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In ferromagnets, the spontaneous magnetization bears the Hall effect through the relativistic spin-orbit
interaction. Similar effects also occur in thermoelectric and thermal transport phenomena. Their mechanism, if
it is of the intrinsic or extrinsic origin, has been controversial for many decades. We present a unified theory of
these Hall transport phenomena in ferromagnetic metals with dilute impurities at the zero temperature, in terms
of a fully quantum-mechanical transport theory for multiband systems with the self-consistent T-matrix ap-
proximation. This theory becomes exact with a single impurity and is appropriate for treating the dilute limit
of the impurity concentration nimp. With the Fermi energy EF and the spin-orbit interaction energy ESO being
fixed �EF�ESO�, three regimes and the associated two crossovers are found in the anomalous Hall conductivity
�xy as a function of nimp that controls the longitudinal conductivity �xx. �i� In the superclean case with the
relaxation rate � /��uimpESOD, the skew scattering arising from the vertex correction yields a dominant
contribution that is inversely proportional to nimp, where uimp is the impurity potential strength and D is the
density of states. With increasing � /�, this extrinsic skew-scattering contribution rapidly decays. �ii� In the
moderately dirty regime uimpESOD�� /��EF, �xy becomes insensitive to the scattering strength because of
the intrinsic dissipationless topological Berry-phase contribution. It is resonantly enhanced to the order of the
quantization unit of conductance when an accidental degeneracy of band dispersions around the Fermi level is
lifted by the spin-orbit interaction. Further increasing � /�, another crossover occurs to �iii� the scaling regime
of �xy��xx

� with ��1.6, which has recently been verified by experiments on a wide class of ferromagnets.
Similar behaviors also appear in the temperature-linear coefficient of the thermal Hall conductivity �xy. The
thermoelectric Hall conductivity 	xy strongly diverges in the clean limit when the Fermi level crosses edges of
the avoided crossing, which may be observed by careful experiments. With increasing � /�, there occurs an
interference between positive and negative contributions to 	xy, which often leads to a sign change and
obscures similar crossovers in the anomalous Nernst effect.
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I. INTRODUCTION

The Hall effect is a fundamental transport phenomenon in
solids in which an applied electric current induces a trans-
verse voltage drop, or an applied electric field produces a
transverse current.1–3 In conventional semiconductors and
metals, this Hall current linear in a weak magnetic field H
offers a means to probe an effective carrier number through
the normal Hall coefficient RH. In contrast to this normal
Hall effect driven by the Lorentz force, a spontaneous mag-
netization as well bears the Hall effect in ferromagnets,2

where the relativistic spin-orbit interaction is indispensable
for connecting the spin polarization with the orbital motion
of electrons. This phenomenon, i.e., spontaneous or anoma-
lous Hall effect,2,3 has been one of the most fundamental and
intriguing issues in condensed-matter physics.

Early experimental works led an empirical relation of the
Hall resistivity �xy to the weak applied magnetic field Hz and
the spontaneous magnetization Mz both along the z direction,

�xy � RHHz + 4�RsM
z, �1�

with Rs being called the anomalous Hall coefficient.3 Similar
spontaneous or anomalous effects are also found in thermo-
electric and thermal transport phenomena as the anomalous

Nernst-Ettinghausen effect and the anomalous Leduc-Righi
effect, respectively. In spite of the intensive and extensive
studies for many decades,4–13 a long-standing debate on the
mechanism has not been resolved yet. The keen issues are
roles of scattering and the associated relaxation and dissipa-
tion. In particular, the intrinsic vs extrinsic mechanisms and
the associated scaling behaviors14 of the anomalous Hall ef-
fect have attracted revived interest because of the fundamen-
tal importance of the dissipationless and topological nature
of the intrinsic mechanism, which penetrates the whole de-
bate on this issue.4–20

In a recent Letter,14 we have presented a unified theory of
the anomalous Hall effect, fully taking account of both the
intrinsic and the extrinsic contributions on an equal footing.
Now, the main aims of this paper are �i� to provide a com-
prehensive description of the unified theory of the anomalous
electric, thermoelectric, and thermal Hall transport coeffi-
cients with some important details of the formalism and the
calculation procedure; �ii� to explain key experimental obser-
vations in various ferromagnetic metals, including the mag-
nitudes of �xx and �xy and their scaling relations, by means
of classification into three regimes revealed by the theory;
and, accordingly, �iii� to resolve the long-standing contro-
versy on the mechanism.
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The dissipationless and topological nature involved in the
Hall effect has been highlighted by the discovery of quantum
Hall effect21 in two-dimensional �d=2� disordered electron
systems under a strong magnetic field. For the Bloch elec-
trons in a perfect crystal, the Hall conductivity is expressed
by the Thouless-Kohmoto-Nightingale-Nijs �TKNN�
formula,22

�ij
TKNN = − ij�e2��

n
� ddp

�2���dbn
��p�f��n�p�� , �2�

with the electronic charge −e �e�0�, the Planck constant h
=2��, the Fermi distribution function f���, and the antisym-
metric tensor ij�. We have introduced the eigenenergy �n�p�,
the Berry-phase connection

an�p� = i	n,p
�p
n,p� , �3�

and the Berry-phase curvature

bn�p� = �p� an�p� �4�

of the generalized Bloch wave function 
n ,p� with the band
index n and the Bloch momentum p. Each band is character-
ized by a topological integer called the Chern number

Cn � −� dpxpy

�2��2bn
z�p� . �5�

The sum of Cn over the occupied bands determines the inte-
ger � �Chern number� for the quantization of the Hall con-
ductivity �xy =�e2 /h. Then, in ideal cases when the Fermi
level is located within an energy gap, the longitudinal con-
ductivity �xx vanishes and the Hall conductivity �xy is quan-
tized in a unit of e2 /h=3.87�10−5 �−1. This Berry-phase
effect has been incorporated into the adiabatic semiclassical
wave-packet equations for the Boltzmann transport theory.23

Historically, the dissipationless thermodynamic Hall cur-
rent was first discussed by Karplus-Luttinger.4 They initiated
an intrinsic mechanism of the anomalous Hall effect in a
band model for ferromagnetic metals with the spin-orbit in-
teraction. Recognizing that the interband matrix element of
the current operator plays a key role, they derived a generic
expression for the band-intrinsic contribution to the anoma-
lous Hall conductivity, which is independent of the scattering
rate. This accounts for the experimentally observed scaling
relation for the resistivity tensor �ij, i.e., �xy��xx

2 or, equiva-
lently, �xy being constant. They also performed a perturba-
tion expansion in M and the spin-orbit coupling � to derive
the empirical law given by Eq. �1�. However, there are two
drawbacks in the theory.

First, the perturbation theory for �xy in terms of the spin-
orbit interaction energy ESO��M, which is usually even
small compared with the bandwidth or the Fermi energy EF
except in the f electrons, cannot capture a topological nature
involved in the intrinsic anomalous Hall effect. Recently, it
has been recognized that Karplus-Luttinger’s general expres-
sion for the band-intrinsic contribution actually coincides
with the TKNN formula given by Eq. �2� �Refs. 24 and 25�
and that each band contains a finite Chern number,24 as in the
quantum Hall systems. Without the spin-orbit interaction, the
Hamiltonians describing the majority and minority spin

bands are decoupled in the band theory. Then, the fact that
the Hamiltonians and the Bloch wave functions are real re-
quires the accidental degeneracy of band dispersions in the
three-dimensional Brillouin zone.26 Turning on the spin-orbit
interaction, this condition no longer holds, and then the ac-
cidental band crossings are avoided, leaving a small energy
separation of the order of ESO. Namely, the spin-orbit inter-
action plays a crucial role in avoiding a crossing of band
dispersions at a certain momentum p0 �see Fig. 1�. This
avoided crossing of band dispersions is accompanied by a
transfer of Chern numbers among the two-dimensional
bands. This phenomenon called “parity anomaly” in �2+1�
dimensions has a nonperturbative nature:27 �xy exhibits a dis-
continuous jump by e2 /h as ESO continuously changes its
sign. This points to an importance of the avoided crossing of
band dispersions near the chemical potential. Therefore, the
nontrivial topological structure in the Bloch wave functions
of ferromagnets is not captured by the perturbative
treatment4 of the spin-orbit coupling � leading to the empiri-
cal law given by Eq. �1� with Rs��.

This picture based on the parity anomaly has been sup-
ported by recent first-principles calculations. When the Fermi
level is located around such an avoided crossing of disper-
sions, as found in recent ab initio calculations for SrRuO3,28

the bcc Fe,29,30 CuCr2Se4−xBrx,
31 Co,32 and Ni,32 the

magnitude of �xy
TKNN is resonantly enhanced; �xy �e2 /ha

�103 �−1 cm−1 with the lattice constant a�4 Å,28,29 which
can be regarded as a nearly quantized �xy in each two-
dimensional momentum plane or pz. This resonant enhance-
ment of �xy without any small factor of ESO��M means that
the perturbation expansion in �M fails when the Fermi level
is located within the energy range of the avoided crossing of
band dispersions. In the metallic system, there appear many
avoided crossings and/or more complex structures near the
Fermi level, which may lead to a complex behavior of �xy as
a function of the chemical potential, the magnetization, and
the crystal structure analogous to the quantum chaos, as ac-
tually found in first-principles calculations.28,29,31 Interfer-
ence among the contributions from different bands and/or
different momentum regions may often reduce the magnitude
of �xy, but its variation is of the order of e2 /ha in both
calculations and experiments on SrRuO3.28

Second, scattering events extrinsic to the band structure
were completely ignored in the Karplus-Luttinger theory.4

In fact, adiabatic semiclassical Boltzmann transport
analyses,6–8,10–13 which have also been taken over to the ex-
trinsic scenario for the spin Hall effect,33 have revealed that

p
0p

0=so
(a)

p0p

0≠so
(b)

soE

E E

FIG. 1. The simplest examples of �a� an accidental crossing of
two band dispersions at a momentum p0 and �b� an avoided cross-
ing with a splitting of the dispersions by 2ESO at this momentum
region.

ONODA, SUGIMOTO, AND NAGAOSA PHYSICAL REVIEW B 77, 165103 �2008�

165103-2



the spin-orbit interaction in the impurity potential produces
the anomalous Hall effect through the skew scattering or,
equivalently, the Mott scattering5–7,12 and the side jump.10–12

The skew-scattering contribution diverges in the clean limit
��xx��e2 /ha��EF� /��→�� as

�xy
skew = S�xx. �6�

Here, S�ESOuimpD /EF �
S
�1� is the skewness factor with
the density of states D, the Fermi energy EF, and the impu-
rity potential strength uimp. Accordingly, Luttinger reconsid-
ered the issue by means of the expansions of �xy in uimp
�Refs. 5 and 34� and the impurity concentration nimp �Ref.
35� or in � / �EF��, with the relaxation time ��� /nimpuimp

2 D.
Then, the leading-order term is proportional to 1 / �nimpuimp�,
which corresponds to the skew-scattering contribution.5 The
subleading-order term, which is of the zeroth order in uimp
and nimp, includes the original Karplus-Luttinger result4 as
well as some other terms that partially cancel the intrinsic
contribution. The side-jump contribution has the form,12

�xy
sj = 2nele

2�Mz, �7�

in the clean limit, with the electron density nel and the rela-
tivistic Aharonov-Cacher coupling � leading to an energy
shift by �p�M ·E due to the applied electric field E. It is
remarkable that this side-jump contribution is insensitive to
the relaxation rate, leading to the scaling relation �xy��xx

2 .
Therefore, it can be incorporated into the subleading term in
Luttinger’s expansion of �xy.

In the conventional quantum transport theory given by
Luttinger,5 the anomalous Hall conductivity is expanded in
ESO. Then, the ratio � / �EF�� is the only key expansion pa-
rameter. The sum of the leading skew-scattering contribution
and the subleading intrinsic and other impurity-independent
contributions to �xy is given by

�xy �
e2

ha
S

EF�

�
+ cESOD + ¯ � , �8�

with c being a constant of the order of unity. Assuming
uimp�EF, the ratio ESOD appears only as the overall factor,

�xy �
e2

ha
ESODEF�

�
+ c + ¯ � . �9�

In this expression, � / �EF�� is the only relevant parameter
that controls an extrinsic-intrinsic crossover. Namely, as far
as the expansion in ESOD is valid, the first term in Eq. �8� as
a skew-scattering contribution is dominant over the other
terms in the clean metal � / �EF���1. Therefore, it has been
believed that the extrinsic skew-scattering mechanism is
dominant,3 as supported by some experiments around the
ferromagnetic Curie temperature8 and in heavy-fermion
compounds showing large susceptibility.13,36

Nevertheless, many experimental and theoretical works
support the Karplus-Luttinger scenario. At a fixed impurity
potential strength uimp, experimental results on Fe- and Ni-
based dilute alloys,3 CuCr2Se4−xBrx,

17,20 and semiconducting
helimagnets Fe1−yCoySi and Fe1−yMnySi �Ref. 18� appeared
to be consistent with the Karplus-Luttinger prediction �xy
��xx

2 . First-principles calculations of the anomalous Hall

conductivity for SrRuO3 �Ref. 28� and Fe �Ref. 29� in terms
of the Karplus-Luttinger scenario or, equivalently, the TKNN
formula22 given by Eq. �2� also show large values of �xy
�e2 /ha, which agree with the experimentally observed val-
ues at low temperatures. The agreement is not consistent
with a simple-minded perturbation expansion of the intrinsic
contribution in �M, namely, the second term in the square
bracket of Eq. �8� or �9�. This points to the importance of the
resonant enhancement due to the topological nature and
urges a reexamination of the intrinsic mechanism against the
extrinsic one. Theoretically, the two characters involved in
the anomalous Hall effect have not been seriously considered
on an equal footing. A unified description of both intrinsic
and extrinsic contributions is called for. It is also helpful to
develop a theory of the anomalous thermoelectric Hall
�Nernst-Ettinghausen� effect and the anomalous thermal Hall
�Leduc-Righi� effect in the same theoretical framework. Pro-
viding a comprehensive description of the unified theory on
these anomalous Hall transport phenomena is the main scope
of the present study.

This paper is organized as follows: In Sec. II, we intro-
duce a model appropriate for studying the interplay between
the topological dissipationless Hall current and the extrinsic
scattering events. In Sec. III, the Keldysh Green’s function
formalism in the gauge-covariant Wigner space is briefly ex-
plained, together with the self-consistent T-matrix approxi-
mation, the numerical results for the equilibrium properties,
the Mott rule, and the Wiedemann-Franz law. Then, In Sec.
IV, numerical results are given for the anomalous electric and
thermal Hall conductivities, and the scaling relation between
�xx and �xy. In Sec. V, we show numerical results of the
thermoelecrtic Hall conductivity for the anomalous Nernst
effect. In Sec. VI, we clarify relations of the present theory to
other theories. In Sec. VII, experimental results on �xy and
�xx are summarized and compared with the present theory.
Conclusions are drawn in Sec. VIII. Some necessary details
of calculations of the Green’s functions and the self-energy
in our formalism are given in Appendixes.

II. MODEL

A simple model that fully takes into account both the
parity anomaly associated with the avoided crossing of band
dispersions and the impurity scattering can be obtained by
expanding the Hamiltonian at fixed pz with respect to the
momentum p measured from the originally crossing point p0
of two dispersions,

Ĥ = Ĥ0 + Ĥimp, �10a�

Ĥ0�p� = − �0�̂
z + vp · �̂� ez +

p2

2m
�̂0, �10b�

Ĥimp = uimp�̂
0�

rimp

��r − rimp� , �10c�

with the position r of electron, the Pauli and identity matrices
�̂= ��̂x , �̂y , �̂z� and �̂0, respectively, and the unit vector ez in
the z direction. The first term corresponds to the level split-
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ting 2�0=ESO of two bands at the avoided-crossing momen-
tum. The second term gives the linear dispersion with the
velocity v. The third term represents the quadratic dispersion
with an effective mass m, whose anisotropy has been ne-

glected since it is unimportant. When �0=0, Ĥ0�p� given by
Eq. �10b� is reduced to the two-dimensional Rashba model37

for heterostructures of n-type semiconductors, which pos-
sesses a magnetic monopole at p=0. However, note the sig-
nificant difference in the physical interpretation of the model
parameters. In the present model for ferromagnetic metals,
�0 plays the role of the spin-orbit interaction that lifts the
accidental degeneracy of two band dispersions with the ve-
locity v, while for semiconductors, v is the spin-orbit cou-
pling and � is the Zeeman splitting.

For simplicity, we also assume that the impurity potential
has the �-functional form of the strength uimp at random po-
sitions �rimp� since, as we will show, this simple form bears
the extrinsic skew-scattering and side-jump contributions.
The generalization to a long-range potential is straightfor-
ward but requires rather lengthy calculations. Here, note the
significant difference in the way of taking the impurity aver-
age. One might think that the conventional scheme of taking
the average over the impurity positions, which we adopt,
might be mimicked by taking the potential average in the
white noise model or the random potential model. However,
this is true only within the Born approximation. In fact, the
higher-order scattering processes, which are crucial for the
skew-scattering contribution, cannot be correctly reproduced
by the random potential model.

First, let us consider the model in the absence of the im-
purities. This model has two band dispersions ���p� sepa-
rated by 2�p, with �p=�v2p2+�0

2, as shown in Fig. 2.
Henceforth, the bottom of the lower band in the absence of
impurities is chosen as the origin of the energy, and the bot-
tom of the upper band denoted as Eres=�−�p=0� is taken as
an energy unit. The present model possesses the gauge flux

b�,p
z = − �

v2�0

2�p
3 �11�

for the band index �=�, as discussed in the literature.38

Substituting Eq. �11� into Eq. �2� and the integration over the
momentum yields the intrinsic contribution to the anomalous
Hall conductivity,

�xy
TKNN = −

e2

2h
�
�

�
�0

�p�

, �12�

when both bands are partially occupied. Here, p� is the
Fermi momentum for the band index �.

When EF� �Eres−2�0 ,Eres�, �xy
TKNN is resonantly en-

hanced and approaches the maximum value e2 /2h. Away
from this resonance, dominant contributions from the
momentum region around p=0 cancel each other out
or do not appear, leading to a suppression of �xy

TKNN

���e2 /h��ESO /EF��, and then the perturbation expansion in
ESO is justified. Therefore, the present model �Eqs.
�10a�–�10c�� can be regarded as a minimal continuum model
for a momentum region that gives a major contribution to the
anomalous Hall effect.

Actually, in the simplest case with the inversion and time-
reversal symmetry, the massless Dirac-fermion structure may
appear at high symmetry points in pair. They contain Chern
numbers with opposite signs as in the Honeycomb
lattice39–41 for graphenes. Then, the ferromagnetic moment
along the z direction, which breaks the time-reversal symme-
try, together with the spin-orbit interaction, avoids the cross-
ing of band dispersions and introduces an energy gap sepa-
rating two dispersions. This transfers the Chern numbers
among different band indices. In three dimensions, there oc-
curs a transfer of the Chern numbers among different values
of the momentum component pz. In these cases with avoided
crossing of band dispersions, a complete interference among
the topological contribution to the Hall conductivity does not
occur in general.

The transfer of the Chern numbers can also occur along
momentum curves, for instance, along the z direction parallel
to the magnetization. In this case, the two-dimensional mas-
sive Dirac-fermion structures studied in the present paper
appear at each pz, and �0 continuously changes as a function
of pz with or without sign change. It is likely that there is at
least one such structure across the Fermi level, which is not
accompanied by the sign change below the Fermi level.
Then, even the integration of the two-dimensional anoma-
lous Hall conductivity over pz does not lead to a cancellation
of the topological contribution, and hence it remains of the
order of e2 /ha even for complicated band structures found in
first-principles calculations.28–32

III. QUANTUM TRANSPORT THEORY FOR MULTIBAND
SYSTEMS

We employ the nonequilibrium Green’s function method
based on the Keldysh formalism,42,43 which has recently
been reformulated in the gauge-covariant Wigner representa-
tion for generic multicomponent systems.44 In the linear or-
der in the electromagnetic field, it clarifies a systematic way
of diagrammatically treating the Smrčka-Středa formula45,46

and thus the Kubo formula47 with the self-energy and the
vertex corrections. Imposing the self-consistency among the
Green’s function and the self-energy, this automatically sat-
isfies the Ward-Takahashi identity. This formalism also re-
veals that there appear two mathematically independent self-
consistent equations for the linear deviation of quantum

0
0
p

Eres

2∆

ε σ
(p

) ε−(p)ε+(p)

0

b

a

c

FIG. 2. �Color online� Electronic band dispersions of the present

model given by Ĥ0.
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distribution function in the electric field, one for the Fermi-
surface contribution and the other for the quantum contribu-
tion. This is usually not easy to recognize in the integral
equation for the vertex correction in the Kubo formalism.

A. Quantum transport theory based on the Keldysh formalism
in the gauge-covariant Wigner space

Following our previous paper,44 we consider the Green’s

functions Ĝ	 and the self-energies �̂	 under the constant
applied electric field E, which is taken along the y direction
in this paper, i.e., E= �0,Ey�. Here, the superscripts 	=R, A,
and �correspond to the retarded, the advanced, and the
lesser components, respectively. The Green’s functions and
the self-energies are considered in the gauge-covariant
Wigner space44 composed of the center-of-mass time �T� and
space �X� coordinates and the mechanical energy � and mo-
mentum p, which can be obtained by the Fourier transform
of the gauge-covariant derivative. This gauge-covariant
Wigner representation is advantageous over the other choices
since it minimally reduces the arguments of the Green’s
functions and the self-energies. Namely, in the uniform
steady state, it allows the dependence on X�= �T ,X� or X�
= �−T ,X� only through the electromagnetic potential A��X�
= ���X� ,A�X�� or A��X�= �−��X� ,A�X��, which can be to-
tally absorbed into the mechanical energy momentum p�

= �� ,p� or p�= �−� ,p�.
Then, the Dyson equations are modified with the applied

field as

��Î� − Ĥ� 0�p� − �̂� �����Ĝ� ��,p� = Î� , �13a�

Ĝ� ��,p����Î� − Ĥ� 0�p� − �̂� ���� = Î� . �13b�

Henceforth, matrices in the Keldysh space are underlined,
while those in the band indices are denoted with a hat;

Ĝ� ��ĜR 2Ĝ�

0 ĜA
� , �14a�

�̂� ���̂R 2�̂�

0 �̂A
� , �14b�

Ĥ� 0 ��Ĥ0 0

0 Ĥ0

� , �14c�

Î� = ��̂0 0

0 �̂0 � . �14d�

The symbol � is the Moyal product of the form

� � exp i�− e��
2

F�����p���p� − ��p���p��� , �15�

with the differential operators �� and �� operating on the left-
hand and the right-hand sides, respectively, and the electro-
magnetic field tensor F��=�X�

A��X�−�X�
A��X�, which is as-

sumed to be constant. The lesser Green’s function and self-
energy play roles of the quantum distribution function and
the vertex correction, respectively. Since we have assumed
that impurity potential has a �-functional form, the self-
energies are local. The distribution function is now fully
quantum mechanical with the � dependence, in sharp con-
trast to the classical Boltzmann transport theory where only
its integration over � is considered.

Ĝ	�� ,p� and �̂	��� can be expanded in Ey as

Ĝ	��,p� = Ĝ0
	��,p� + e�EyĜEy

	 ��,p� + O�Ey
2� , �16a�

�̂	��� = �̂0
	��� + e�Ey�̂Ey

	 ��� + O�Ey
2� . �16b�

Henceforth, functionals with the subscripts 0 and Ey denote
those in the absence of and the gauge-covariant linear re-
sponse to Ey, respectively. Note that even with the subscript
0, functionals contain the self-energy originating from the

impurity scattering. Ĝ0
R,A satisfies the well-known Dyson

equation in the absence of the electric field,

Ĝ0
R,A��,p� = �� − Ĥ0�p� − �̂0

R,A����−1. �17�

The self-consistent equations for ĜEy

R,A,� are obtained by ex-
panding the Moyal product Eq. �15� in the Dyson equations
�13a� and �13b� in terms of Ey.

44 It is convenient to decom-

pose ĜEy

� and �̂Ey

� into two,

ĜEy

� ��,p� = ĜEy,I
� ��,p���f��� + ĜEy,II

� ��,p�f��� , �18�

�̂Ey

� ��� = �̂Ey,I
� �����f��� + �̂Ey,II

� ���f��� , �19�

ĜEy,II
� ��,p� = ĜEy

A ��,p� − ĜEy

R ��,p� , �20�

�̂Ey,II
� ��� = �̂Ey

A ��� − �̂Ey

R ��� . �21�

ĜEy,I
� and �̂Ey,I

� can be self-consistently determined from the
quantum Boltzmann equation in the first order in Ey,

�ĜEy,I
� ,Ĥ0� + ĜEy,I

� �̂0
A − �̂0

RĜEy,I
�

= �̂Ey,I
� Ĝ0

A − Ĝ0
R�̂Ey,I
� −

i

2
�v̂y,Ĝ0

A − Ĝ0
R�+

+
i

2
���̂0

A − �̂0
R���py

Ĝ0
A� + ��py

Ĝ0
R���̂0

A − �̂0
R�� ,

�22�

or, equivalently,

ĜEy,I
� = Ĝ0

R�̂Ey,I
� − i�py

�Ĥ0 +
1

2
��̂0

R + �̂0
A���Ĝ0

A

+
i

2
�py

�Ĝ0
R + Ĝ0

A� , �23�

with the velocity v̂i�p�=�pi
Ĥ0�p�, while ĜEy

R,A and �̂Ey

R,A are
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determined from the other self-consistent equation,

ĜEy

R,A = Ĝ0
R,A�̂Ey

R,AĜ0
R,A −

i

2
�Ĝ0

R,Av̂y���Ĝ0
R,A� − ���Ĝ0

R,A�v̂yĜ0
R,A� .

�24�

Note that the retarded and advanced Green’s functions are
also modified by the electric field, in contrast to the single-
band case. We also stress that the Ey-linear deviation of the

lesser component of the self-energy, �̂Ey

R,A,�, yields the vertex
correction and modifies the p-independent current vertex.44

We proceed to the calculation of the self-energies. The
side-jump and skew-scattering contributions can appear from
the first and second Born amplitudes in the vertex correction,
respectively.48 For a large impurity potential strength, impu-
rity states may be produced. These nontrivial effects can be
fully taken into account up to the linear order in the impurity
concentration nimp by means of the T-matrix approximation.
Furthermore, the self-consistent calculation of the Green’s
functions and the self-energies modifies the result and allows
for producing a nonperturbative effect of impurity scattering
events, as we will see later. The self-consistent T-matrix ap-
proximation, which is represented by the Feynman diagrams
in Fig. 3, gives

�̂0
R,A��� = nimpT̂0

R,A��� , �25�

T̂0
R,A��� = uimp�1 − uimp� d2p

�2���2Ĝ0
R,A��,p��−1

�26�

for the zeroth order in Ey and

�̂Ey,I
� ��� = nimpT̂0

R��� � d2p

�2���2ĜEy,I
� ��,p�T̂0

A��� , �27�

�̂Ey

R,A��� = nimpT̂0
R,A��� � d2p

�2���2ĜEy

R,A��,p�T̂0
R,A��� �28�

for the first order in Ey.

B. Equilibrium properties

We first solve Eqs. �17�, �25�, and �26� for the self-
consistent T-matrix approximation to obtain the equilibrium

Green’s functions Ĝ0
R,A and self-energies �̂0

R,A. All the mo-
mentum integrations are performed analytically for each
value of the energy � as given in Appendix B, and then the
numerical iteration is repeated until the convergence is

reached. Figure 4 shows thus obtained local densities of
states,

D��� � −
1

�
� d2p

�2���2 Im Tr�Ĝ0
R��,p�� , �29�

Dz��� � −
1

�
� d2p

�2���2 Im Tr�Ĝ0
R��,p��̂z� , �30�

with a set of parameters v=3.59, �0=0.1, and 2muimp=0.2
for three choices of �Born=� /�Born�mnimpuimp /�2=0.01,
0.10, and 0.50. Here, �Born represents the first Born scattering
amplitude in the case of v=�0=0. The increase of the impu-
rity potential strength uimp lowers the bottom of the band due
to the broadening of the electron spectral functions and also
smears out the singularity, which is originally present at the
energy levels of the majority and the minority bands at p
=0, i.e., �=���p=0�, without the impurities. This broadened
spectral feature is beyond the semiclassical approximation
where the electron spectral function has a �-functional form.
This also plays a crucial role in eliminating an unphysical
singularity in the thermoelectric Hall conductivity 	xy at
EF=���p=0� and the discontinuity in �xy at EF=�−�p=0�, as
will be shown later.

C. Field-induced change of quantum distribution function
and the electric conductivity tensor

Next, the self-consistent results for Ĝ0
R�� ,p� and �̂0

R��� are

plugged into Eqs. �22� and �27� to calculate ĜEy,I
� and �̂Ey,I

�

)',(ˆ pεG )',(ˆ pεG )'',(ˆ pεG
=Σ )(ˆ ε

impv

+ +
impv impv

impv
impv

)',(ˆ pεG )'',(ˆ pεG )''',(ˆ pεG

�+
impv impv

impv impv

impn impn impn

+

impn

impv

FIG. 3. �Color online� Diagrammatic representation of the self-energy in the present self-consistent T-matrix approximation in the

Keldysh space, which is composed of the infinite series of multiple Born scattering amplitudes. Here, underlined variables Ĝ� and �̂� are
matrices in the Keldysh space. Note that the lesser component gives the integral equation for the vertex correction in the context of the Kubo
formalism.
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FIG. 4. �Color online� The results for D��� and Dz��� obtained
in the self-consistent T-matrix approximation for v=3.59, �0=0.1,
and 2muimp=0.2.
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self-consistently, and into Eqs. �24� and �28� to obtain the

self-consistent solution for ĜEy

R,A and �̂Ey

R,A. Details of the cal-

culations of ĜEy,I
� and �̂Ey,I

� , and ĜEy

R,A and �̂Ey

R,A are given in

Appendixes C and D, respectively. Then, ĜEy,II
� is calculated

from ĜEy

R,A via Eq. �20�.
Finally, the conductivity tensor is obtained as

�ij
tot = e2�� d�

2�i
� d2p

�2���2Tr�v̂i�p�ĜEj

���,p�� = �ij
I + �ij

II,

�31�

with i , j=x ,y, where �ij
tot has been decomposed into the

Fermi-surface contribution �xy
I and the quantum contribution

�xy
II ,

�ij
I = e2�� d�

2�i
� dp

�2���2Tr�v̂i�p�ĜEj,I
� ��,p����f���

→ −
e2�

2�i
� d2p

�2���2Tr�v̂i�p�ĜEj,I
� ��,p�� , �32�

�ij
II = e2�� d�

2�i
� d2p

�2���2Tr�v̂i�p�ĜEj,II
� ��,p��f���

→ e2��
−�

� d�

2�i
� d2p

�2���2Tr�v̂i�p�ĜEj,II
� ��,p�� . �33�

The second lines in Eqs. �32� and �33� are obtained in the
zero temperature limit. Here, �ij

I is completely determined by
the Fermi-surface properties at the zero temperature, while
�ij

II contains the whole Fermi-sea properties and contributes
to only the Hall conductivity. Now, we can calculate �ij

I and
�ij

II separately by substituting Eq. �22� into Eq. �32� and Eqs.
�20� and �24� into Eq. �33�, respectively. We note that for our
practical calculations, all the momentum integrations in Eqs.
�32� and �33� are performed analytically, and then the re-
maining energy integration is performed numerically in Eq.
�33�. Details of the calculations are given in Appendixes C
and D.

Apart from the mathematical separation as given in Eq.
�31�, it is useful to introduce another decomposition scheme
to distinguish the mechanisms. Effects of the scattering

events result in the equilibrium self-energy �̂0
R,A and the ver-

tex corrections associated with �̂Ey

R,A,�. The extrinsic contri-
bution can be ascribed to the vertex corrections, while the
equilibrium self-energy correction yields the modification of
the equilibrium electronic structure like the quasiparticle dis-
persion and the damping rate. The latter only modifies the
intrinsic contribution from that obtained for the perfect crys-
tal. Then, it is meaningful to separate the total conductivity
into the intrinsic and extrinsic parts. In particular, the intrin-
sic part is defined as the contribution that survives without
the vertex correction,

�xy
int = �xy

I int + �xy
II int, �34�

where

�xy
I int = −

e2�

2
� d�

2�
��f��� � dp

�2���2

�Tr�v̂x�p�Ĝ0
R��,p�v̂y�p��Ĝ0

A��,p� − Ĝ0
R��,p��

− v̂x�p��Ĝ0
A��,p� − Ĝ0

R��,p��v̂y�p�Ĝ0
A��,p�� �35�

and

�xy
II int = e2�� d�

2�
f��� � dp

�2���2

�Tr�v̂x�p�Ĝ0
A��,p�v̂y�p����Ĝ0

A��,p��

− v̂x�p����Ĝ0
A��,p��v̂y�p�Ĝ0

A��,p�

− v̂x�p�Ĝ0
R��,p�v̂y�p����Ĝ0

R��,p��

+ v̂x�p����Ĝ0
R��,p��v̂y�p�Ĝ0

R��,p�� �36�

are obtained from Eqs. �32� and �33� by ignoring �̂I,Ey

� and

�̂Ey

R,A in Eqs. �23� and �24�, respectively. The extrinsic contri-
bution is then calculated as the difference

�xy
ext = �xy

tot − �xy
int. �37�

Especially, when the relaxation rate vanishes, �ij
I int is ana-

lytically expressed as14

�ij
I int��→ �� = − ij�

e2�

2
� dp

�2���2 �
n,n�

��n�p� − �n��p��

���f��n�p��Im�	np
�p
n�p�� 	n�p
�p
np���,

�38�

which can be directly derived from Eq. �22� or �23�. This and
�xy

II int��→�� compose the Berry-curvature contribution, i.e.,
the TKNN formula given by Eq. �2�. Namely, provided that
there is no singular energy dependence in the self-energy

�̂0
R,A, the relation

�xy
TKNN = �xy

I int��→ �� + �xy
II int��→ �� �39�

holds, as addressed previously.14,51 Then, the integration by
parts shows that �xy

int can be related to the Fermi-surface
properties.49

In fact, even with an infinitesimally small impurity con-
centration, i.e., in the clean limit �nimp→0�, �xy

II may be sup-
pressed from the TKNN result �Eq. �2�� by the contribution
from the bottom of the bands due to a nearly singular energy

dependence of the self-energy �̂0
R,A, as shown mathemati-

cally in Appendix B and as plotted in Fig. 4. This reflects that
the momentum p and, thus, the Berry curvature are no longer
good quantum numbers in the presence of the impurity po-
tential. In terms of a constant relaxation-rate approximation,
�xy

int can be calculated from the first principles.28–32 Even with
a nontrivial energy-dependent self-energy, the first-principles
calculation is possible, for instance, using the GW
approximation.50

Physically, the intrinsic contribution actually corresponds
to �xy��� in the limit where �→� and, subsequently, �
→0. In the metallic case, it disagrees with the result in the
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real dc limit ��→0, then �→��, which is directly relevant
to the transport properties. When the Fermi level is located
within the energy gap, �xy

I vanishes and �xy
II agrees with Eq.

�2�. In general, �xy
II is robust against the scattering and, thus,

the vertex corrections; hence, we can regard �xy
II as an intrin-

sic contribution even in the presence of impurities. Actually,
for the present model given by Eqs. �10a�–�10c�, the vertex

correction to �xy
II , namely, the effect of �̂Ej,II

� on �xy
II , is can-

celed out, as shown in Appendix D. However, the Fermi-
surface contribution �xy

I is strongly affected by a dissipation
originating from the vertex correction in the clean limit, and
the extrinsic contribution plays a crucial role.

The expression given by Eq. �31�, together with Eqs. �35�
and �36�, coincides with the Smřcka-Středa formula.45,46

Moreover, it is remarkable that in the presence of scattering,
this approach based on Eqs. �31�–�33� provides the diagram-
matic treatment for the Smřcka-Středa formula,45,46 as previ-
ously noted.14,44 Here, instead of diagonalizing the impurity
Hamiltonian and expressing the conductivity tensor in the
diagonalized basis, we have taken into account the self-
energy and the vertex corrections due to the impurities,

which correspond to �̂0
R,A and �̂Ey

� , respectively.
It is also important that, formally, there exist two indepen-

dent self-consistent equations for the total quantum distribu-

tion function ĜEy

� �� ,p�: One is for ĜEy,I
� �� ,p� and the other

for ĜEy

R,A�� ,p�, in addition to the equilibrium Green’s function

Ĝ0
��� ,p�= �Ĝ0

A�� ,p�− Ĝ0
R�� ,p��f���. Therefore, one cannot

correctly obtain ĜEy

� without solving all these self-consistent
equations in general.

D. Mott rule and Wiedemann-Franz law

Let us consider the electric current J and thermal current
Jq due to the electric field E and the temperature gradient �T
applied to the sample. Up to the linear order in E and �T,
they are conventionally written as

Ji = �
j

��ijEj + 	ij�− � jT�� , �40a�

Ji
q = �

j

�T	ijEj + �ij�− � jT�� . �40b�

Here, �ij is nothing but the electric conductivity tensor, and
	ij and �ij are the thermoelectric and thermal conductivity
tensors, respectively. The anomalous thermoelectric Hall ef-
fect, i.e., the anomalous Nernst-Ettinghausen effect, is char-
acterized by 	xy �0, while the anomalous thermal Hall ef-
fect, i.e., the anomalous Leduc-Righi effect, by �xy �0.

Smřcka-Středa45 proved that the Mott rule

	ij =
�2kB

2

3�− e�
T d

d�
�ij����

�=�
, �41a�

and the Wiedemann-Franz law

�ij =
�2kB

2

3e2 T�ij��� , �41b�

generally hold in the low-temperature limit in the absence of
inelastic scattering, with the Bolzmann constant kB, the tem-
perature T, and the electric conductivity tensor �ij��� at the
chemical potential �.

The T-linear coefficient to �ij is just proportional to �ij
and does not contain new information. On the other hand, the
low-temperature limit of 	ij /T is proportional to the deriva-
tive of �ij��� with respect to the chemical potential. There-
fore, it is calculated from

	ij
tot = 	ij

I + 	ij
II �42�

with

	ij
I

T
→ −

�2kB
2e�

6�i
� d2p

�2���2Trv̂i�p�
d

d�
ĜEj,I
� ��,p�� ,

�43�

	ij
II

T
→
�2kB

2e�

6�i
� d2p

�2���2Tr�v̂i�p�ĜEj,II
� ��,p�� . �44�

Note that it includes the Berry-phase curvature at the Fermi
level.31,49

E. Connection with the semiclassical approach

Now, it is important to clarify the relation between the
present fully quantum-mechanical approach14,44 and the
semiclassical approaches modified with the Berry phase in
the momentum space.23,51 From the present formalism, if we

ignore the self-energy corrections, i.e., �̂R,A, the transport
equations �Eqs. �22� and �24�� can be readily integrated over
the energy �. Note that when we calculate the extrinsic trans-
port current from Eq. �22�, we need to multiply both sides of
the equation by the typical relaxation rate � to maintain the
meaning. Then, they are expressed in terms of the semiclas-
sical distribution function, but of the matrix form

F̂�p� =� d�

2�i
��Ĝ0

A��,p� − Ĝ0
R��,p��f��� + ĜEy

� ��,p�� .

�45�

The first term, i.e., the equilibrium part, can be diagonalized
by the band representation with the band index n and the
dispersion �n�p�. Then, the energy integration yields
f��n�p��. Though this procedure does not diagonalize the sec-
ond term, i.e., the nonequilibrium part, this semiclassical ap-
proach usually serves as a good approximation to the longi-
tudinal conductivity.

Similar techniques have been used to calculate the anoma-
lous Hall conductivity in the same model, using the Kubo
formula and the semiclassical Boltzmann theory.51 However,
whichever method is used, ignoring the self-energy correc-
tion in the energy integration of the equilibrium Green’s
function in the Kubo formalism or using the semiclassical
distribution function in the semiclassical Boltzmann trans-
port theory sometimes leads to an unphysical singularity, as
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we will explain in later sections. Unfortunately, this is the
case in the present model, and one needs to include seriously
the lifetime broadening of the quasiparticles. In this respect,
the present fully quantum-mechanical approach gives a pow-
erful theoretical formalism by which one can directly treat
nontrivial quasiparticle spectra modified by the self-energy
correction, which always eliminates such singularity in the
presence of a finite scattering strength.

IV. ANOMALOUS ELECTRIC AND THERMAL HALL
EFFECTS

In this section, we will show the results for the anomalous
electric Hall conductivity �xy. The T-linear coefficient to the
anomalous thermal Hall conductivity �xy can be directly ob-
tained from �xy with the universal proportionality constant
via the Wiedemann-Franz law given by Eq. �41b�.

A. Global dependence of extrinsic and intrinsic contributions
on the Fermi energy and the scattering amplitude

Figure 5�a� shows the numerical results on the total
anomalous Hall conductivity �xy

tot=�xy
I +�xy

II as a function of
the Fermi energy EF and the first Born scattering amplitude
�Born=� /�Born�nimpuimp

2 m for a typical set of parameters,
�0=0.1, 2muimp=0.6, and 2mv2=3.59, in an energy unit of
Eres=1.0. Henceforth, the energy cutoff is taken as Ec=3.0
and �Born is varied by changing the impurity concentration
nimp, which can be directly controlled in experiments, while
the potential strength uimp is fixed.

In the clean limit �Born=� /�Born→0, �xy
tot tends to increase

rapidly in accordance with the extrinsic skew-scattering sce-
nario �see Eq. �6��. The strength of the divergence is propor-
tional to EF in the low electron-density limit, and the sign is
inverted around EF=�+�0�=Eres−2�0. It is also evident from
Fig. 5 that �xy

skew is significantly reduced when both bands are
partially occupied, i.e., ��Eres=�−�p=0�. If the self-energy

corrections �̂0
R,A are approximated by constant relaxation

rates, then �xy
skew vanishes when both bands are partially oc-

cupied and a discontinuity appears when the Fermi level
crosses the bottom of the minority band.51 In fact, the self-
energy determined self-consistently with the Green’s func-
tion causes a small but finite skew-scattering contribution
even in this case. This is natural since the Fermi surface is
now not strictly defined and the quasiparticles around the
Fermi level participate in the extrinsic dissipative Hall cur-
rent through the asymmetric scattering. We will discuss this
issue in detail later in Sec. VI.

To identify the intrinsic and extrinsic contributions quan-
titatively, we adopt the separation scheme for the extrinsic
and the intrinsic parts defined via Eqs. �34� and �37�. The
intrinsic part �xy

int is plotted in Fig. 5�b� for the same set of
parameters. Under the resonant condition for EF being
around the range ��−�p=0�−2�0 ,�−�p=0��, �xy

int becomes of
the order of e2 /2h. With the increasing scattering amplitude
�Born, it only gradually decreases due to the damping of qua-
siparticles. Off the resonance, �xy

int is significantly reduced by
a small factor ESOD.

On the other hand, the extrinsic part �xy
ext is shown in Fig.

5�c�. It is evident that the extrinsic skew-scattering process
always yields a dominant contribution to �xy in the clean
limit. However, with the increasing relaxation rate �Born by
the increase of nimp, �xy

skew rapidly decays and becomes com-
parable to or even smaller than �xy

int, indicating an crossover
from the extrinsic skew-scattering regime to the intrinsic re-
gime. This rapid decay reflects that the skew-scattering con-
tribution originates from intraband processes and hence the
skewness factor S remains of the order of ESOuimpD /EF.

In Fig. 6, we also show the results obtained with the same
set of parameters except a smaller value of the impurity po-
tential strength 2muimp=0.02. Compared with the case of a
larger uimp shown in Fig. 5, the skew-scattering contribution
is smaller, while the intrinsic contribution almost remains the
same. In particular, in the level of the �self-consistent� Born
approximation instead of the �self-consistent� T-matrix ap-
proximation, �xy

int depends on uimp and nimp only through
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FIG. 5. �Color online� �a� The total anomalous Hall conductivity
�xy

tot, �b� the intrinsic contribution �xy
int, and �c� the extrinsic contri-

bution �xy
ext as functions of the Fermi energy EF and the Born scat-

tering amplitude �Born in an energy unit of Eres=1.0. The parameters
are chosen as v=3.59, �0=0.1, and 2muimp=0.2. Note the differ-
ence of the scales for �xy in �a�, �b�, and �c�.
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�Born. The reduction of the skew-scattering contribution is
also natural since, as explained below Eq. �6� in Sec. I, it is
proportional to 1 /nimpuimp�uimp /� for small values of uimp
and nimp. Namely, the intrinsic anomalous Hall effect be-
comes more important in this case, and the extrinsic-intrinsic
crossover becomes clearer.

B. Extrinsic-intrinsic crossover

Next, to gain further insight and to see more clearly the
extrinsic-intrinsic crossover in the anomalous Hall effect, we
discuss �xy

int, �xy
I int, �xy

II int, and �xy
ext, in comparison with the

total value �xy
tot. Figures 7 and 8 show the results for several

choices of EF and 2muimp as a function of the averaged re-
laxation rate �=� /�=2 Im �0

A0�EF� at the Fermi level, in-
stead of the Born scattering amplitude �B. Here, �0

A0��� is
defined by Eq. �A3� in Appendix A. The other parameter
values are taken to be the same as used in Fig. 5.

Let us start with the resonant case with EF being located
within the resonant window. We show the results for EF
=0.9 �see arrow b in Fig. 2� in Fig. 7. It is clear that the
extrinsic contribution �xy

ext and thus the total Hall conductiv-
ity �xy

tot include the component diverging in the clean limit
�→�, and the strength of the divergence is increased as the
impurity potential strength 2muimp is varied from �a� 0.02,
�b� 0.2, �c� 0.4, and �d� 0.6. This agrees with the skew-
scattering scenario �xy

skew�uimpESOD�, as given by Eq. �6�.
As noted in Sec. IV A, the intrinsic contribution �xy

int as well
as its components �xy

I int and �xy
II int are almost unchanged by

this variation in 2muimp. �xy
int has a nearly saturated value of
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FIG. 6. �Color online� The total anomalous Hall conductivity
�xy

tot as a function of EF and �Born in an energy unit of Eres=1.0. The
parameters are chosen as v=3.59, �0=0.1, and 2muimp=0.02. Note
the difference of the scale for �xy compared with Fig. 5�a�.
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FIG. 7. �Color online� �xy
tot, �xy

int,�xy
I int, �xy

II int, and �xy
ext at EF=0.9 as functions of the � /� for the same parameter values as Fig. 5 except

the impurity potential strength: �a� 2muimp=0.02, �b� 0.2, �c� 0.4, and �d� 0.6.

ONODA, SUGIMOTO, AND NAGAOSA PHYSICAL REVIEW B 77, 165103 �2008�

165103-10



�e2 /2h when � /���0=0.1. Increasing the impurity scatter-
ing rate �=� /� from the clean limit, �xy

I int evolves from 0,
reaches the maximum, and then gradually decays, while
�xy

II int monotonically decreases with increasing �. Accord-
ingly, the total intrinsic contribution also only gradually de-
cays as a function of �. On the other hand, �xy

skew rapidly
decays in proportion to �. Then, as is clear from the panels
�b�–�d� of Fig. 7, 
�xy

int
 and 
�xy
ext
 intersect at a value of the

relaxation rate � /� proportional to uimp. This is consistent
with the semiclassical arguments: �xy

ext��xy
skew

��e2 /h�uimpESOD� /� becomes comparable to �xy
int�e2 /2h at

� /��uimpESOD and even smaller than �xy
int with further in-

crease in �=� /�. This defines the crossover between the ex-
trinsic anomalous Hall effect in the superclean system � /�
�uimpESOD and the intrinsic anomalous Hall effect in the
moderately dirty system � /��uimpESOD. It should also be
noticed that even within this intrinsic regime, another extrin-
sic contribution is present because of the vertex correction,

i.e., �̂Ey,I
� , which partially cancels �xy

int and hence reduces �xy
tot

from �xy
int, as shown in Fig. 7.

For a small ratio of ESO /EF�10−3–10−2, as in first-
principles calculations28,29 and uimpD�1, the dominance of

the intrinsic anomalous Hall effect is realized within the
usual clean metal of � /��ESO �several tens of meV�. In
reality, the total Hall conductivity is the sum of the contribu-
tions from all over the Brillouin zone. Since skew-scattering
contributions from other momentum regions are always sub-
ject to a similar rapid decay, the above extrinsic-to-intrinsic
crossover still occurs unless contributions from all the
avoided-crossing regions of band dispersions are mutually
canceled out by accident.

Next, fixing the potential strength as 2muimp=0.2, we take
different values of the Fermi energy well below and above
the resonant window. To be explicit, in panels �a� and �b� of
Fig. 8, we plot the results for EF=0.5 and 1.5 marked with
arrows a and c in Fig. 2, respectively. In both cases, the
intrinsic contribution is much reduced from e2 /2h by a factor
of 2�0 /Eres. Therefore, the expansion of �xy in the spin-orbit
interaction energy ESO is allowed in these cases. For �a� EF
=0.5, the dominance of the extrinsic skew-scattering contri-
bution extends over a wide regime compared with the case of
EF=0.9 shown in Fig. 7�b�. This agrees with arguments
given in the Introduction along Luttinger’s theory �see Eq.
�9��. However, with further increase in the relaxation rate �
=� /�, the total Hall conductivity �xy

tot nearly merges into the
Fermi-surface part �xy

I int of the intrinsic contribution. In con-
trast to the resonant case shown in Fig. 7, not only �xy

II int but
also �xy

I int is finite even in the clean limit. When the Fermi
level is located above the resonant window, i.e., EF��−�p
=0�, �xy

II int vanishes in the clean limit, as shown in Fig. 8�b�
for EF=1.5, in agreement with the Kubo-formula
calculation,51 and only gradually evolves into a finite value
in the presence of a finite damping, which results from self-

consistency between the equilibrium Green’s function Ĝ0
R,A

and self-energy �̂0
R,A in the T-matrix approximation. �xy

I int is
finite, but it suffers from the reduction due to the vertex

correction associated with �̂Ey,I
� . Then, the total Hall conduc-

tivity �xy
tot nearly vanishes, except the skew-scattering contri-

bution.

C. Scaling relations between �xx and �xy

In the rest of this section, we discuss scaling relations
between �xy and �xx, which are a source of controversy on
the interpretation of the experimental results. First, we show
the results of the resistivity �xx�1 /�xx calculated by using
the same parameter values 2mv2=3.59 and �0=0.1 in Fig. 9.
The data with different values of 2muimp fall into a single
curve for each EF. In the clean limit, �xx is proportional to
�=� /� or, equivalently, �xx is proportional to � with differ-
ent coefficients depending on the Fermi energy EF. However,
it is clear from both the linear and logarithmic plots in �a�
and �b�, respectively, that for EF�Eres, the resistivity exhib-
its a different scaling relation �xx� �� /���xx, with �xx
�0.8�0.05, as in the portion of the EF=0.5 and 0.9 curves.
This crossover occurs as the resistivity is varied across
h /�e2.

Figure 10 shows the logarithmic plot of �xy against �xx
for the same set of parameters as in Fig. 7. In the clean limit,
the curves nicely follow �xy��xx, and the ratio �xy /�xx is
proportional to uimp for a fixed � or �xx. Note, however, that
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tions of the � /� for the same parameter values as Fig. 5 with EF

=0.5 and 1.5 for �a� and �b�, respectively.

QUANTUM TRANSPORT THEORY OF ANOMALOUS… PHYSICAL REVIEW B 77, 165103 �2008�

165103-11



for 2muimp=0.02, the intrinsic anomalous Hall effect is still
robust within this range of �xx, as argued in Sec. IV A. As
�xx�2�e2 /h�EF� /� decreases with a decrease in �, the rela-
tion between �xx and �xy exhibits an upward deviation from
the linear one �xy��xx, signaling the crossover to the intrin-
sic regime with an almost constant �xy. As we have already
mentioned, this extrinsic-intrinsic crossover occurs around
�xx��e2 /ha��EF /uimpESOD�. In terms of the resistivity ten-
sor, the crossover occurs when �xx is of the order of �� cm;
�xy��xx in a more conducting region, while �xy��xx

2 in a less
conducting region.

A smaller impurity potential strength uimp enlarges the
region of the constant behavior of �xy. �Note that we change
nimp to control � /�.� It is remarkable that in the case of
2muimp=0.02, the intrinsic behavior of an almost constant
�xy is clearly observed in the moderately dirty case. This
intrinsic regime with an almost constant �xy continues
even with the variation of �xx over 3 orders of magnitude.
The magnitude of �xy in the intrinsic regime is also

consistent with experimentally observed values �xy
�102–103 �−1 cm−1 in this �xy-constant region, as summa-
rized in Sec. VII.

A further decrease in � changes the scaling behavior to
�xy� ��xx��, with ��1.6. This nontrivial exponent appears
in the dirty regime �xx��e2 /h, where the longitudinal trans-
port also exhibits the nontrivial scaling �xx��

�xx and hence,
the Hall conductivity scales as �xy��

�xy, with �xy =��xx
�1.3. This exponent appears irrespective of the position of
the Fermi level. Actually, the exponent � has recently been
experimentally verified in various classes of ferromagnetic
materials, as summarized in Sec. VII. Note also that this
exponent approximates the value expected for the insulating
phase of the quantum Hall system under a strong applied
magnetic field.52 These nonperturbative exponents are ob-
tained as a result of the self-consistency between the Green’s
function and the self-energy and the inclusion of the vertex
correction. The intuitive understanding requires further
study. It should also be noticed that the present theory in-
cludes neither the weak localization corrections stemming
from the Cooperons and diffusons nor the effects of the
Anderson localization, which are crucial in explaining recent
nontrivial experimental observations on disordered thin
films.65

V. ANOMALOUS NERNST EFFECT

Before proceeding to the discussions and conclusions, we
give numerical results for the anomalous Nernst effect. The
T-linear coefficient of the thermoelectric Hall conductivity
	xy is calculated by evaluating the expressions Eqs.
�42�–�44� obtained through the Mott rule. This includes in-
formation on the topological structure of the wave function
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FIG. 9. �Color online� Resistivity �xx�1 /�xx for the same set of
parameters as in Fig. 5, except for a variation of the impurity po-
tential strength 2muimp=0.02, 0.2, 0.4, and 0.6. �a� and �b� are the
linear and logarithmic plots. In �b�, all the data points for 2muimp

=0.02, 0.2, 0.4, and 0.6 are plotted with the same symbol for each
value of EF.

FIG. 10. �Color online� Scaling plot of �xy versus �xx for the
same sets of parameter values as in Fig. 8�b�, except 2muimp. The
arrows show the extrinsic-intrinsic crossover scale of �xx for
2muimp=0.20, 0.40, and 0.60. The horizontal solid line and the dot-
ted curve represent the values given by the TKNN formula of Eq.
�2� and the intrinsic contribution in the limit of 2muimp→0. The
vertical dashed line gives the second crossover scale of
�xx���e2 /h� to the dirty regime with the 1.6 power law.
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at the Fermi level, which cannot be directly gained from an
observation of �xy.

First, 	xy
tot /T and 	xy

int /T for the total and the intrinsic
anomalous Nernst effects are shown as functions of the
Fermi energy EF and the Born scattering amplitude �Born in
panels �a� and �b� of Fig. 11, respectively. Here, the same
parameter values as in Fig. 5 have been used. In the clean
limit, the skew-scattering contribution 	xy

skew yields a domi-
nant and diverging contribution for EF��+�p=0�=Eres
−2�0=0.8 �see Fig. 2�, reflecting the EF dependence of �xy

skew

as found in Fig. 5�a� �or 5�c��. Besides, there appear two
prominent structures at EF=���p=0�, where the sign change
of �xy

skew occurs, and hence 	xy is also strongly enhanced at
these points with opposite signs. On the other hand, 	xy is
appreciably suppressed in the resonant window EF� �Eres
−2�0 ,Eres�. With increasing �Born, 	xy

skew rapidly decays, as in
the case of the anomalous Hall effect. Figure 11�b� shows the
intrinsic contribution 	xy

int calculated by imposing the condi-
tion of �̂Ey

R,A,�=0, as in the case of �xy
int. In the pure case

nimp=0, 	xy
int is proportional to the density of the Berry-phase

curvature at the Fermi level. This shows that the Berry-phase
curvature is strongly enhanced around EF=���p=0� and that
it only gradually decays as a function of the relaxation rate
�Born. Then, in moderately dirty systems, there appears a
crossover from the extrinsic skew-scattering regime to the
intrinsic regime. However, in the case of the anomalous
Nernst effect, an interference between positive and negative
contributions appears and a sign change of 	xy often occurs
even as a function of �. Therefore, a detailed scaling analysis
as performed for �xy is difficult.

Note that the divergence of 	xy /T emerges only in the
clean limit, in particular, around EF=���p=0�. In the clean
limit, �xy

int exhibits a kink at EF=���p=0�. In the presence of
finite relaxation, the quasiparticle spectra are broadened, and
this smears out any singularity. However, if the broadening
effect is ignored, then �xy

tot shows a discontinuity at EF
=�−�p=0�, namely, when the chemical potential crosses the
bottom of the minority band, no matter how large the relax-
ation associated with the impurity scattering is.51 According
to the Mott rule given by Eq. �41a�, this results in a
�-functional divergence 	xy /T→� at this Fermi energy,
which is unphysical. Therefore, one must take into account
the finite damping of quasiparticles in performing the
energy-momentum integration to calculate the conductivity
tensor.

VI. RELATION WITH OTHER THEORIES

In this section, we clarify the relations of the present
theory to recent and early theories. Recently, the anomalous
Hall conductivity in this model or similar models has also
been intensively discussed using the Kubo and/or Středa
formulas38,51,53 and the effective semiclassical Boltzmann
transport theory.51 Some of them ignored the vertex correc-
tions totally54 or partially.53 Others neglected the self-energy
corrections or just took a constant relaxation-time
approximation51,53,54 and further assumed that the relaxation
rate is independent of the band index,53 which is justified in
the limit of EF �−�p=0�. Then, they gave partly different
behaviors from our results shown in the previous Letter14

and the present paper. We stress that the vertex corrections
are crucial for the transport properties and gives a signifi-
cantly important contribution, particularly in the clean limit,
namely, the skew-scattering contribution. In the dilute impu-
rity concentration, the scattering potential has a particle-hole
asymmetry and gives rise to the asymmetric scattering, to-
gether with the spin-orbit interaction for the Bloch electrons,
even without the potential having a large spin-orbit interac-
tion studied in the original work6,7 or f electrons.13 Note that
the lack of self-consistency between the equilibrium Green’s
function and self-energy in the literature51,53 is another rea-
son for the discrepancy.

Now, the main disagreement and the controversy on the
anomalous Hall effect in this model described by Eq. �10a� is
on the absence or the existence of the skew-scattering con-
tribution and the total anomalous Hall conductivity in the
case where both bands are partially filled, as addressed by
Sinitsyn et al.51 There are two main sources for this discrep-
ancy. In Ref. 51, �i� the self-energy correction was taken as
only two constant relaxation rates in the Born approximation,
whereas we have solved the self-consistent T-matrix approxi-
mation, which becomes exact in the dilute impurity limit. �ii�
When momentum integrations of the Green’s functions were
performed to calculate �xy by means of the Kubo formula,
they employed the semiclassical approximation where the
quasiparticle spectrum had a �-functional form and hence
neglected the self-energy in the denominator. Such expansion
of �xy at the singular point �→� is not straightforward to
handle in the present model. In Ref. 14 and the present paper,
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FIG. 11. �Color online� �a� The T-linear coefficients of the total
anomalous thermoelectric Hall conductivity 	xy

tot /T and �b� the in-
trinsic contribution 	xy

int /T as functions of EF and �Born in an energy
unit of Eres=1.0. The parameters are chosen as v=3.59, �0=0.1,
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we have taken the opposite strategy free from the singularity:
We start from the case with a finite lifetime broadening due
to the impurity scattering and gradually decrease the impu-
rity scattering strength. This discrepancy on the anomalous
Hall effect becomes striking when we consider the anoma-
lous Nernst effect, as we mentioned in Sec. V. Namely, ap-
plying the Mott rule to the singular results obtained for �xy in
Ref. 51, the T-linear coefficient to the thermoelectric Hall
conductivity tensor 	xy diverges when the Fermi level
crosses the bottom of the upper band, i.e., at EF=�−�p=0�,
even with the finite relaxation rate. This is not plausible.
From the viewpoints of the semiclassical Boltzmann trans-
port theory and the Kubo-formula calculation in the Matsub-
ara technique, it is required to modify the calculations of
these corrections beyond the semiclassical approximation.
The above arguments indicate that both the vertex correc-
tions and the self-energy corrections are highly important for
the transport properties and should be properly taken into
account.

The present theory explains the anomalous Hall effect in
the whole regime except in the localized regime. From the
present results, the source of the confusion over the past
decades is now clear. The amplitude of the skew-scattering
contribution, though it is rather sensitive to details of the
impurity potential and band structure, can be larger than e2 /h
in the superclean case � /��ESO if we assume the impurity
potential strength of the order of the bandwidth or the Fermi
energy. In this case, there is no chance for the band calcula-
tion to reproduce the observed value of �xy, and it is difficult
to explain the anomalous Hall effect quantitatively from the
theoretical viewpoint. On the other hand, this skew-
scattering contribution decays for ESO�� /� rapidly. The
side-jump contribution is also small and of the order of
�e2 /h��ESO /EF�.12 Therefore, the intrinsic contribution,
which is of the order of e2 /h under the resonant condition, is
dominant over a wide range of the scattering strength ESO
�� /��EF �clean or moderately dirty case�. Although Lut-
tinger reconsidered the Karplus-Luttinger theory4 and gave
an expansion of �xy in uimp, including the skew-scattering
contribution as well,5 it fails to reveal the above crossover in
the space of EF, ESO, and � /�.

Our theory also confirms the condition for the first-
principles band calculation of the intrinsic anomalous Hall
conductivity to work reasonably in comparison with experi-
ments. It can elucidate the experimentally observed value of
�xy, except a correction arising from a reduction due to the
vertex correction, when the resonantly enhanced intrinsic
anomalous Hall effect dominantly determines the �xy. This
actually occurs in the moderately dirty case where �xy only
weakly depends on the scattering rate, as shown in Sec. IV.

VII. COMPARISON WITH EXPERIMENTS

We now turn to the comparison with experimental results.
The anomalous Hall effect has been investigated as a funda-
mental property in many ferromagnetic materials with care-
ful analyses to separate the anomalous component from the
ordinary one. The results on �xx and �xy at low temperatures
are summarized in Fig. 12 for Fe, Ni, Co, and Gd

films,20 Fe single crystals,20 SrRuO3,20 La1−xSrxCoO3,20

Cu1−xZnxCr2Se4,20 La1−x�SrCa�xMnO3,17,55

Nd2�MoNb�2O7,56 Fe1−xCoxSi,18 MnSi,19 Ga1−xMnxAs,59–62

In1−xMnxAs,63,64 anatase-Co-TiO2,66–68 and rutile-
Co-TiO2.69,70 It is significantly important that all the experi-
mental data are categorized into three regimes.

In the poorly conducting regime, there exists a universal
scaling relation of �xy��xx

1.6, which agrees fairly well with
the present theory. This is the case for Cu1−xZnxCr2Se4,20

La1−xSrxCoO3,20 a disordered pyrochlore ferromagnet
Nd2�Mo1−xNbx�2O7,56 Co-doped TiO2,66 and Mn-doped
GaAs.57,58 The difference in the amplitudes can be under-
stood as a difference in the number of momentum regions
with avoided crossing and/or a difference in the relative po-
sition of the Fermi level. A naive interpretation in terms of
�xy��xx

2 , which can be obtained by calculating �xy from the
perturbative expansion in the quasiparticle damping rate, ne-
glecting the vertex corrections, and assuming that �xx is pro-
portional to the damping rate, gives a clearly worse fitting to
the experimental data than �xy��xx

1.6. Though another scaling
behavior of �xy��xx might also be appropriate for some ex-
perimental data on Ga1−xMnxAs,15 �xy��xx

1.6 can explain its
global dependence.

In the moderately dirty regime with �xx�3�103–5
�105 �−1 cm−1, �xy has only a gradual dependence on �xx
and appears to approach constant values of the order of
102–103 �−1 cm−1 with increasing �xx, as observed in Fe-
and Ni-based dilute alloys,3 Cu1−xZnxCr2Se4,20 SrRuO3,20

metallic foils for Fe, Ni, Co, and Gd,20 and MnSi.19 The large
amplitude and the robustness against the scattering events
are consistent with the intrinsic scenario. The side-jump
mechanism also yields an almost constant behavior of �xy.
However, it suffers from a small factor of ESO /EF
�10−2–10−1 compared with the intrinsic Berry-phase contri-
bution under the resonant condition, which can not account
for the large amplitude �xy �103 �−1 cm−1. Therefore, the
experimental results in this regime can be mostly assigned to
the intrinsic Berry-phase contribution. Actually, the theoreti-
cal curve based on the present simplest analysis with EF
=0.9, 2mv2=3.59, and 2mvimp=0.02, which is shown by the
red curve, can even explain the gradual dependence of �xy on
�xx for Cu1−xZnxCr2Se4 from the dirty to the moderately dirty
regime.

In the superclean regime with �xx�5�106 �−1 cm−1, the
curve for �xy versus �xx tends to deviate from the constant
behavior, and there appears a rapid increase or decrease by
another contribution, which is positive or negative to the
intrinsic contribution, respectively, depending on materials.
The detailed data seem to depend on the properties of dilute
impurities embedded in the materials. In fact, the ordinary
Hall effect is pronounced by the Landau-level formation at
low magnetic fields because of the high mobility. It gives a
nonlinear dependence of the Hall resistivity on the applied
magnetic field. Furthermore, the remnant magnetization
tends to decrease with the increasing purity in many highly
conducting materials as Fe and Ni. Therefore, the analysis of
extrapolating the Hall resistivity to the zero magnetic field to
obtain the anomalous contribution becomes subtle, and so far
only a few experiments and analyses have been performed in
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this regime. Clearly, further experimental studies are re-
quired to clarify the scaling behaviors in this regime.

VIII. CONCLUSIONS

In conclusions, we have developed a unified theory of
anomalous Hall effect in ferromagnets, in terms of the fully
quantum-mechanical transport theory for multiband systems.
It confirms that the anomalous Hall effect is determined by
the intrinsic Berry-phase mechanism when �i� the Fermi
level is located around an avoided crossing of band disper-
sions in the momentum space, �ii� the magnitude of �xy is
consequently resonantly enhanced to the order of e2 / �ha�
�103 �−1 cm−1, and �iii� the resistivity �xx is larger than
�ha /e2��ESO /EF��1–10 �� cm in 3d transition metals and
10–100 �� cm in 5d and rare-earth compounds. In fact, the
intrinsic contribution suffers from a partial cancellation due
to the scattering events described as the vertex correction.
Nevertheless, with these resonant conditions, it remains of
the order of e2 /h in two dimensions and e2 / �ha� in three
dimensions. Then, a first-principles calculation can give a
good estimate of �xy. By contrast, in the superclean systems
with the lower resistivity, the skew scattering gives the lead-
ing contribution diverging in proportion to the quasiparticle
lifetime. As the damping rate increases beyond the energy

scale of spin-orbit interaction, the skew-scattering contribu-
tion gradually disappears and the anomalous Hall effect is
dominated by the intrinsic contributions, which are robust
against the relaxation in the conducting regime. This
extrinsic-intrinsic crossover needs to be verified by further
careful experiments. For dirty systems with �xx�e2 /ha, an-
other new scaling relation �xy��xx

1.6 is obtained. Many ferro-
magnetic materials are located in this regime, and many ex-
perimental studies support this scaling relation. The present
work resolves the long-standing puzzle and controversy on
the mechanism of the anomalous Hall effect in the whole
region of ferromagnetic metals at low temperatures and re-
veals crossovers in quantum transport phenomena in multi-
band systems.
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FIG. 12. �Color online� Summary of experimental results on various ferromagnets, including transition metals, perovskite oxides, spinels,
and magnetic semiconductors. The theoretical curve corresponding to Fig. 10 �2muimp=0.02� is also shown. The data are taken from
Miyasato et al. �Ref. 20� for Gd, Fe, Ni, and Co films, Fe single crystals, SrRuO3, La1−xSrxCoO3 �x=0.20 and 0.25�, and Cu1−xZnxCr2Se4

�x=0.0, 0.2, 0.4, 0.5, 0.6, 0.8, and 0.9�; from Lee et al. �Ref. 17� and Lyanda-Geller et al. �Ref. 55� for La1−x�SrCa�xMnO3; from Iguchi
et al. �Ref. 56� for Nd2�MoNb�2O7; from Manyala et al. �Ref. 18� for Fe1−xCoxSi; from Lee et al. �Ref. 19� for MnSi; from Matsukura et al.
�Ref. 59�, Edmonds et al. �Ref. 60�, Yuldashev et al. �Ref. 61�, and Chiba et al. �Ref. 62� for Ga1−xMnxAs; from Ohno et al. �Ref. 63� and
Oiwa et al. �Ref. 64� for In1−xMnxAs; from Ueno et al. �Ref. 66�, Cho et al. �Ref. 67�, and Ramaneti et al. �Ref. 68� for anatase-Co-TiO2;
and from Toyosaki et al. �Ref. 69� and Higgins et al. �Ref. 70� for rutile-Co-TiO2.
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APPENDIX A: NOTATIONS FOR DETAILED
CALCULATIONS

First, we introduce the following notations;

Ĥ0�p� = �
�=0,x,y,z

�̂�H0
��p� , �A1�

Ĝb
	��,p� = �

�=0,x,y,z
�̂�Gb

	���,p� , �A2�

�̂b
	��� = �

�=0,x,y,z
�̂��b

	���� , �A3�

ĝb
	���� =� d2p

�2���2Gb
	���,p� , �A4�

with 	=R, A, and � and b=0 and Ey. Throughout the Ap-
pendixes, Greek symbols �� ,� ,� , . . . � are used to label the
components 0, x, y, and z, while italic ones �i , j ,� , . . . � are
used only for x, y, and z. Contraction of these indices is
implicitly assumed in all the expressions in the Appendixes.

APPENDIX B: EXPLICIT FORMS OF Ĝ0
R AND �̂0

R

Using the notations introduced in Appendix A, it is ready
to calculate the Green’s functions and self-energies in the
absence of the external fields from the coupled self-
consistent equations �Eqs. �17�, �25�, and �26��. More explic-
itly, a straightforward calculation shows the following:

�0
R0��� =

nimpuimp�1 − uimpg0
R0����

�1 − uimpg0
R0����2 − uimp

2 g0
Rz���2 , �B1a�

�0
Rz��� =

nimpuimp
2 g0

Rz���
�1 − uimpg0

R0����2 − uimp
2 g0

Rz���2 , �B1b�

�0
Rx��� = �0

Ry��� = 0, �B1c�

g0
R0��� =

m

4��2�
�

log
G0

R��,!,��
G0

R��,0,��
− mv2g̃0

R��� , �B1d�

g0
Rz��� = �− �0 + �0

Rz����g̃0
R��� , �B1e�

g0
Rx��� = g0

Ry��� = 0, �B1f�

with

g̃0
R��� =

m

4��2RR����� log�� − p2/2m

+ � − �0
R0��� + mv2 + �RR�����

p=0

p=!
, �B2�

G0
R��,p, � � = �� − p2/2m + � − �0

R0���

" �v2p2 + �− �0 + �0
Rz����2�−1

, �B3�

RR��� = ��mv2�2 + 2mv2�� + � − �0
R0���� + �− �0 + �0

Rz����2.

�B4�

For later use, we also introduce G̃0
R through

G0
Ri��,p� = �− vijzpj + �iz�− M + �0

Rz�����G̃0
R��,p� ,

�B5�

with the fully antisymmetric tensor ij�.
All the momentum integrations are performed analytically

without any approximation as a function of �, and then solve
the self-consistent equations for each �.

APPENDIX C: SOLVING THE SELF-CONSISTENT

EQUATIONS FOR ĜEy,I
� AND �̂Ey,I

� AND

CALCULATION OF �ij
I

In the following, we show details in calculating the
Ey-linear deviation of the self-energy due to the Fermi-

surface contribution, �̂Ey,I, self-consistently with that of the
Green’s function, which are defined through Eqs. �19� and
�18�, respectively. We exploit the notations defined by Eqs.
�A1�–�A3�. We start with Eq. �22�, whose component can be
explicitly written by using Re GR�= �GR�+GA�� /2 and
Im GR�= �GR�−GA�� /2i as

Im �0
R����GEy,I

�� ��,p� = Im G0
R���,p��Ey,I

�� ��� + i��Im �0
R�������py

Re G0
R���,p�� − ��py

�H0
��p� + Re �0

R�������Im G0
R���,p��� ,

�C1a�

Im �� 0
R���GEy,I

�0 ��,p� + Im �0
R0���G� Ey,I

� ��,p� + �H� 0�p� + Re �� 0
R�p��� G� Ey,I

� ��,p�

= �Im G� 0
R��,p���Ey,I

�0 ��� + �Im G0
R0��,p���� Ey,I

� ��� + Re G� 0
R��,p���� Ey,I

� ��� + i��Im �0
R0������py

Re G� 0
R��,p��

+ �Im �� 0
R������py

Re G0
R0��,p�� − ��py

H� 0�p���Im G0
R0��,p�� − ��py

H0
0�p���Im G� 0

R��,p�� + �Im �� 0
R����� ��py

Im G� 0
R��,p��� .

�C1b�

These equations can be expressed in a matrix form
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GEy,I
�� ��,p� = L0,I

�����,p��K0,I
����,p��Ey,I

�� ��� + iKEy,I
� ��,p�� , �C2�

with

L0,I
�−1����,p� = ��� Im �0

R0��� + ��0�1 − ��0�Im �0
R���� + ��0�1 − ��0�Im �0

R���� − ����H0
��p� + Re �0

����� , �C3�

K0,I
����,p� = ��� Im G0

R0��,p� + ��0�1 − ��0�Im G0
R���,p� + ��0�1 − ��0�Im G0

R���,p� − ��� Re G0
R���,p� , �C4�

KEy,I
0 ��,p� = − Im �0

R0�����py
Re G0

R0��,p�� + Im �� 0
R�����py

Re G� 0
R��,p�� + ��py

H0
0�p���Im G0

R0��,p�� − ��py
H� 0�p���Im G� 0

R��,p�� ,

�C5�

KEy,I
i ��,p� = Im �0

R0�����py
Re G0

Ri��,p�� − ��py
H0

0�p���Im G0
Ri��,p�� + Im �0

Ri�����py
Re G0

R0��,p�� − ��py
H0

i �p���Im G0
R0��,p��

+ i���Im �0
R�������py

Im G0
R���,p�� , �C6�

with the fully antisymmetric tensor ��� that vanishes if any of �, �, and � is 0. Here, the equilibrium properties for the
self-energy �0

R�, with �=0, x, y, and z, have already been given in Eqs. �B1a�–�B1c�, and hence those for the Green’s function
G0

R� can be obtained from the equilibrium Dyson equation. Then, Eqs. �C3�–�C6� are rewritten as

L0,I
�−1����,p� = ��� Im �0

R0��� + ���0��z + ��z��0�Im �0
Rz��� − ��z�− M + Re �0

Rz���� − v���0p� − ��zp�� , �C7�

K0,I
����,p� = ��� Im G0

R0��,p� + ���0��z + ��z��0�Im G0
Rz��,p� − ��iG0

Ri��,p� , �C8�

KEj,I
0 ��,p� = − Im �0

R0�����pj
Re G0

R0��,p�� + Im �0
Rz�����pj

Re G0
Rz��,p�� + �pj/m��Im G0

R0��,p�� + vijz�Im G0
Ri��,p�� ,

�C9�

KEj,I
i ��,p� = Im �0

R0�����pj
Re G0

Ri��,p�� − �pj/m��Im G0
Ri��,p�� + Im �0

Ri�����pj
Re G0

R0��,p�� + vijz�Im G0
R0��,p��

− i�z�Im �0
Rz������pj

Im G0
R���,p�� . �C10�

On the other hand, from Eqs. �26�, �A2�, �A4�, and �B1f�, the T-matrix approximation to �̂Ey,I
� , which has been formally

described in Eq. �27�, is reduced to the following expression in the matrix-form representation:

�Ey,I
�� ��� = B0,I

������gEy,I
�� ��� , �C11�

B0,I
������ = nimpuimp��� 
1 − uimpg0

R0���
2 + 
uimpg0
Rz���
2


�1 − uimpg0
R0����2 − uimp

2 g0
Rz���2
2

+ ���0��z + ��z��0�
2 Re„�1 − uimpg0

R0����uimpg0
Az���…


�1 − uimpg0
R0����2 − uimp

2 g0
Rz���2
2

− ��z
2 Im„�1 − uimpg0

R0����uimpg0
Az���…


�1 − uimpg0
R0����2 − uimp

2 g0
Rz���2
2� �C12�

Substituting Eq. �C11� into Eq. �C2� and integrating over p,
we obtain

�Ey,I
�� ��� = iCEy,I

������ � d2p

�2���2L0,I
�����,p�K0,I

� ��,p� , �C13�

CEy,I
�−1����� = ��� −� d2p

�2���2L0,I
�����,p�K0,Ey

�� ��,p�B0,I
������ .

�C14�

All the momentum integrations are performed analytically
without any approximation to avoid an unnecessary instabil-
ity, which otherwise occurs in the numerical momentum in-
tegration, and then the � dependences are self-consistently
calculated by numerical iterations.

Finally, �ij
I is calculated through Eq. �32�, which is rewrit-

ten as

�ij
I = −

e2�

�i
� d2p

�2���2

pi

m
GEj,I
�0 ��,p� + vi�zgEj,I

�� ���� .

�C15�
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APPENDIX D: SOLVING THE SELF-CONSISTENT EQUATIONS FOR ĜEy

R AND �̂Ey

R AND CALCULATION OF �ij
II

The quantum contribution to the linear response ĜEy,II
� can be calculated from the retarded �advanced� Green’s functions

ĜEy

R ��� given by Eq. �24�. In the following, the integral equations for them are explicitly derived. We also employ the notations

defined by Eqs. �A1�–�A3�.
First, each component of Eq. �24� is expressed as

GEy

R0��,p� = �G0
R0��,p�2 + G� 0

R��,p�2��Ey

R0��� + 2G0
R0���G� 0

R��,p� · �� Ey

R ���

− �G0
R0��,p�2 − G� 0

R��,p�2������ 0
R���� · G� 0

R��,p�� ��py
H� 0�p�� , �D1a�

G� Ey

R ��,p� = �G0
R0��,p�2 − G� 0

R��,p�2���� Ey

R ��� − ����� 0
R����� G� 0

R��,p���py
H0

0�p�� + �1 − ���0
R0����G� 0

R��,p�� ��py
H� 0�p��

− G0
R0��,p������ 0

R����� ��py
H� 0�p��� + 2G� 0

R��,p��G0
R0��,p��Ey

R0��� + G� 0
R��,p��� Ey

R ���� . �D1b�

Applying the above formula to the present model, we obtain

GEy

R0��,p� = �G0
R0��,p�2 + G� 0

R��,p�2��Ey

R0��� + 2G0
R0��,p�G� 0

R��,p� · �� Ey

R ��� − v2px����0
Rz����G̃0

R��,p�2, �D2a�

GEy

Rz��,p� = G̃0
R��,p��Ey

Rz��� + 2G0
Rz��,p��G0

R0��,p��Ey

R0��� + G� 0
R��,p� · �� Ey

R ���� + v2px�1 − ���0
R0����G̃0

R��,p�2, �D2b�

GEj

Ri��,p� = G̃0
R��,p��Ej

Ri��� + 2G0
Ri��,p��G0

R0��,p��Ej

R0��� + G� 0
R��,p� · �� Ej

R ���� + v��ij��1 − ����0
R0�����G0

Rz��,p�

− ����0
Rz����G0

R0��,p�� −
pipj

m
����0

Rz����G̃0
R��,p��G̃0

R��,p� . �D2c�

Using Eqs. �26� and �B1f�, components of the self-energy �̂Ey

R ��� given by Eq. �28� can be explicitly written as

�Ey

R0��� = nimpuimp
2

„�1 − uimpg0
R0����2 − uimp

2 g0
Rz���2

…

−2�„�1 − uimpg0
R0����2 + uimp

2 g0
Rz���2

…gEy

R0��� + 2�1 − uimpg0
R0����g0

Rz���gEy

Rz���� ,

�D3a�

�Ey

Rz��� = nimpuimp
2

„�1 − uimpg0
R0����2 − uimp

2 g0
Rz���2

…

−2�„�1 − uimpg0
R0����2 + uimp

2 g0
Rz���2

…gEy

Rz��� + 2�1 − uimpg0
R0����g0

Rz���gEy

R0���� ,

�D3b�

�Ey

Ri��� = nimpuimp
2

„�1 − uimpg0
R0����2 − uimp

2 g0
Rz���2

…

−1gEy

Ri��� . �D3c�

Integrating Eqs. �D2a�–�D2c� over p and taking into account Eqs. �B1a�–�B1f� and �D3a�–�D3c�, it is found that

gEy

R0��� = gEy

Rz��� = 0, �D4a�

gEj

Ri��� = �Ej

Ri��� � d2p

�2���2 �1 + v2p2G̃0
R��,p��G̃0

R��,p�

+ v�ij� d2p

�2���2G̃0
R��,p�2

†�1 − ���0
R0�����− �0 + �0

Rz���� − �� + � − �0
R0��������0

Rz����‡

= v�ij� d2p

�2���2G̃0
R��,p�2

†�1 − ���0
R0�����− �0 + �0

Rz���� − �� + � − �0
R0��������0

Rz����‡

�1 − nimpuimp
2

„�1 − uimpg0
R0����2 − uimp

2 g0
Rz���2

…

−1� d2p

�2���2 �1 + v2p2G̃0
R��,p��G̃0

R��,p��−1

, �D4b�

�Ey

R0��� = �Ey

Rz��� = 0, �D4c�

with i and j being x or y. Then, we obtain
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GEj

R0��,p� = − vijzpi�2G0
R0��,p��Ej

Rj��� + v����0
Rz����G̃0

R��,p��G̃0
R��,p� . �D5�

Finally, we obtain

�xy
II = − 2e2�� d�

�
f��� � d2p

�2���2 Im� px

m
GEy

R0��,p� + vGEy

Ry��,p��
= 2e2�v2 Im � d�

�
f���†�1 − ���0

R0�����− �0 + �0
Rz���� − �� + � − �0

R0��������0
Rz����‡

�� d2p

�2���2G̃0
R��,p�21 + nimpuimp

2
„�1 − uimpg0

R0����2 − uimp
2 g0

Rz���2
…

−12� d2p

�2���2

p2

2m
G0

R0��,p�G̃0
R��,p��

�1 − nimpuimp
2

„�1 − uimpg0
R0����2 − uimp

2 g0
Rz���2

…

−1� d2p

�2���2 �1 + v2p2G̃0
R��,p��G̃0

R��,p��−1

+ 2e2�v2 Im � d�

�
f�������0

Rz���� � d2p

�2���2

p2

2m
G̃0

R��,p�2, �D6�

and a trivial result of �xx
II =0. Note that in the limit of a large momentum cutoff, factors appearing in the third and the fourth

lines of Eq. �D6� are canceled out, and hence the vertex correction or, equivalently, the effect of �̂Ey

R,A is canceled out for �xy
II .

Again, all the momentum integrations are performed analytically, and a special care should be taken in confirming a conver-
gence of the numerical integration over � for �xy

II .
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