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First-principles electron dynamics simulation for optical breakdown of dielectrics under an
intense laser field
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We present a first-principles calculation for an optical dielectric breakdown in a diamond, which is induced
by an intense laser field. We employ the time-dependent density-functional theory by solving the time-
dependent Kohn—Sham equation in real time and real space. For low intensities, the ionization agrees well with
the Keldysh formula. The calculation shows a qualitative change of electron dynamics as the laser intensity
increases, from dielectric screening at low intensities to optical breakdown at and above 7 X 10" W/cm?.
Following the pulse, the electrons excited into the conduction band exhibit a coherent plasma oscillation that

persists for tens of femtoseconds.
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The interaction of ultrashort laser pulses with dielectrics
has been a subject of intense study for both the fundamental
interest and possible applications.!” The key physical pro-
cess in the interaction is the optical breakdown of the me-
dium creating many electron-hole pairs. This is a highly non-
linear optical process whose mechanism is not fully
understood yet.!” The optical breakdown causes a highly re-
producible structure modification of the dielectric, making
the process quite suitable for micromachining, medical sur-
gery, and other technical applications.*7?

A number of quite different mechanisms have been pro-
posed for the optical breakdown. Electron avalanching is
considered to be a principal mechanism for pulses longer
than a picosecond.® For femtosecond pulses, photoionization
either by a multiphoton or by a tunneling mechanism is ex-
pected to become dominant. Some measurements suggest
that the electron avalanche is still significant in the femtosec-
ond regime,>!! while others suggest that the electron impact
ionization does not play a role in the femtosecond scale.'? A
theoretical description of the optical breakdown has been
achieved by employing empirical models, such as a rate
equation for the number of excited electrons,’!1%!! a kinetic
evolution equation for the distribution function,® and a
propagation equation for an electric field envelope.®!2

For isolated atoms and molecules under intense ultrashort
laser pulses, a numerical approach solving the time-
dependent Schrodinger equation is useful.'>-!> However, to
our knowledge, the first-principles computational approach
has not been applied for the electron dynamics for bulk sys-
tems irradiated by intense ultrashort pulses. In this paper, we
report our attempt to describe an optical breakdown of di-
electrics based on the time-dependent density-functional
theory (TDDFT).!¢

The TDDFT combined with the linear response theory has
been successfully applied to the optical responses of atoms,
molecules, and solids.!”~2° Tt has also been used to describe
the nonlinear and nonperturbative electron dynamics induced
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by intense ultrashort laser pulses.?’?? In view of the good
experience with TDDFT, we anticipate that it will also pro-
vide a useful description of the short-time electron dynamics
under an intense ultrashort laser radiation.

The TDDFT is capable of treating the ionization of both
multiphoton®! and tunneling mechanisms.? It also incorpo-
rates a dynamical screening effect, which is one of the im-
portant many-body correlations. However, since the theory is
based on orbitals that only interact through the mean field,
effects of electron-electron collisions are not properly taken
into account. Thus, the theory is not suited to describe the
avalanche mechanism and the TDDFT breakdown threshold
should be regarded as the upper limit. We also freeze the ion
position in the present calculation so that the thermal relax-
ation accompanying an energy transfer from electrons to ions
is also ignored. The theory is only applicable to the initial
excitation of the system before it has had time to thermalize,
which is expected to be much longer than the pulse duration.

We apply the TDDFT to a diamond, which is a prototype
of a typical insulator. Our computations are performed using
a formalism that was originally developed to calculate the
dielectric function'® of crystalline solids. We essentially use
the same real-time code to treat the excitation by a laser
pulse. By assuming the long wavelength limit and that the
pulse laser is represented by a time-dependent spatially uni-
form electric field E . (7), the electronic motion is described
by the following time-dependent Kohn—Sham (TDKS) equa-
tion for single-particle orbitals #;(r,7):

. d 1 e 2
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(1)

where n(r,t) is the time-dependent density given by n(r,?)
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=3|¢(r,1)]?, and . (r,1) is the exchange-correlation poten-
tial. The time-dependent spatially uniform vector potential
A,(7) is composed of the external and induced vector poten-
tials, A (1)=A (1) +A;q(1). The external vector potential
A(2) is related to the electric field of the applied laser
pulse, Ep(1)=—dA(#)/dt. The induced vector potential
A,,q(?) expresses the electric field caused by the polarization.
Since the polarization is related to the average electronic
current flowing in a unit cell, we have the following evolu-
tion equation for the induced vector potential:

d2Ai (f) 41 .
Tnzd =10, )
where i(7) is the average electric current density in a unit
cell, i()=[qdrj(r,1)/Q, where () expresses the volume of
the unit cell.

In practical calculations for a diamond, we take a cubic
unit cell of eight carbon atoms and a lattice parameter of
6.74 a.u. We treat four valence electrons per atom by em-
ploying the norm-conserving pseudopotential of Ref. 24 for
C* ion. The nonlocal part of the pseudopotential is treated in
a separable approximation.”> We employ the adiabatic local-
density approximation (ALDA) for the exchange-correlation
energy by using the functional form given in Ref. 26. The
calculated small-amplitude response is in excellent agree-
ment with a value for the static dielectric constant. The cal-
culation also describes the absorption in the far UV quite
well.””

We parametrize the time profile of the electric field from
the laser pulse by E.(f)=E, sin?(7t/ T)sin ot (0<t<T). It
is characterized by the maximum electric field E, the fre-
quency o, and the pulse duration 7. The time-dependent
Kohn—Sham equations are solved in a uniform grid represen-
tation. The number of grid points is typically 183, but finer
grids are needed for laser pulses of lower frequency. The
orbitals ;(r,7) are specified by a band index n and a Bloch
wave number k, with 16° k points representing each band.
The time evolution is calculated with the Taylor expansion
method of fourth order!” with a time step of Ar=0.02 a.u.
The total number of the time step is typically 50 000. We
have carefully examined the convergence of the calculation
with respect to three parameters, such as the grid spacing, the
number of k points, and the time step, in solving the TDKS
equation.

We first show a typical time evolution in Fig. 1, where the
laser pulse is characterized by the maximum laser intensity
(I,=1X10" W/cm?), the laser frequency (hAw=3.1 eV),
and the pulse duration (T=40 fs). Figure 1(a) shows the
time profile of the electric field. The electric field of the
applied laser pulse (blue dashed) and the total electric field
(red solid) are compared. Figure 1(b) shows the number of
excited electrons per carbon atom, which is defined by

nex(t) = 2 (5nn’ - |< ¢nk|lr/,n’k(t)>|2)- (3)
nn'k

Figure 1(c) shows the excitation energy per carbon atom as a
function of time. In these figures, there occurs an abrupt and
qualitative change in the electronic response around ¢
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FIG. 1. (Color online) Electric field of an applied laser pulse
(blue dashed curve) and the total electric field (red solid curve) are
shown in (a) as a function of time. The applied laser pulse is char-
acterized by a maximum intensity of 1X 10> W/cm?, a pulse du-
ration of 40 fs, and a laser frequency of 3.1 eV. The number of
photoexcited electrons per carbon atom and the excitation energy
per carbon atom are shown in (b) and (c), respectively.

=20 fs. We consider that this change is a signature of the
optical breakdown, as explained below.

At the initial stage of the laser pulse where the applied
electric field is weak, the response is dielectric: The total
electric field is proportional to the applied field, E,(z)
=€ 'E,, (1), with the static dielectric constant of a diamond
(e=06). Starting at 15 fs, the number of excited electrons and
the excitation energy undergo a rapid increase. Simulta-
neously, the total electric field starts to go out of phase with
the applied electric field, signaling a large energy transfer. By
about 20 fs, the applied and total electric fields are com-
pletely out of phase. At this point, the number of excited
electrons and the excitation energy reach their saturation val-
ues. Note that the laser field is still strong during this entire
time.

The physics of the later stage dynamics can be understood
rather simply. Since there is no band gap for electrons ex-
cited into a conduction band, they may have a metallic re-
sponse and produce a collective plasma oscillation. One may
estimate the plasma frequency by

4 1/2

where € is the dielectric constant of a diamond. For the case
shown in Fig. 1, the final number of excited electrons is 0.4
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FIG. 2. (Color online) Electric fields of the applied laser pulse (blue dotted curve) and total electric fields (red solid curve) are shown as
a function of time for different laser intensities and frequencies. (a)—(e) show the results of different laser intensities while the frequency is
fixed at 3.1 eV. ()—(j) show the results of different laser frequencies while the intensity is fixed at 1 X 105 W/cm?.

per carbon atom (0.7X10?> cm™). The corresponding
plasma frequency is fiw,=4.0 eV, which is slightly higher
than the frequency of the applied laser pulse (hw=3.1 eV).
This fact suggests the following senario of the optical break-
down: As the intensity of the applied field increases, the
electrons excited by perturbative and tunneling mechanisms
slowly increase. When their density reaches a point such that
the plasma and photon frequencies match, a resonant energy
transfer occurs from the laser pulse to the electrons. This is
when the optical breakdown takes place in the calculation.
After the breakdown, the electrons in the conduction band
screen the applied electric field and further energy transfer is
suppressed.

Next, we examine how the breakdown depends on the
intensity and frequency of the laser pulse. In all the calcula-
tions presented below, the pulse duration is fixed at T
=16 fs. Figures 2(a)-2(e) show the electric fields for cases
in which the maximum laser intensity is varied, from 1
X 10" to 1X10'® W/cm?, while the frequency is fixed at
fiw=3.1 eV (corresponding to 400 nm wavelength). For I,
=5X 10" W/cm?, the response is almost dielectric for the
whole period. For I,=1X 10> W/cm?, a phase difference
between the applied and total electric fields is observed. The
phase deviation starts earlier for a larger laser intensity. In
Fig. 2(c), one can see that the plasma oscillation continues
long after the laser pulse ends. We have carefully examined
the condition on which the oscillation appears and have
found that it appears only when the dielectric breakdown
occurs at the time between the middle and the end of the
applied laser pulse. However, we have no explanation for
this curious behavior.

In Figs. 2(f)-2(j), we show the effect of varying the fre-
quency on the field, by covering the range from 1 to 6 eV. In
these calculations, the peak intensity is fixed at 1
X 10" W/cm?. These figures show that the phase difference
between the external and total electric fields occurs at around
10 fs in all cases. The occurrence of the optical breakdown
thus principally depends on the intensity of the laser pulse
and is less sensitive to the frequency.

In Fig. 2, we also observe that the oscillation of the total
electric fields continues even after the applied laser pulse
ends, irrespective of the laser frequency. The frequency of
the oscillation is always higher than the frequency of the
applied laser pulse. The oscillation shows a very small damp-
ing except in Fig. 2(j), where the laser frequency is 6.2 eV.

The oscillation in the total electric field after the applied
laser pulse ends is a plasma oscillation of the electrons ex-
cited into a conduction band. Indeed, we confirmed that the
frequencies of the oscillation seen in Figs. 2(f)-2(j) agree
well with the plasma frequencies estimated by Eq. (4) with
the number density of Eq. (3). The fact that the frequencies
of the plasma oscillation are always slightly higher than the
frequencies of the applied laser pulse may be naturally un-
derstood with our scenario of the optical breakdown. The
plasma oscillation of conduction electrons may suggest an
emission of a blueshifted light following the breakdown.
This may be relevant to a supercontinuum emission, which is
often observed in laser-material interactions.?’

Here, we examine the definition of the number of excited
electrons. As seen in the middle panel of Fig. 1, n.(r), as
defined by Eq. (3), shows an oscillation as a function of time
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FIG. 3. (Color online) The number of excited electrons as a
function of time is shown for a laser pulse of an intensity of 1
X 10> W/cm?, a pulse duration of 16 fs, and a frequency of 1.03
eV. Two curves are the results of Eq. (3) (blue dotted curve) and Eq.
(6) (red solid curve).

when the laser pulse is applied. In Fig. 3, we show n.(r) for
the case of a laser pulse with I,=1X10" W/cm?, T
=16 fs, and Zw=1.03 eV by a blue dotted curve. The elec-
tric field in this calculation is shown in Fig. 2(f). In this case,
the oscillation of the number of excited electrons as well as
the oscillation of the induced vector potential persist even
after the applied laser pulse ends. Therefore, n.,(z) defined
by Eq. (3) may not be an appropriate definition for the num-
ber of excited electrons.

We have examined calculated results for various laser
pulses and have found that the oscillation after the applied
laser pulse ends depends on the total vector potential A (7)
with a dependence

Nex(t) =ng + CAtot(t)z' (5)

Here, the constant c¢ is independent of the properties of the
laser pulse. This fact suggests that the oscillation in 7.,(z)
may be an unphysical consequence of the gauge field.

This can be corrected by making a gauge-dependent defi-
nition of the ground-state orbitals. Let us consider a system
whose ground state is described by the Bloch wave functions
(1) and suppose that the slowly varying spatially uniform
electric field described by a vector potential A(¢) is applied.
Then the orbitals may be adiabatically evolved by replacing
the Bloch wave number k with k+A(1), ()= dkia()-
Since the whole k region is occupied in the dielectrics, this
adiabatic evolution does not produce any real excitation.
However, n.,(7), as defined by Eq. (3), gives a finite number
when A(r) #0. Therefore, the number of excited electrons
should be calculated with respect to the evolved ground or-
bitals as

ngg(t) = 2 (5nn’ - |< ¢nk+A(z)|l/ln'k(t)>|2)- (6)

nn'k

In Fig. 3, the red solid curve shows the calculated number
of excited electrons according to Eq. (6). Now the number of
excited electrons is almost constant after the applied laser
pulse ends.
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FIG. 4. (Color online) The energy deposited in a diamond by a
laser pulse is shown as a function of intensity at a fixed laser fre-
quency of 3.1 eV. The calculated values are shown by open circles
connected with a blue line. A curve of AExCI?> dependence is
shown by a green dotted line. An estimation by the Keldysh theory
(Refs. 11 and 29) is also plotted by a red dashed line. The curves of
a quadratic dependence and of the Keldysh theory are normalized
so that they coincide with the value of a real-time calculation at
Ip=5X%10"2 W/cm?.

In Fig. 4, we show the energy transfer in a diamond as a
function of intensity. The laser frequency is fixed at 3.1 eV,
which is larger than the calculated energy gap for a direct
transition, (4.8 eV).?® Since the applied laser frequency is
smaller than the band gap, two photons are required for va-
lence electrons to be excited across the band gap. Thus, we
expect the energy transfer AE to depend on the laser inten-
sity I as AE=CI", with n=2 in the multiphoton absorption
picture. We show a curve of this dependence in Fig. 4 by a
green dotted line. We also add by using a red dashed curve
the rate by the Keldysh theory for a solid.!"?° The curves of
quadratic dependence and of the Keldysh theory are normal-
ized to the real-time calculation at the intensity of [y=5
X 10 W/cm?. For a weak intensity region, a calculated
energy transfer accurately follows the quadratic dependence.
At intensities higher than 7 X 10'* W/cm?, the energy trans-
fer shows an abrupt increase. This behavior is consistent with
the occurrence of a resonant energy transfer at the break-
down.

The calculated threshold for dielectric breakdown, 7
X 10" W/cm? with 16 fs pulse, corresponds to 6 J/cm?.
The experimental threshold depends on the frequency and
duration of the laser pulse, as well as the material,’->1112
which is typically at a lower energy than that found here. In
particular, the threshold for damage in a diamond has been
measured at 0.63+0.15 J/cm? for a 2 eV and a 90 fs
pulse,’® which is much lower than our calculation. It might
indicate that the avalanche ionization is the process that de-
termines the threshold. On the other hand, the pulses are
subject to a self-focusing going through the material.®%1?
This increases the effective field strength in local areas, al-
lowing a higher threshold to be inferred from the profile of
the laser beam. Further study seems to be needed before one
can make a conclusion about the mechanism for optical
breakdown.

Additional information about the excitation mechanism in
TDDFT may be extracted from the distribution of electrons
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FIG. 5. (Color online) Occupation number distribution after the
laser pulse ends. The intensities of the laser pulse are 1
X 10" W/cm? (dashed) and 1X 10" W/cm? (solid). The laser
frequency is fixed at 3.1 eV. The electron energy is measured from
the bottom of the conduction band.

in the conduction band after the laser pulse ends. This is
shown in Fig. 5 for several laser intensities at a fixed laser
frequency (3.1 eV). At the laser intensities of 1 X 10'* and
5X 10" W/cm?, the excited electrons show peaks at spe-
cific energies of 1.8 and 3.2 eV, respectively. We have con-
firmed that the particle-hole energies of these peaks coincide
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with the energies of 2 and 3 photon absorptions, respectively.
On the other hand, at the laser intensity of 1 X 10> W/cm?,
where the optical breakdown occurs, the conduction elec-
trons are broadly distributed in energy. After the laser pulse
ends, the electron distribution does not change in our calcu-
lation. To describe a relaxation process toward the thermal
distribution, we should incorporate an electron-electron col-
lision process, which is not taken into account in the present
TDKS equation with ALDA.

In summary, we have presented a methodology for an ab
initio theory of electron dynamics in an insulator subject to
an intense laser field. The theory, TDDFT, is seen to be ca-
pable of describing the optical breakdown phenomenon with
a rather sharp threshold. This occurs in a diamond at around
710" W/cm? with a pulse length of 16 fs. The optical
breakdown is seen to be self-limiting due to plasma oscilla-
tions and screening by conduction band electrons. We have
also found that the plasma oscillation may persist beyond the
duration of the pulse.
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