A, which occurs in general
in the description of a random lattice model with an under-
lying SLS.74

Turning to an analysis of the full flow equations �5.3a�-
�5.3e�, we observe that Eq. �5.3b� precludes the existence of
any perturbatively accessible, nontrivial fixed points occur-
ring at nonzero resistance 
�0 for small ��0 �d�2�. By
numerically integrating Eqs. �5.3a�-�5.3e� for generic initial
conditions in d=2, we observe that either �c→−!, signaling
CDW formation, or that 
, 
A→! and �c→ +!, indicating a
flow toward simultaneously strong disorder and strong inter-
actions. We demonstrate below that in d�2 dimensions,
these two flow directions away from the noninteracting state
evolve into two distinguishable instabilities of the diffusive
Fermi liquid, which exists as a stable phase throughout a
region of finite volume in the four-dimensional �
 ,
A ,�s ,�c�
coupling constant space. By contrast, since we find no stable

metallic region for �=0, we expect that the 2D disordered
and interacting Hubbard-like model in Eqs. �1.1� and �1.9� is
always an insulator at zero temperature.

We see that in two dimensions, sublattice symmetry is
both the genesis of delocalized �critical� behavior in the ab-
sence of interactions, as well as the doom of such behavior in
the presence of interactions. Moreover, in the Hubbard-like
model studied in this work, SLS is also responsible for the
Mott insulating charge density wave ground state in the clean
limit. The physics that we have found is consistent with nu-
merical studies38,39 of the half-filled spin-1 /2 Hubbard
model in d=2, which have shown that TRI random hopping
disorder preserves the charge compressibility gap of the
clean Mott insulator, and that the disordered and interacting
system shows no signs of metallic behavior.

C. Results (ii): Fermi liquid instability in d=2+�

The situation in d= �2+���2 dimensions is more interest-
ing. Upon increasing � from zero, a narrow, irregularly
shaped sliver corresponding to a stable metallic, diffusive
Fermi liquid opens up in the four-dimensional �4D�
�
 ,
A ,�s ,�c� coupling constant space. �A metallic, diffusive
Fermi liquid is a state characterized by the condition that
both disorder parameters 
 and 
A tend to zero at large
length scales, whereas the interaction parameters approach
�s→const and �c→0 in the same limit; see Fig. 24. In this
limit, the FNL�M discussed in Sec. III becomes a simple,
weakly coupled Gaussian theory.3� The sliver encloses the
line 
=
A=�c=0, with −!��s�1, the entirety of which is
perturbatively accessible because the FNL�M does not re-
quire the interaction strength �s to be small. A highly sche-
matic 3D “projected” phase diagram is depicted in Fig. 23.

s

c

A,

CDW

"Anderson-

Mott"

1

FIG. 23. Schematic phase diagram in d=2+� dimensions, with
0���1. 
 and 
A are both measures of the disorder, whereas �s

and �c characterize the interaction strengths. The full phase diagram
resides in the 4D �
 ,
A ,�s ,�c� coupling constant space; this figure
can be thought of as a 3D projection of this space, where the ver-
tical axis �perpendicular to the interaction axes� measures the total
disorder strength for some fixed ratio of 
 /
A. The stable metallic
phase resides between the ballistic plane �
=
A=0� and the shaded
sheath; the thick arrows indicate the two instabilities of the �metal-
lic� diffusive Fermi liquid discussed in the text.
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In this figure, the interaction constants ��s ,�c� reside in the
horizontal plane, while the vertical direction schematically
represents �both� disorder strengths, �
 ,
A�. For example, we
could take the vertical direction to measure the geometric
average �

A while fixing the ratio 
 /
A to a constant. The
shaded sheath in Fig. 23 is a cartoon for the boundary of the
stable metallic volume, which resides between it and the bal-
listic �
=
A=0� plane. Over the range of perturbatively
small values of �c, the stable metallic, diffusive Fermi liquid
phase resides in the region �c%0, terminating near �c=0.
For �c�0, the “height” of the stable metallic volume in the
vertical “disorder” direction is controlled by � and is ap-
proximately independent of �c �as indicated in Fig. 23�, al-
though the precise shape and size of the phase boundary do
vary with the ratio 
 /
A and with �s, making it difficult to
characterize analytically.

The flow equations �5.3a�-�5.3d� possess no nontrivial RG
fixed points in dimensions d�2, which would be accessible
in an epsilon expansion about d=2. Thus, no continuous
metal-insulator transition can be identified. However, the two
instabilities described in the previous subsection for the d
=2 case persist for d�2 and become clearly distinct roads
out of the metallic state. The conventional CDW instability is
found to always occur for initial �c�0 and sufficiently weak
disorder, i.e., when 
 ,
A��, and is represented by the flow
�c→−!. �Recall Eqs. �2.47�, �5.1a�, and �5.1b� and Sec.
I A.� This flow is accompanied by a decay in both disorder
strengths 
 ,
A, indicative of the clean limit. In Fig. 23, the
CDW instability is schematically indicated by the thick ar-
rows that emanate from the terminating surface of the metal-
lic phase near �c=0, running off toward large negative �c.

The primary result of this paper is the identification of a
second route out of the diffusive Fermi liquid phase of the
class AIII FNL�M in d=2+��2 dimensions, different from
the Mott CDW instability, arising solely from the competi-
tion of disorder and interaction effects. As in d=2 dimen-
sions, this second route is characterized by a flow off to
simultaneously strong disorder �
 ,
A→!� and strong inter-
actions ��c→ +!�, as indicated by the thick arrows emerging
from the �c�0 portion of the phase boundary shown in Fig.
23; we therefore dub it an Anderson–Mott instability.4 Even
though there is no perturbatively accessible fixed point, this
second instability is nonetheless perturbatively controlled in
d=2+� over a wide range of initial conditions when ��1; in
particular, it is accessible over the entire range 0��s�1.75

Numerically integrating Eqs. �5.3a�, �5.3b�, �5.3c�, and �5.3d�
for small ��1, we find that the Anderson–Mott instability4

can apparently always be reached by increasing only the “di-
mensionless resistance” 
 beyond some small threshold
value 
T, while keeping the other three parameters 
A, �s,
and �c fixed. The threshold value 
T is a function of � �and of
the other coupling strengths� which vanishes continuously in
the limit �→0. In contrast, we find that it is difficult to
access the Anderson–Mott route out of the Fermi liquid
phase by varying the CDW interaction strength �c alone,
despite the fact that the ensuing instability is characterized
by the rapid flow of �c→ +!. We therefore interpret the
boundary separating the flow toward the stable metallic re-
gime from that toward the regime of the Anderson–Mott in-
stability as a disorder-driven, first-order MIT. We emphasize

that a MIT does not exist in the noninteracting random hop-
ping model, which possesses only a delocalized phase at
half-filling for finite disorder in d�1,8,9,12,13 while the clean
spinless Hubbard model possesses only the Mott CDW insta-
bility.

We demonstrate the physical picture described in the pre-
vious paragraph with a selection of RG flow trajectory plots.
We have numerically integrated Eqs. �5.3a�-�5.3d� for the
case of d=2+� dimensions, with �
0.01, for a variety of
initial conditions lying within the perturbatively accessible
volume of the four-dimensional coupling constant space
�
 ,
A ,�s ,�c�. Figure 24 shows the results.

It is interesting to speculate on the nature of the insulating
state ultimately obtained upon breaching the boundary of the
stable, metallic diffusive Fermi liquid along the Anderson–
Mott route. Although we cannot rule out the possibility that
both this and the CDW instability, while clearly distinct
along the boundary of the diffusive Fermi liquid, eventually
terminate into the same insulating phase, it is important to
stress that this need not be the case. As shown in Fig. 24, the
Anderson–Mott instability is characterized by a rapid flow to
large 
A and large positive �c. Since 
A describes quenched
orientational fluctuations in bond strength dimerization �as
discussed in Secs. II A 3 and II A 4�, while �c is responsible
for the Mott CDW instability ��c→−!�, we might expect the
insulator reached by the Anderson–Mott instability to pos-
sess local Mott insulating order, broken up on longer length
scales into randomly oriented domains pinned by the strong
bond dimerization disorder. Note that a flow to large positive
�c is not consistent with local CDW formation �i.e., order at
a nesting wave vector KN, as in Eq. �1.4��, but other types of
Mott insulating order may occur in the limit of strong inter-
particle interactions ��c→ +!�. For example, sending the
same-sublattice interaction strength U→ +!, for fixed V in
the 2D square lattice version of the clean Hubbard-like
model defined via Eq. �1.1�, favors charge “stripes,” i.e., or-
der at K= �0,	� rather than at KN= �	 ,	�. �Recall from Eqs.
�2.47�, �3.21a�, and �3.21b� that this limit corresponds to �c
→ +!. In the same model, large negative values of �c would
arise, e.g., from the different limit V→ +! for fixed U.�

Finally, let us put the Anderson–Mott instability and the
associated first-order metal-insulator transition that we have
found into some context. As we have stressed, the SLS pos-
sessed by the Hubbard-like model in Eqs. �1.1� and �1.9�
leads to special properties in both the noninteracting but dis-
ordered limit �delocalized phase at band center in
d�1�,8,9,12,13 and in the interacting but nondisordered �bal-
listic� limit �Mott insulating ground state at half-filling due to
nesting for any V�U�0�. In the simultaneous presence of
interactions and random hopping, we have a stable metallic
phase and have found an interaction-stabilized, disorder-
driven MIT in d=2+��2. These features mutate if we break
SLS, e.g., either by allowing diagonal �on-site� disorder or
by tuning the filling fraction away from 1 /2. In the case of
broken SLS �keeping broken TRI, for simplicity�, we recover
the usual unitary metal symmetry class �for spinless
electrons�,40 described by an appropriate Finkel’stein NL�M
characterized by three coupling strengths, analogous to 
, �s,
and h appearing in Eqs. �2.49� and �2.50�. �Analogs of the
dimerization disorder70 parameter 
A, as well as the CDW
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interaction strength �c, do not appear in the unitary class
Finkel’stein sigma model;3 see the discussion in Sec. III fol-
lowing Eq. �3.22� for details.� In the case of short-ranged
interparticle interactions, the FNL�M predicts3 that the uni-
tary metal class is an insulator in d=2 regardless of the pres-
ence of interactions, while the MIT in d=2+� dimensions is
actually in the same universality class as the noninteracting,
continuous �pure Anderson� transition, i.e., the interparticle
interactions are irrelevant at the transition. �Recall that we
consider the spinless case.�

D. Conclusion

As we have already summarized our main results in the
Introduction �Sec. I C�, we conclude with a brief discussion
of applications and extensions of our work, and we comment
on some very recent results36 for spin-1 /2 fermion systems
subject to the effects of both disorder and interactions.

Let us first revisit possible connections to spin-1 /2 fer-
mion models. As discussed in Sec. II B and elaborated in
Appendixes B and C, the Finkel’stein NL�M calculation
presented in this paper also applies to �i� a spin-1 /2 Hubbard

lattice model with SLS, broken TRI, and strong spin-orbit
coupling, and to �ii� a continuum model of fermionic quasi-
particles, native to a superconducting phase, possessing TRI
and a remnant U�1� of spin SU�2� rotational symmetry �i.e.,
invariance under rotations about one axis in spin space�, pre-
served in every realization of the disorder �polar p-wave
superconductor—see Appendix C�. In the absence of interac-
tions, both systems are realizations of the �quantum disorder�
symmetry class AIII, within the classification scheme of Ref.
7.

Consider first the interpretation in terms of the spin-1 /2
random �sublattice� hopping model mentioned above. Disor-
der may be realized, e.g., via the application of a random
orbital magnetic field to the otherwise clean model. �As dis-
cussed in Sec. II B and Appendix B, a random Zeeman field,
on the other hand, realizes the completely different disorder
class C, while the combination of random orbital and Zee-
man fields gives the ordinary unitary metal symmetry class
A.� The calculation presented in this paper also applies to
such a spin-1 /2 random hopping model, subject to generic
short-ranged interparticle interactions and to strong �homo-
geneous or random� spin-orbit coupling. Spin-orbit coupling
suppresses the hydrodynamic spin diffusion channel in the
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FIG. 24. RG flow trajectories in d=2+� dimensions. �a� depicts six trajectories projected into the disorder �
 ,
A� plane. The trajectories
are distinguished by different initial conditions �ICs� for the resistance parameter 
, indicated by the labels A, …, F �locating the initial
conditions of the RG flow�. �b� shows the same trajectories as in �a�, now projected into the interaction ��s ,�c� plane. In contrast to �a�, the
trajectory labels A, …, F here demarcate the end points of the RG flow. The chosen 
 ICs tune through the phase boundary enclosing the
stable diffusive Fermi liquid state, demonstrating the disorder-driven instability discussed in the text. In �a� and �b�, the trajectories labeled
E and F flow into the diffusive metal. As for the other coupling strengths, all trajectories in �a� and �b� share the ICs 
A=−�c=�=0.01, with
�s=0.1. �c� and �d� depict a different set of RG flow trajectories possessing the same ICs for 
A and �c but with �s=0.5.
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Finkel’stein NL�M low-energy field theory, without modify-
ing the symmetry class �AIII� of the disordered system in the
absence of interactions. �Without spin-orbit coupling, an ad-
ditional interaction term between the spin densities would
appear, which does not exist in the spinless case and which is
therefore not included in our treatment here.�

On the other hand, the superconductor quasiparticle inter-
pretation of the AIII NL�M, mentioned above, provides a
very different realization of our results. In particular, the su-
perconductor interpretation does not require the disorder to
take any special form �i.e., pure potential scattering will
work� but requires only TRI and a remnant U�1� of spin
SU�2� rotational symmetry to be preserved in every disorder
realization. As discussed in Appendix C, such a situation
“naturally” arises in the description of a spin-triplet, p-wave
superconductor �lacking intrinsic spin-orbit coupling� in its
polar, TRI phase.53,54 This tantalizing but so far speculative
connection could prove a more readily attainable connection
to experiment.

As already mentioned, very recently, Dell’Anna36 has in-
dependently studied several universality classes of
Finkel’stein NL�Ms including realizations of both the
particle-hole symmetric class C and the sublattice symmetric
class AIII for spin-1 /2 fermions. In the AIII case, Dell’Anna
included the spin diffusion channel �i.e., assumed no spin-
orbit coupling�. We have compared our one-loop RG results
Eqs. �5.3a�-�5.4� to his, and we find agreement if we suppress
the interactions associated with the spin degrees of freedom
by hand.
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APPENDIX A: SCHWINGER–KELDYSH SYMMETRY
STRUCTURE

In this appendix, we examine the symmetry content of the
lattice fermion Keldysh action in Eqs. �2.2� and �2.3�. We
establish a link between the noninteracting sector �Eq. �2.2�;
see also Eqs. �2.7� and �2.8�� and the transformation intro-
duced in Eq. �2.17�, justifying the promotion of the latter to
a spatially varying “Goldstone fluctuation” in Eqs. �2.36a�
and �2.36b�.

For a given realization of the complex random hopping
amplitudes ��ti,j�, the only “physical” invariance possessed
by Eqs. �2.2� and �2.3� is the discrete SLS, defined by Eq.
�1.2�. Nevertheless, the noninteracting sector of the Keldysh
action �Eq. �2.2�� is actually invariant under a large group of
continuous transformations, to be defined below. The full,
interacting Finkel’stein NL�M, defined by Eqs.

�2.48�–�2.50�, further incorporates the interparticle interac-
tions of Eq. �2.3�, which formally obliterate this symmetry.

Adopting the matrix notations introduced in the paragraph
preceding Eq. �2.5�, we recast the noninteracting Keldysh
action in Eqs. �2.7� and �2.8�:

S1 
 S1
h + S1

� + S1
�, �A1�

where

S1
h = �

�ij�
�c̄Aiti,jcBj + c̄Bjti,j

* cAi� , �A2a�

S1
� = i��

i�A

c̄Ai�̂3�̂3cAi + i��
j�B

c̄Bj�̂3�̂3cBj , �A2b�

and

S1
� = �

i�A

c̄Ai�̂3��̂�cAi + �
j�B

c̄Bj�̂3��̂�cBj , �A2c�

with ti,j 
 t+�ti,j, as in Eq. �2.2�.
Consider a general, spatially uniform unitary transforma-

tion in ��� � � � � �frequency � Keldysh� space:

cAi → ÛAcAi, c̄Ai → c̄AiV̂A,

cBj → ÛBcBj, c̄Bj → c̄BjV̂B, �A3�

where

ÛA
†ÛA = V̂A

†V̂A = ÛB
†ÛB = V̂B

†V̂B = 1̂�������. �A4�

We now examine the symmetry content of the noninteracting
Keldysh action S1 �Eq. �A1�� assembled in stages from the
three pieces defined in Eqs. �A2a�–�A2c�.

Invariance of the “Hamiltonian” piece S1
h �Eq. �A2a�� un-

der the transformation in Eq. �A3� requires that

V̂A = ÛB
† , V̂B = ÛA

† . �A5�

If we imagine discretizing and truncating the continuum of
allowed absolute energies to a set of n discrete values, ���
→ ��� , with  � �1, . . . ,n�, then we can say that the condi-
tions in Eqs. �A4� and �A5� imply that the action S1

h is in-
variant under transformations belonging to the space U�4n�
�U�4n�.

Next, we consider the Hamiltonian plus “pole prescrip-
tion” pieces �Eqs. �A2a� and �A2b�, respectively�. Invariance
of S1

h+S1
� requires the restriction given by Eq. �A5�, as well

as

�̂3�̂3ÛA�̂3�̂3 = ÛB. �A6�

Taken together, Eqs. �A5� and �A6� imply that the U�4n�
�U�4n� symmetry of S1

h is broken down to the diagonal
subgroup U�4n� by the pole prescription term S1

�.
Finally, the full noninteracting action is assembled by
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adding the “energy” piece, defined by Eq. �A2c�. Under the
transformation given by Eq. �A3�, invariance of S1
S1

h+S1
�

+S1
� requires the conditions provided in Eqs. �A5� and �A6�,

as well as

��̂3,ÛA� = 0 �A7�

and

���̂�,ÛA� = 0, �A8�

with �Â , B̂�
 ÂB̂− B̂Â. The noninteracting Keldysh action
admits symmetry transformations off diagonal in � �sgn����
space but necessarily diagonal in both ��� and � �Keldysh�
spaces, implying the �much smaller� symmetry group �U�2�
�U�2��n.

The pattern of symmetry-breaking that we have found is
summarized in Table III. The symmetry content of the
Hamiltonian piece S1

h of the Keldysh action is broken down
into successively smaller remnants via the addition of the
pole prescription and energy terms. We interpret the pole
prescription piece S1

� �Eq. �A2b� with �→0+� as an infini-
tesimal source, analogous to an external field in an O�N�
ferromagnet; in the diffusive metallic phase, this source se-
lects a particular ground state from the U�4n��U�4n� saddle
point manifold of the system. �The magnitude of the saddle
point configuration is given by the elastic scattering rate 1 /�
due to the disorder, evaluated in the self-consistent Born
approximation.40 See, e.g., Eqs. �2.32� and �2.33�.� The �non-
interacting� NL�M retains only the quantum Goldstone fluc-
tuations about this symmetry-broken minimum. We retain
modes �weakly� off diagonal in both the ��� and Keldysh ���
spaces. As a result, the noninteracting Keldysh NL�M, ap-
propriate to the complex random hopping model defined in
Eqs. �1.1� and �1.9�, with U=V=0, possesses the target
manifold U�4n��U�4n� /U�4n��U�4n�. The NL�M with
target manifold of the Lie group U�4n�, for finite, integer n,
is termed the unitary principal chiral model in the field
theory literature. An analogous result for the noninteracting,
class AIII random hopping model, formulated in terms of
bosonic replicas, was originally obtained by Gade and
Wegner.9

Consider tuning the fermion density away from half-
filling in the noninteracting random hopping model, which
necessitates the addition of a finite chemical potential term to
the Hamiltonian piece of the Keldysh action �Eq. �A2a��.
Going through the above analysis, one finds a smaller NL�M
target manifold U�4n� /U�2n��U�2n�, characteristic of the
TRI-broken, unitary normal metal class, as expected.

APPENDIX B: DISORDERED, BIPARTITE LATTICE
MODELS FOR SPIN-1 Õ2 ELECTRONS

In this appendix, we identify the quantum disorder sym-
metry classes appropriate to models of noninteracting spin-
1 /2 fermions, with nearest-neighbor hopping on a bipartite
lattice at half-filling, subject to random orbital or random
Zeeman magnetic fields. Our starting point is the general
bipartite lattice Hamiltonian

H = �
 ,"

��
i,j

cAi
† �t̂AB�i,j

 ,"cBj
" + H.c. + �

i,i�

cAi
† �t̂AA�i,i�

 ,"cAi�
"

+ �
j,j�

cBj
† �t̂BB� j,j�

 ,"cBj�
" � , �B1�

where cAi
† and cBj

" are creation and annihilation operators for
fermions on the A and B sublattices, respectively, with  ,"
� �↑ , ↓ � spin-1 /2 component indices. In Eq. �B1�, indices
�i , i�� and �j , j�� denote, respectively, sites on the A and B
sublattices, so that the sum on �i , j� runs over all �not just
nearest-neighbor� pairs of A and B sites, while the sums on
�i , i�� and �j , j�� run over all same-sublattice pairs of sites.
Particle hopping is facilitated by the spin-dependent intersu-
blattice �t̂AB , t̂AB

† � and same-sublattice �t̂AA , t̂BB� complex con-
nectivity matrices. The same sublattice matrices are con-
strained by Hermiticity:

t̂AA
† = t̂AA, t̂BB

† = t̂BB. �B2�

Let us adopt a compact matrix notation reminiscent of that
implemented in Eq. �2.7�, in Sec. II A 1. We rewrite Eq. �B1�
as

H 
 c†ĥc , �B3�

where c �c†� is a column �row� vector, with indices in posi-
tion, sublattice flavor, and spin-1 /2 spaces, i.e., c→cAi/Bj

 

with all indices displayed. The single-particle Hamiltonian ĥ
in Eq. �B3� has the sublattice flavor space decomposition

ĥ = � t̂AA t̂AB

t̂AB
† t̂BB

� . �B4�

If we assume that the model in Eq. �B1� resides upon a

d-dimensional bipartite lattice of 2N sites, then ĥ is a 4N
�4N Hermitian matrix.

In the presence of disorder, the elements of ĥ will be

random variables. The structure of ĥ can then be classified7,42

using random matrix theory �RMT� according to the con-
straints imposed by any symmetry preserved in every real-
ization of the static disorder. Consider the clean case of real,
homogeneous, spin-independent nearest-neighbor hopping
on a bipartite lattice at half-filling. We will refer to this situ-
ation as pure sublattice hopping. Pure sublattice hopping cor-
responds to Eq. �B1� with

t̂AA = t̂BB = 0 �B5�

and

TABLE III. Symmetry content of the noninteracting Keldysh
action �Eqs. �A1� and �A2a�–�A2c��. The target space of the NL�M
is set by the quotient of the first and second entries, below.

Imposed condition Implied invariance

�1� Invc. of S1
h U�4n��U�4n�

�2� Invc. of S1
h+S1

� U�4n�
�3� Invc. of S1=S1

h+S1
�+S1

� �U�2��U�2��n
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�t̂AB�i,j
 ," = t��i,j��

 ,", �B6�

where t= t*, and ��i,j� gives 1 for i and j nearest neighbors,
and vanishing otherwise. We introduce two commuting sets
of Pauli matrices: the matrix �̂m acts in sublattice flavor

space, while the matrix Ĵn acts in the spin-1 /2 space, with
m ,n� �1,2 ,3�. We use the conventional basis for all Pauli
matrices. In addition to symmetries implied by the lattice
space group, the single-particle Hamiltonian with pure sub-
lattice hopping �Eqs. �B4�–�B6�� possesses spin SU�2� rota-
tional invariance

ĴmĥĴm = ĥ �B7�

for m= �1,2 ,3�, as well as three discrete symmetries: TRI,
SLS, and PH symmetry, defined as invariance under the fol-
lowing operations:

c → − iĴ2c, c† → c†iĴ2 �TRI� , �B8a�

c → �̂3�c†�T, c† → cT�̂3 �SLS� , �B8b�

c → − iĴ2�̂3�c†�T, c† → cTiĴ2�̂3 �PH� . �B8c�

In these equations, “T” denotes the matrix transpose opera-
tion. The TRI and SLS operations are antiunitary; the PH
operation as defined in Eq. �B8c� is a product of TRI and
SLS, and is therefore unitary. The PH operation so defined is
unconventional in that it involves a spin flip. Equations
�B8a�–�B8c� equivalently imply the following conditions on

ĥ:

Ĵ2ĥTĴ2 = ĥ �TRI� , �B9a�

− �̂3ĥ�̂3 = ĥ �SLS� , �B9b�

− Ĵ2�̂3ĥTĴ2�̂3 = ĥ �PH� . �B9c�

Equation �B9b� demonstrates that SLS translates into a chiral

condition on ĥ: invariance under SLS forces ĥ to be purely
off diagonal in sublattice flavor space �this condition pro-
vides an equivalent definition of SLS in the absence of inter-
actions�.

For the case of disorder that breaks all of the “internal”
symmetries detailed in Eqs. �B7� and �B9a�–�B9c�, the only

constraint placed on ĥ is Hermiticity. The most precise state-
ment that we can make, independent of the details of a par-

ticular disorder realization, is that ĥ belongs to a matrix
representation77 of the Lie algebra u�4N� of the unitary

group: we say that ĥ�u�4N�. This places the model in Eq.
�B1� into the ordinary “unitary” �Wigner–Dyson� class A.7

Adding one or more of the symmetry constraints in Eqs. �B7�
and �B9a�–�B9c� will allow us to refine this statement, po-
tentially altering the random matrix class.

Consider first the addition of a random orbital field to the
pure sublattice hopping model defined by Eqs. �B4�–�B6�.
The presence of a random orbital field modifies only Eq.
�B6�, which now reads

�t̂AB�i,j
 ," → tei�i,j��i,j��

 ,", �B10�

with �i,j a bond-dependent real phase. By using Eqs. �B5�
and �B10� in Eq. �B4�, we see that ĥ preserves spin SU�2�
rotational symmetry �Eq. �B7��, breaks TRI and PH �Eqs.
�B9a� and �B9c��, and preserves SLS �Eq. �B9b��. Imposing

Eq. �B7� alone implies that ĥ�u�2N�; subsequently enforc-
ing the “anti-SLS” constraint

�̂3ĥ�̂3 = ĥ �B11�

further reduces the space to which ĥ belongs to u�N�
�u�N�. Since the conditions in Eqs. �B9b� and �B11� are
complementary, enforcing instead spin SU�2� and SLS leads

to the identification ĥ�u�2N� /u�N��u�N�, associated with
the chiral random matrix class AIII.7 Thus, adding a random
orbital magnetic field �Eq. �B10�� to the spin-1 /2 pure sub-
lattice hopping model yields a system in the same class as
the �noninteracting� spinless random hopping model �Eqs.
�1.1� and �1.9� with U=V=0�, discussed in Secs. I B and
V A 1 of this paper.

We may also consider imposing only SLS, i.e., removing
the spin SU�2� constraint given by Eq. �B7�. This is consis-
tent with the addition of spin-orbit coupling to the orbital
magnetic field case analyzed above. Using Eq. �B9b�, we

find ĥ�u�4N� /u�2N��u�2N�, so that ĥ belongs to the same
space of matrices �and therefore the same random matrix
class AIII� regardless of whether spin SU�2� rotational sym-
metry is preserved or destroyed �completely�. As discussed
in Secs. II B and V D, the Finkel’stein NL�M formulated in
Sec. II, defined by Eqs. �2.48�–�2.50�, also applies to a spin-
1 /2 Hubbard model with sublattice hopping, subject to a
random orbital magnetic field and possessing spin-orbit cou-
pling.

Next, we turn to the case of a random Zeeman field.
Given the assumption of pure sublattice hopping �Eqs.
�B4�–�B6��, the introduction of a Zeeman field modifies Eq.
�B5� as follows:

�t̂AA�i,i�
 ," → bAi · J ,"�i,i�,

�t̂BB� j,j�
 ," → bBj · J ,"� j,j�, �B12�

where Ĵ= �Ĵm�→ �Jm
 ,"�, with m� �1,2 ,3�, is a vector of spin-

1 /2 space Pauli matrices, and where bAi and bBj denote real
three-component vectors with sublattice site-dependent ori-
entations and magnitudes. By using Eqs. �B12� and �B6� in
Eq. �B4�, we see that a random Zeeman field breaks spin
SU�2� rotational symmetry �Eq. �B7�� �completely�, TRI �Eq.
�B9a��, and SLS �Eq. �B9b�� while preserving PH �Eq.
�B9c�� in every static realization of disorder.78 Equation

�B9c� provides a symplectic condition on ĥ; in isolation, PH

therefore implies that ĥ�sp�4N�. The Lie algebra sp�4N� of
the symplectic group is associated with the random matrix
class C.7,42 Class C is also realized by a spin-1 /2 fermionic
quasiparticle system native to a superconductor with singlet
pairing, broken TRI, and spin SU�2� rotational symmetry
preserved in every realization of disorder.7,37,42,47–50
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In summary, given the assumption of a clean system of
spin-1 /2 fermions with pure sublattice hopping �Eqs.
�B4�–�B6��, the introduction of a random orbital magnetic
field, as in Eq. �B10�, gives a noninteracting quantum disor-
dered system with SLS, lacking TRI and PH, belonging to
the random matrix class AIII; the introduction of a random
Zeeman field, as in Eq. �B12�, gives a system with PH, lack-
ing spin SU�2� rotational symmetry, TRI, and SLS, belong-
ing to class C. The application of both random orbital and
random Zeeman fields to a spin-1 /2 system with pure sub-
lattice hopping breaks TRI, SLS, PH, and spin SU�2� rota-
tional symmetry �completely�, in which case the ordinary
unitary �Wigner–Dyson� class A is recovered.

APPENDIX C: POLAR SUPERCONDUCTOR
INTERPRETATION

By using the same type of RMT symmetry analysis42 ap-
plied in Appendix B to classify systems of spin-1 /2 lattice
fermions, we demonstrate here a completely different micro-
scopic interpretation of the Finkel’stein NL�M studied in
this paper, which provides a view of our results alternative to
the spinless Hubbard model physics espoused in the main
text. The microscopic view adopted in this appendix con-
cerns the fermionic quasiparticles associated with a particu-
lar type of superconductor, subject to quenched disorder.
�These quasiparticles are initially taken to be noninteracting,
within a mean field theory treatment of pairing; subse-
quently, quasiparticle interactions are added.�

Fermionic quasiparticles in a superconductor do not carry
well-defined quantities of physical electric charge.25 In the
presence of disorder, this means that electric charge is not a
slow, hydrodynamic variable; a low-energy nonlinear sigma
model description of such a disordered noninteracting quasi-
particle system therefore cannot describe any kind of con-
ventional metal-insulator transition, as might be observed ex-
perimentally through electric transport measurements.
Disorder may yet dramatically influence other properties of
the system, however, including thermal and spin transport
coefficients �the latter only if at least a U�1� subgroup of spin
SU�2� rotational symmetry is preserved�, as well as the be-
havior of the low-energy, single-particle �tunneling� density
of states.79 In particular, it is possible in principle to observe
a “thermal metal” to “thermal insulator” transition,47,48,50,80

indicative of Anderson localization of the single quasiparticle
states due to the disorder. This transition is described by a
random Bogoliubov–De Gennes equation and may possibly
be accessible48 by tuning, e.g., the impurity concentration in
a superconducting sample. To build a more realistic model of
such a system, one should also include the effects of
interactions36,37,49 between the quasiparticles of the super-
conductor; near d=2, both disorder and interaction effects
may be reliably described within the Finkel’stein NL�M
framework.

In this appendix, we first show that a noninteracting, spin-
1 /2 quasiparticle system, native, e.g., to a certain spin-triplet
p-wave superconductor and subject to quenched disorder sat-
isfying certain additional symmetry constraints, falls into the
same random matrix class �the chiral class AIII in the scheme

of Ref. 7� as the noninteracting spinless random hopping
model �Eqs. �1.1� and �1.9� with U=V=0� discussed in Secs.
I B and V A 1. To obtain a superconductor quasiparticle sys-
tem in the chiral class AIII, in every static realization, the
disorder must preserve TRI, as well as a remnant U�1� of the
spin SU�2� rotational symmetry. Such a situation is expected
to occur “naturally” for pure potential scattering �i.e., non-
magnetic impurities and no spin-orbit scattering�, in a spin-
triplet p-wave superconducting host residing in its TRI, “po-
lar” phase.53,54 We emphasize that, in contrast to the Hubbard
model, this quasiparticle system may be defined directly in
the continuum, without reference to a lattice or an additional
sublattice symmetry. After demonstrating the equivalence of
the noninteracting superconductor quasiparticle and spinless
random hopping �normal� particle or electron systems at the
level of RMT, we will briefly discuss the interpretation of the
disorder and interaction parameters of the corresponding
FNL�M �Eqs. �2.48�–�2.50��, studied in this paper, in the
superconductor quasiparticle context.

In order to motivate the basic underlying idea, consider
first the system of quasiparticles in a two-dimensional spin-
less �or spin-polarized� px superconductor,54,81 which is sub-
ject to static short-ranged disorder82 �in the potential and pair
field�. Weak disorder, acting on the pair of Dirac fermions at
the two nodal points and preserving the TRI of the px super-
conducting state,83 is known13 to place this system in the
�orthogonal� chiral7 symmetry class BDI.84,85 In the low-
energy Dirac theory, the disorder occurs in two varieties:
intra- and internode scatterings. The intranode randomness13

takes the form of a random U�1� vector potential.82,86 In the
px superconductor realization, quenched random U�1� vector
potential fluctuations correspond to small random shifts of
the positions of the nodal points, and thus, in particular, to
small random fluctuations of the orientation of the Cooper
pair wave function away from the x axis. Internode scattering
appears as a pair of random masses for the Dirac
quasiparticles.13,82 In the disorder-averaged Dirac theory, it is
necessary to specify two parameters gA and g in order to
quantify the strength of intra- and internode scatterings, re-
spectively. As shown in Ref. 13, gA and g each play a role in
the class BDI disordered Dirac theory described above that is
analogous to the parameters 
A and 
, respectively, in the
NL�M formulation of the �different� chiral disorder class
AIII, as defined by Eqs. �2.48�, �2.49�, and �2.51� in Sec. II.
We demonstrate below that this analogy reflects a concrete
realization of class AIII in terms of quasiparticles of a certain
p-wave superconductor, with spin 1 /2 rather than spin 0. The
strength gA of the vector potential randomness in the spinless
case is analogous to 
A in the sigma model description of the
spin-1 /2 quasiparticle system.

We now turn to the random matrix symmetry analysis.
Consider a clean p-wave, spin-triplet Bogoliubov–De
Gennes �pairing� Hamiltonian of the form

H =
 ddrc†�r��− �2 − #�c�r�

+
1

2

 ddrddr��b†�r,r�� · ��r − r�� + H.c.� , �C1�

where we define the spin-triplet pair field operator
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b�r,r�� 
 cT�r�Ĵ2Ĵc�r�� . �C2�

In Eq. �C1�, c† and c denote two-component fermion creation
and annihilation operators, i.e., c→c , where  � �↑ , ↓ � is a
spin-1 /2 component index; # is the chemical potential. In
the absence of disorder and quasiparticle interactions, the
gap ��r� in Eq. �C1� is a static, spatially antisymmetric
vector-valued function. In Eq. �C2�, the superscript “T” de-
notes the matrix transpose operation, and we denote the vec-

tor of Pauli matrices acting in spin-1 /2 space by Ĵ= �Ĵm�
→ �Jm

 ,"�, with m� �1,2 ,3�. The pair field operator defined
by Eq. �C2� carries electric charge 2e and transforms like an
O�3� vector under SU�2� spin rotations. In the polar phase of
a spin-triplet, p-wave superfluid, the gap function takes the
form53,54 �ignoring dynamical fluctuations�

��r� = ���r� , �C3�

where the fixed unit vector � and the spatially antisymmetric
scalar function ��r� are both purely real. We take �
= �0,0 ,1�. The Hamiltonian in Eq. �C1� then possesses TRI
and a remnant U�1� of spin rotational symmetry �about the
m=3 axis�, defined as invariance under the transformations

c → − iĴ2c, c† → c†iĴ2 �TRI� , �C4a�

c → eiĴ3�c, c† → c†e−iĴ3� �spin U�1�� . �C4b�

The time-reversal operation �Eq. �C4a�� is antiunitary.
We implement the following compact notation: first, we

construct the Majorana spinor

& 
 � c

Ĵ2�c†�T� , �C5�

which carries indices in particle-hole �p=1,2�, spin-1 /2 � 
= ↑ , ↓ �, and position space r, i.e., &p=1

 �r�=c �r� and

&p=2
 �r�= �Ĵ2�c†�T� �r� with all indices displayed. Note that &

transforms like c under spin space transformations. Next, we

introduce a second set standard of Pauli matrices �'̂m�, m
� �1,2 ,3�, acting in the particle-hole space of &. The defini-
tion Eq. �C5� implies that

&† = &Ti'̂2Ĵ2. �C6�

Using Eqs. �C5� and �C6�, we rewrite Eq. �C1� as

H =
1

2
&†ĥ& , �C7�

where we have introduced the single-particle Hamiltonian

ĥ = � t̂ �̂ · Ĵ

Ĵ · �̂† − Ĵ2t̂TĴ2

� , �C8�

with

t̂ → t ,"�r,r�� = ��− �2 − #��d�r − r���� ,",

�̂ · Ĵ → �̂�r − r�� · Ĵ ," �C9�

� and " are spin-1 /2 component indices.�

By combining Eqs. �C6� and �C7� and noting that the
components of & mutually anticommute up to irrelevant ad-
ditive constants, we see that the single-particle Hamiltonian

ĥ may be taken without loss of generality to satisfy the “Ma-
jorana” condition

− '̂2Ĵ2ĥTĴ2'̂2 = ĥ . �C10�

The transformations defined by Eqs. �C4a� and �C4b� may be
reexpressed in the & language using Eq. �C5�; doing so
shows that TRI and spin U�1� rotational symmetry translate

into the following conditions upon ĥ �via Eq. �C7� and using
Eq. �C10��:

− '̂1ĥ'̂1 = ĥ �TRI� , �C11a�

Ĵ3ĥĴ3 = ĥ �spinU�1�� . �C11b�

Equation �C11a� shows that time-reversal invariance appears
as a chiral7 condition �see Eq. �B9b�� on the Bogoliubov–De

Gennes single-particle Hamiltonian ĥ.
As discussed in Appendix B, in the presence of disorder,

we may classify the noninteracting quasiparticle system in-
troduced in Eq. �C1� by examining the algebraic structure of

the Hamiltonian ĥ �Eqs. �C7� and �C8��, arising in the pres-
ence of an arbitrary, static realization of impurities. If we
imagine discretizing position space into a lattice of N sites,

then ĥ is a 4N�4N Hermitian square matrix. In the absence
of both TRI and spin U�1� rotational invariance, the only
constraint upon this matrix is the Majorana condition �Eq.

�C10��, which implies that ĥ belongs to a matrix representa-
tion of the Lie algebra so�4N� �in the defining �vector� rep-

resentation�. We write this condition as ĥ�so�4N�. This

space of matrices ĥ is associated with the random matrix
class D.7,42,80

Let us turn to the situation of interest, a quasiparticle sys-
tem, subject to �e.g., pure potential� disorder, that preserves
the symmetry conditions native to the polar phase of a
p-wave, spin-triplet superconducting host:53,54 TRI and spin
U�1� rotational invariance. The Majorana �Eq. �C10�� and
spin U�1� �Eq. �C11b�� conditions imply the following de-
composition in spin-1 /2 space:

ĥ = �ĥ2N 0

0 − '̂2ĥ2N
T '̂2

� , �C12�

where ĥ2N�u�2N�. Further imposing the “anti-TRI” condi-
tion

'̂1ĥ'̂1 = ĥ �C13�

would identify ĥ2N�u�N��u�N�. Equations �C11a� and
�C13� are exact complements, so that, instead, imposing the
Majorana condition, spin U�1� rotational invariance, and TRI

leads to ĥ�u�2N� /u�N��u�N�. This space of matrices is
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associated with the chiral random matrix class AIII.7 The
same space of matrices also applies to the noninteracting,
spinless random hopping model discussed in Secs. I B and
V A 1 of this paper.9,12 �See also the discussion below Eq.
�B11� in Appendix B.�

At the level of random matrix theory, we have succeeded
in identifying �i� the system of noninteracting spin-1 /2 qua-
siparticles �treated within the mean field theory of pairing�
native to a superconducting host and subject to quenched
disorder preserving TRI and a remnant U�1� of the SU�2�
spin rotational symmetry, with �ii� the noninteracting limit of
the spinless Hubbard-like model with random hopping, de-
fined by Eqs. �1.1� and �1.9� with U=V=0. We have shown
how such a system might naturally arise in the context of a
p-wave, spin-triplet superconductor in its TRI, polar
phase,53,54 subject to pure potential scattering due to non-
magnetic impurities.

We can extend the analogy between these two systems to
the detailed NL�M formulation, incorporating residual qua-
siparticle interactions à la Finkel’stein.2 In contrast to the 2D
case of Dirac quasiparticles in the spinless px superconductor
mentioned in the paragraph above Eq. �C1�, we now restrict
our discussion to the case d�2, for which our RG calcula-
tion of Sec. V C predicts a metal-insulator transition due to
the interplay of both disorder and interactions, as we will
now explain.

In Sec. II, we derived the class AIII FNL�M using the
Hubbard-like model �Eqs. �1.1� and �1.9�� as our microscopic
starting point. The action for the FNL�M was defined in Sec.
II A 4 by Eqs. �2.49� and �2.50�. In order to understand the
relevance of Sec. V C in the superconductor context, we
need to explain the reinterpretation of the FNL�M param-
eters appropriate to the p-wave superconductor quasiparticle
view, which we will now do.87 The parameter 
 still plays
the role of the dimensionless resistance, now proportional to
the U�1� spin conductivity, associating positive and negative
spin U�1� charges to particles with “up” and “down” m=3
components of spin, respectively.37,47,48 The second disorder
strength 
A was attributed in Sec. II A 4 to quenched bond
dimerization fluctuations in the random �sublattice� hopping
model. As discussed in the paragraph above Eq. �C1�, in the
superconductor, 
A measures the strength of quenched ran-
dom orientational fluctuations of the p-wave Cooper pairing
wave function induced by the disorder.

Turning to the interaction sector of the FNL�M action
�Eq. �2.50��, we now reinterpret the interaction strengths �s
and �c �Eq. �2.54�� within the context of the quasiparticles of
the superconductor. The parameter �s arises from the Sz-Sz
component of spin-triplet88 interactions �in the particle-hole
channel� inherited from the normal Fermi liquid phase adja-
cent to the BCS superconductor, and modifies the effective
spin diffusion constant in the presence of the interactions.37

The parameter �c, on the other hand, characterizes the re-
sidual interaction in the particle-particle Cooper channel and
may be interpreted for �c�0 as an attractive BCS interaction
in a different, spin-singlet �e.g., s-wave� pairing channel.89

Summarizing, the interaction sector of the Finkel’stein
NL�M defined by Eq. �2.50� can be reexpressed as follows:

SI = i �
a=1,2

�a
 dtddr��s�Qt,t
a,a�r� + Qt,t

†a,a�r��2

+ �c�Qt,t
a,a�r� − Qt,t

†a,a�r��2�

= i �
a=1,2

�a
 dtddr��s�SZ
a�t,r��2 + �c�̄S

a�t,r��S
a�t,r�� ,

�C14�

where the fields SZ
a�t ,r�, �S

a�t ,r�, and �̄S
a�t ,r� may be written

in terms of Qt,t
a,a�r� and Qt,t

†a,a�r�, and represent the electron
bilinear operators

SZ
a�t,r� � �a�c̄↑

a�t,r�c↑
a�t,r� − c̄↓

a�t,r�c↓
a�t,r�� , �C15�

�S
a�t,r� � �ac↓

a�t,r�c↑
a�t,r� , �C16�

�̄S
a�t,r� � �ac̄↑

a�t,r�c̄↓
a�t,r� . �C17�

As written, �S
a�t ,r� represents the simplest singlet channel

pairing amplitude, a� �1,2� is the Keldysh index, and �a was
defined by Eq. �2.4�.

APPENDIX D: FREQUENCY-MOMENTUM SHELL
INTEGRALS

The frequency-momentum loop integrations needed in the
RG calculation described in Sec. IV are cataloged in this
appendix. All integrations listed below are taken over a por-
tion of the frequency-momentum shell �Eqs. �3.11a�, �3.11b�,
and �3.11c� and Fig. 6�,


 d�d2k

�2	�3 =
1

2D�2	�2 
 d�dx



1

2D�2	�2�

0

�

d�

�̃

�

dx + 

0

�
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�̃

�

d�� ,

�D1�

unless stated otherwise. In this equation, we have made the
change of integration variables Dk2
x. �D is the �heat� dif-
fusion constant defined by Eq. �3.9�.� The ratio of the cutoffs
in Eq. �D1� is given by the expression

�

�̃
� 1 + 2dl , �D2�

with 0�dl�1.
The integrals are as follows:

J1�z;z�� 

1

2�2	D�2 
 d�dxx
1
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=
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condition −Ĵ2Ĵ*Ĵ2= Ĵ follows from the pseudoreality of the fun-
damental representation of su�2�.

79 In contrast to the ordinary Wigner–Dyson classes typically asso-
ciated with dirty normal metals, the symmetry classes of quan-
tum disordered systems realized by superconductor quasiparti-
cles often exhibit density of states singularities �Refs. 47 and
80�.

80 T. Senthil and M. P. A. Fisher, Phys. Rev. B 61, 9690 �2000�.
81 The 2D superconductor is treated within the mean field approxi-

mation of pairing and formed from a Fermi liquid with circular
Fermi surface.

82 A. A. Nersesyan, A. M. Tsvelik, and F. Wenger, Nucl. Phys. B
438, 561 �1995�.

83 TRI dictates that the Dirac nodes always appear in pairs.
84 P. Fendley and R. M. Konik, Phys. Rev. B 62, 9359 �2000�.
85 The disorder assumed in Ref. 84, which excludes internode scat-

tering, actually leads to the different random vector potential
universality class of Ref. 86. Incorporation of internode scatter-
ing, consistent with TRI for the spinless electronic system, re-
covers the full chiral class BDI.

86 A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein,
Phys. Rev. B 50, 7526 �1994�.

87 In the superconductor context, the FNL�M may be derived by
embedding the clean Hamiltonian in Eqs. �C1� and �C7�, aug-
mented with a source of quenched disorder �e.g., pure potential
scattering� consistent with TRI and spin U�1� symmetries �Eqs.
�C11a� and �C11b��, in a Keldysh path integration analogous to
that defined by Eqs. �2.1� and �2.2�. Residual quasiparticle inter-
actions are encoded as in Eq. �2.3�. �See also the discussion at
the end of Appendix C.� The structure of the FNL�M is almost
entirely determined by Eq. �2.51�, which in turn follows from
the symmetry structure of the Keldysh action, as detailed in
Appendix A. A corresponding analysis in terms of transforma-
tions on the Majorana spinor in Eq. �C5� gives the same con-
straint.

88 In the polar p-wave state �Refs. 53 and 54� spin SU�2� rotational
symmetry is broken down to a U�1� subgroup; as a result, spin-
triplet interactions will typically contain anisotropy in spin
space, being either easy-axis �z� or easy-plane �xy� dominated;
in other words, there will be two interaction coupling constants.
In the diffusive FNL�M description of the disordered system,
however, only the easy-axis interactions enter �up to irrelevant
perturbations� because easy-axis spin is conserved, in analogy to
the situation with uniaxial spin symmetry discussed in Ref. 37.

89 The spin singlet nature of the residual pairing channel character-
ized by �c is encoded at the coarse level of the FNL�M; other
details, especially the orbital pairing symmetry, are not.

METAL-INSULATOR TRANSITION FROM COMBINED… PHYSICAL REVIEW B 77, 165108 �2008�

165108-37


