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As a step toward analyzing second-harmonic generation (SHG) from crystalline Si nanospheres in glass, we
develop an anisotropic bond model (ABM) that expresses SHG in terms of physically meaningful parameters
and provide a detailed understanding of the basic physics of SHG on the atomic scale. Nonlinear-optical (NLO)
responses are calculated classically via the four fundamental steps of optics: evaluate the local field at a given
bond site, solve the force equation for the acceleration of the charge, calculate the resulting radiation, then
superpose the radiation from all charges. Because the emerging NLO signals are orders of magnitude weaker
and occur at wavelengths different from that of the pump beam, these steps are independent. Paradoxically, the
treatment of NLO is therefore simpler than that of linear optics (LO), where these calculations must be done
self-consistently. The ABM goes beyond previous bond models by including the complete set of underlying
contributions: retardation (RD), spatial-dispersion (SD), and magnetic (MG) effects, in addition to the anhar-
monic restoring force acting on the bond charge. Transverse as well as longitudinal motion is also considered.
We apply the ABM to obtain analytic expressions for SHG from amorphous materials under Gaussian-beam
excitation. These materials represent an interesting test case not only because they are ubiquitous but also
because the anharmonic-force contribution that dominates the SHG response of crystalline materials and
ordered interfaces vanishes by symmetry. The remaining contributions, and hence the SHG signals, are entirely
functions of the LO response and beam geometry, so the only new information available is the anisotropy of
the LO response at the bond level. The RD, SD, and MG contributions are all of the same order of magnitude,
so none can be ignored. Diffraction is important in determining not only the pattern of the emerging beam but
also the phases and amplitudes of the different terms. The plane-wave expansion that gives rise to electric
quadrupole magnetic dipole effects in LO appears here as retardation. Using the paraxial-ray approximation,
we reduce the results to the isotropic case in two limits, that where the linear restoring force dominates
(glasses) and that where it is absent (metals). Both forward- and backscattering geometries are discussed.
Estimated signal strengths and conversion efficiencies for fused silica appear to be in general agreement with

data where available. Predictions that allow additional critical tests of these results are made.
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I. INTRODUCTION

Second-harmonic generation (SHG) is becoming an in-
creasingly important diagnostic tool for a wide range of ap-
plications. It is a particularly important probe for studying
planar interfaces between centrosymmetric crystals and over-
layers with randomly directed bonds because it is dipole al-
lowed only at interfaces where the bonds are simultaneously
asymmetric and well ordered.

Recently, Figliozzi et al.' found that SHG signals gener-
ated in transmission from crystalline Si nanospheres (nSi)
dispersed in glass were enhanced significantly when driven
by two beams with crossed polarizations. Enhancement of
any nonlinear-optical (NLO) signal is automatically of inter-
est because, in principle, NLO signals contain significantly
more information about material systems than the linear-
optical (LO) response; yet, they are intrinsically much
weaker. SHG from the dispersed-nSi configuration was re-
cently analyzed from the macroscopic perspective by Brudny
et al.” and Mochén et al.,® in the former case for a single
isolated nanosphere and the latter for arrays of nanospheres.
These authors used the “dipolium” approximation,* where
the inclusions and host are described macroscopically by lin-
ear, isotropic dielectric functions. The far-field SHG re-
sponse was obtained by calculating the effective dipole of
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the inclusions as a spherical-harmonic expansion of the in-
ternal and external fields of a given nanosphere, and then
applying standard radiation equations. Various observations

were explained, for example, the (E-V)E symmetry of the
SHG intensity, its dependence on sphere size, the importance
of screening in determining the contributions from the inte-
riors of the nanospheres, the emission of SHG radiation in a
cone for disordered dispersions of nanospheres, and the rela-
tively small intensity of the SHG signal from glass.

While macroscopic treatments efficiently distinguish be-
tween allowed and forbidden contributions, they are unable
to relate allowed responses to atomic-scale parameters or to
provide the same level of understanding of the different con-
tributing processes. In particular, the following questions still
need to be answered: (1) How does the SHG intensity from
the nSi inclusions compare to that from planar Si-SiO, inter-
faces? (2) What are the relevant parameters? (3) What is the
maximum intensity that can be obtained? (4) Is this maxi-
mum signal useful or simply given by a combination of al-
ready known parameters? While much larger SHG signals
might be expected from dispersions of nSi inclusions in a
transmission configuration simply because the interface area
greatly exceeds that of a planar interface, the larger area is
offset by the fact that the first-order anharmonic SHG signals
from the opposite sides of the nanospheres cancel. Therefore,
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the signal is proportional to the gradient of the driving field
instead of the field itself.2 In addition, contributions are lim-
ited in depth to the coherence length in the material. Finally,
there is the question of whether the enhanced SHG signals
observed with dual-beam excitation provide useful informa-
tion. The atomic-scale modeling done below shows that the
contributions of the three underlying mechanisms, retarda-
tion (RD), spatial dispersion (SD), and magnetic (MG) can
all be predicted from the LO response and beam character-
istics, and hence do not necessarily provide new information
even though improved geometries may generate large sig-
nals.

In addressing these issues, we found it necessary to ex-
tend our previous simplified bond-hyperpolarizability model
(SBHM), which expands on the even simpler isotropic force
model discussed, for example, by Shen.’ In the SBHM, SHG
is expressed as radiation arising from the anharmonic motion
of charge localized in bonds assuming that the only motion
relevant to SHG is that along the bond direction itself. The
SBHM successfully describes, with many fewer parameters
than previously required, a wide range of NLO phenomena
including SHG (Ref. 6) and fourth-harmonic generation’
(FHG) from Si-insulator interfaces, dipole-forbidden SHG
(Ref. 8) and third-harmonic generation’ (THG) from cen-
trosymmetric materials, and the generation of terahertz radia-
tion from III-V semiconductor surfaces.'® In addition, the
parameters are physically meaningful, and by incorporating
crystal symmetry at the atomic level, macroscopic tensor
properties are obtained automatically. However, as recently,
and correctly, noted by McGilp,'! the SBHM has limitations
regarding quantitative interpretation. Given the simplicity of
the approach, this is not surprising, but it needs to be ex-
plored further. This is a second objective of this work.

Accordingly, in this paper, we generalize the SBHM to a
more complete description, the anisotropic bond model
(ABM), which includes charge motion transverse to the
bond, RD, SD, and MG effects, including SD effects arising
from beam geometry, and SHG signals for off-axis observa-
tion angles, i.e., the role of diffraction. In developing our
expressions, we follow the approach of Peng et al.,? framing
the calculations in terms of the fundamental four-step pro-
cess of optics: (1) evaluate the local field at any given charge
site that results from the driving (source) field, (2) solve the

mechanical equation F=ma to obtain the acceleration of the
charge, (3) calculate the radiation that results from the accel-
eration, and (4) superpose the radiation from all contributing
charges. For random media, we show that step (4) factors
into two parts: (4a) average over all possible bond orienta-
tions at a single site, and then (4b) calculate the properties of
the emerging beam by Fourier transforming the envelope
function of the incident radiation. Although not required
here, if appreciable energy were transferred from the driving
to the generated beams, then it would be necessary to (5)
evaluate the energy extracted from the pump beam as a func-
tion of position, with the subsequent correction of the local
fields evaluated in step (1). We find that for random materi-
als, the RD, SD, and MG contributions are all of the same
order of magnitude and must all be considered. Finally, all
aspects, including off-axis observation and diffraction, com-
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bine to yield a much richer SHG response than previously
assumed.

Aside from including bond anisotropy and additional
mechanisms, the approach is essentially the NLO equivalent
of that which Ewald'? and Oseen'? used nearly a century ago
to derive the Ewald-Oseen theorem of LO. Paradoxically,
from this perspective, NLO is simpler than LO. In LO, the
radiated fields have the same wavelength as the driving field
and similar intensities, so steps (1), (3), and (4) must be
evaluated self-consistently. In contrast, for NLO, the radiated
fields are typically orders of magnitude weaker than the driv-
ing field and occur at different wavelengths, so all steps are
effectively independent. This allows NLO calculations to be
done sequentially to levels of approximation that are also
independent and may be adjusted to meet particular require-
ments. This is one of the few cases where a nonlinear prob-
lem is simpler than its linear equivalent.

Advantages of an atomic-scale formulation include a bet-
ter understanding of the physics involved. In this classical
model, NLO is a result of distortions of the nominally sinu-
soidal wave form of the emitted radiation reaching the ob-
server. The obvious contributing factor is anharmonic motion
of a charge. This can be due to an anharmonic restoring force
(intrinsic anharmonicity), spatial nonuniformity of the driv-
ing field (spatial dispersion), or the magnetic field associated
with the driving wave. With respect to acceleration, there can
clearly be no distinction between anharmonic motion result-
ing from an anharmonic restoring force, a field that is
slightly larger at one limit of the excursion than the other, or
a force that is velocity dependent. All these effects enter in
step (2). However, another source of distortion is the finite
speed of light. This causes the signal reaching the observer
from the far limit of the excursion to be delayed slightly
relative to that from the near limit, resulting in a waveform
distortion equivalent to phase or frequency modulation. The
retardation contribution enters in step (3). Retardation in-
volves the same first-order expansion of a plane-wave factor
that leads to the electric quadrupole (EQ) magnetic dipole
(MD) contribution of LO, but the physics is quite different.
This mathematical similarity has led to confusion in the past,
and we clarify the distinction below.

Taking into account the complete set of mechanisms con-
tributing to SHG became a larger project than expected, so in
this paper, we restrict applications to single-beam excitation
of disordered materials and reduction of the resulting expres-
sions to the case where the bond charges are isotropically
polarizable in LO. We discuss two limits: first, where the
restoring force dominates the acceleration term (glasses) and,
second, where the restoring force is absent (metals). This
reduction, done in the paraxial-ray approximation, highlights
the roles of the different underlying mechanisms, the differ-
ence between forward- and backscattering configurations,
and allows a simple expression for signal strength and con-
version efficiency to be obtained. This work represents a
necessary first step toward our goal of understanding, at the
atomic level, SHG from Si nanoinclusions in glass under
crossed-beam excitation and is further justified by the fact
that disordered materials are ubiquitous in many fields.
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II. AMORPHOUS MATERIALS
A. Fields at bond sites

In this section, we consider step (1), define basic quanti-
ties, and discuss the connection between first- and second-
harmonic fields. We suppose that the relevant quantities are
electrons of charge g=—e located in bonds j at positions 7,

- - -> ey . . . q
=r;j+Ar;, where the r; are the equilibrium positions of the
charges relative to the origin of a coordinate system defined
in the laboratory and the Ar; are the displacements that result

from the time-dependent forces acting on them. We represent
the directions of the bonds by b s where for Si-O bonds, the

1;j point from Si to O.

For amorphous materials that are homogeneous on meso-
and macroscopic length scales, the driving field can be as-
sumed to be appr0x1mately a plane wave with frequency o,

envelope function E »(r,), and wave vector k,=(wn,/ c)ko,
where n; is the refractlve index of the material at w. We
assume that the Fresnel reflectance coefficients have been
appropriately taken into account at the surface of the material

to yield the correct amplitude E, of EO(Fq) within the me-
dium. Then, the field at the jth charge can be written to first
order in Ar; as

E(pt) = E, (7 )01 = E (7, + AF) el 77 ion
~[1+Ar;- V;.]EU(F/)eii”'ff_i“’
=[1+ 47 Vi Eje™. (1)

-

the following equations, we let E;
=E (r )e’kv 7 contain the spatial dependences of the envelope

and phase The SHG nature of the correction term follows

For clarity in

because Ar; is also proportional to E as shown below, so the
gradient term nominally has a time dependence et

However, the coefficient of an e 2“' term is not simply
the product of the coefficients of the parent e terms but
must be reduced by a factor of 2 for the following reason.
Observables are real quantities, so e “'=[cos(wt)
—i sin(wt)Jis actually shorthand for Re(e~'®)=cos(wt). Thus,
the product of two ¢™'' terms is really a product cos’(wt),
sin(wt)cos(wt), or sin’(wt), or some combination depending
on the phases of the parent coefficients. All trigonometric
identities taking wt products into 2wt forms involve a factor
of 1/2. We introduce this factor in the far-field radiation
expression Eq. (26). We retain the ¢™> notation so average
intensities can be calculated in the usual way.

B. Force equation

The general form of the force equation for SHG is
- L d*AFD)

F:mazm—2
drt

-

= GEG.1) + q> X B(F,1) = Ry - AR = Ry - - AF(DAR(),
C

2)

where m is the mass of g and k; and k, are second- and
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third-rank tensors describing the linear (Hooke’s law) and
first-order anharmonic restoring forces, respectively, U

=dAr/dt, and the magnetic-flux density B(r,.r) associated
with the driving field is E(@,t):—(ic/w)V; Xé(fq,t). In
contrast to the SBHM, we do not assume the force equation
to be one dimensional. To find the displacements Ar we
substitute Eq. (1) into the force equation to obtain

dzAr d*AF (1) R - (t) i
dt 2 = q[l + Arj(t) . V;]]Ele rot + tot

- K- A;j(f) — Ky A;j(t)A;j(t)’ (3)
where §j=(—ic/w)V;j><E”;j. From the form of E(Fq,t), we
can assume that

A;](t) = A;]je_lwt + A;zje_izwt, (4)

where Ar; ;j and Afzj are time independent. Substituting this
expression in Eq. (3) yields

—iwt —2wt

- ma’ A7 e — dmw’Arye

=q[1+ (Aflje—iwt) . V;/]Eje—iwr _ q(A’:’lje—iwt)
X (V;] X Eje_i“”) - K (A;lje—iwt+ A;zje—izwt)
— Ry - AT AT e 5)

Since Afj is at least first order in E, the magnetic term is at

least second order in E. Since we are only concerned with
SHG, we neglect terms of orders 3w and 4w, which would
contribute to THG® and FHG,” respectively.

By isolating the first-harmonic terms, we have

—mszfl_j=qu—l?1-A}71j. (6)

While this can be solved, in general, by matrix methods, we
now introduce the approximation that x; and k, are diagonal
in the local coordinate system of the bond, where the z axis is

defined by the unit vector b parallel to the bond. Diagonal-
ization is equivalent to assuming that the bonds are rotation-
ally symmetric. While bonds in some systems are not rota-
tionally symmetric, we make this simplifying assumption to
elucidate the underlying physics. Obviously, if desired, all
tensor components of the restoring forces could be kept.
We also define the unit vector 7, which is perpendicular to

b and lies in the b-E plane. Thus, 7 is given by
i=[E-bb-E)YNE*-(b-E). (7)
Then, k; and K, can be written as
&%, = bbk,, + ik, (8)

I’zz = bAl;bAKZI, (9)
where «y; and k,; are the longitudinal linear and anharmonic
restoring-force coefficients, respectively, and «, is that for
transverse displacements. With the assumption of rotational
symmetry, k,, does not exist. However, transverse contribu-
tions are still possible through the RD, SD, and MG terms.
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Substituting these expressions into Eq. (5) and taking dot
products with b and 7 leads to the two first-order equations
q(b; E)

A;ljl:Arljlész_‘?;bAj’ (10)
1=

" . qliE)
Arlj,=Ar1j,tj= 2t] (11)
Kiy—mw

Repeating the process for the second-order terms leads to

AF2j]=Ar2j]Bj
= {C](AFU : V;j)(l;, : E]) - Q[A;Ij X (Vr’] X é/)]

-Z;j—K21Ar1ﬂAr1ﬂ}l;j/(K”—4mw2), (12)

AF2J‘I= Ar2jtij = {Q(AFU : V;j)(fj . E’])

— g[AF; X (Vi X E)]- i3/ (k1= 4m?), (13)

Aoy = Ar2j(b><t)(bAj X 1;) - q{[Ary; X (V;j X E))]
) (l;] X fj)}(gj X fj)/(KI,—4mw2)_ (14)

Equation (14) is necessary because the magnetic force gen-

erates a component that is perpendicular to both b and 7.
Equation (12) shows that there is no qualitative distinction
between the intrinsic anharmonicity of a bond and an anhar-
monicity generated by a field, as expected. These are the
expressions from which the acceleration, and therefore the
far-field signal, will be calculated.

C. Far-field radiation from accelerated charges

We now consider step (3). We follow the development of
Peng et al.® but take into account explicitly the reduction in
propagation speed caused by refractive indices n, that are
different from 1. The two that need to be considered are
n(w)=ve(w)=n, for the incoming wave and n(2w)
=Ve(2w)=n, for the emitted SHG radiation. Accordingly, we
write k, =k k,=(wn,/c)k, and k=kk=(2wn,/c)k for the inci-
dent and emerging radiations, respectively, where k points in
the direction of the observer.

The general expression for the 4-potential of an acceler-
ated point charge in the medium in Fourier-component form
is

>N A(z 1
[d’(r’t)’A(r»t)]y:_fd3r’dt’
c
X [ep(7 1) J(F VLG FF 1),
(15)

where
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5<t—t’ - n—”|7— F’|)
C

- -,

[F=7|

G,(rr,t')= (16)

is the Green function, p and J=puv are the charge and current
densities, respectively, and n, is n; or n, according to

whether the frequency of interest is w or 2w. Here, p and J

are associated with the jth point charge ¢ located at 7,=7;
+Ar (7). Then,

pi(r'.t") = qdF" —r; = Ar(1")], (17)
S ., dAF(t")
Ji(r' ") = p,(r',t )T

=<q%%§2>ﬂ7—é—A6Wﬂ. (18)

The far-field I;":;ff(r*, t) that results from ¢ is given by

10A; rot
_ __.M’ (19)

Jt

10A Z-(r, 1)

=L
70 c ot

V)=
where /;j (r,1) is the component of /ij(f, t) that is perpen-

dicular to the line between the origin r;+Ar; of the radiation
and the observer at 7. The second form of Eq. (19) follows

because V¢, removes the longitudinal component of A
leaving a purely transverse potential. Thus, we need evaluate

only A (7,17). This can be obtained relatively simply because
A, is already of first order in v/c, where v is the velocity of

q.
Substituting Eq. (18) into Eq. (15) and performing the
integration over 7' yields

- 2= AR )
c

., 0l t=t
dAr (1" {
dr' |F—rj— AF((1")]

gﬂ?,t):%fdt’
(20)

The integration over ¢’ is nontrivial because Afj(t’) is also a
function of ¢'. However, to first order in 1/¢, we can expand

Ny. - . N My~ . Nya L
—|r=F - AF (") = = = —k - ;- —k - AFy(t"),
c c ¢ ¢

(21)
SO
5<t— ¢ == - AFj(t’)|> ~ 5<t,, o+ A@(r’)),
c c
(22)
where t(,:t—n,,r/c+n,,12-7j/c. This is still a self-consistent

expression, but to first order in 1/¢, we can substitute ¢, for
1" in the argument of Ar,(#'). We finally obtain
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n, N
t'= Lret = Iy + —k- Arj(to)’ (23)
c

where t,,, is the retarded time. The integral over ¢’ can now
be performed, and we obtain

dAr(t")
e I

Substituting Eq. (4) into Eq. (24) yields the contribution
from the jth charge:

s lwq _ Dot
Aj(r,)=——(Arye o' 4 DAF, € —i2ery
rc ret
__ M( AR, ik kAT ik o7 ik it
re /

+ ZA;Z Ae—ik~rjeikr—i2wt)

iwg
=-—Ar, e
re

=ik ikor=iot

61'12 -
_ rc Ar,](k Arlj)e 1krj ikr—i2wt

Rwqg .
- qArzj

rc

e—i/E-Fj pikr=i2er (25)
The far-field signal EZCf then follows from Eq. (19):
w2
Eff(r l) [I kk] AI"] —ik k r Ik r—iwt

wqny - -
—j—== Arl/(k Arl )e zkr zkr 2wt
}"C

20%g . - ..
+ _;IA’,Z 'e—zk'rjezkr—z2wz:| . (26)
rc

-J

Here, I—kk is the projection operator that eliminates the lon-
gitudinal component, and hence performs the function of

-V¢;. As with -V¢,, I-kk does not affect the orthogonal
component, which will be found to be significant when we
discuss off-axis contributions in Secs. III B and III C. In the
two nonlinear terms of Eq. (26), we have now incorporated
the factor of 1/2 associated with the change of time depen-
dence from (e7")? to ¢, as discussed in Sec. IT A.
Equation (26) is a general expression for linear and
second-order far-field radiation from a moving charge in
terms of displacements from its equilibrium position. The
first term is the linear response. The second term is the RD
contribution, and the third is a combination arising from the
spatial dependence of the field (SD, MG) and the intrinsic
anharmonicity of the bond [the third term in Eq. (12)]. Be-
cause the RD contribution originates in propagation, not ac-
celeration, the use of the common expression
- 1 #a
ff - _ 271
E = 2 (27)

leads for this term to an error of a factor of 2.
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To address a point that has caused difficulty in the past,
we note that the RD term above and the EQ MD terms of LO
both result from an expansion of a phase term €% to first
order in k-7. However, the physics, and consequently the

nature of E/, is different in the two situations. In LO, p(r,?)
is assumed to be a moderately extended but stationary charge
density with a multiplicative time dependence e~', thus
having the form p(r,t)=p,(r)e . Here, the ¢’ integration is
trivial but the 7' integration is not. Performing the ¢’ integra-
tion yields a multiplicative time factor =’ and a phase term

¢* ' that is part of the electrostatlc Green function. Because

the current J needed to calculate A has no obvious represen-
tation in this case, appropriate vector-calculus identities are

used to convert the integration of J into a first-moment inte-
gration of p as ¥ p(')."* The dipole approximation follows

by taking ek =1, with higher-multipole moments generated
from higher-order expansion terms.>'# Thus, the LO expan-
sion gives rise to multipole moments but no higher harmon-
ics.

In contrast, in this work, p(7,t) describes a moving point
charge g8 —7,(t)], where 7,(t)=r+Are™®. As seen above,
the 7' integration is now trivial but the ¢’ integration is not.
We obtain here higher harmonics but no multipole moments.
Thus, what Peng et al. labeled EQ/MD in Ref. 8 is due to
retardation. That in Ref. 2 is due to spatial dispersion.

D. Superposition of radiation: Averaging and diffraction

In the following, we assume that the charges are driven
coherently, so fields must be added rather than intensities.
This is expected, and the validity of the assumption is dem-
onstrated experimentally by the vanishing of SHG for amor-
phous materials in the forward direction.

Returning to Eqs. (1), (10)—(14), and (26), the 7; depen-
dence of the SHG signal is either E2(r )e (207 or a deriva-
tive of the form E,(r))[JE,(r})/ &x]e’m‘ -b7; Both are slowly

varying on the atomic scale, whereas the bond directions b
vary essentially randomly from site to site. Given this large
difference of scale, we can factor step (4) into two parts:
averaging over bond orientations, effectively at a single site,
and then evaluating the sum over all FJ

1. Bond averages
We first consider averaging over bond directions. This is
accomplished by writing
l;szf+byyA+bZzA:)2 sin @ cos ¢+ y sin #sin ¢+ Z cos 6
(28)

and then performing the operation

6.0y = j 4016, 29)

The calculation is simplified by grouping the products in-
volving bond directions into dyadics, triadics, etc., and then
considering symmetry. For example, for LO, the bond aver-

ages that need to be evaluated occur as dyadics bb and . In
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the Cartesian-coordinate representation, bb has nine terms,
bbiX, bb,xy, etc., but only three survive the averaging
process because any component involving an odd number of
projections averages to zero.

By this reasoning, the triadic bbb clearly vanishes identi-
cally, so by Eq. (12), there can be no «,; contribution to SHG
in amorphous materials. Not surprisingly, both microscopic
and macroscopic considerations therefore lead to the same
conclusion. However, the implications here go further. The
terms that remain are only functions of the LO response and
the configuration geometry, so the amount of new informa-
tion obtainable by SHG in amorphous materials in this model
is limited to the separation of longitudinal and transverse
components of the LO response no matter what geometries
are used to enhance the SHG signal.

We now consider the RD contribution to SHG. The terms
that need to be considered are l;l;l;l;, bbitt and permutations,
and 77f. If desired, the results can be decomposed into irre-
ducible tensor representations, although we do not do this
here. In the calculations that follow, we take advantage of the
absence of a preferred direction in amorphous materials.
Hence, without loss of generality, we assume that k,=k,Z and

EO=E0)€. The expression to be evaluated is then

A LIy Sy BN
kD=~ g, =Rk e
% AFU e—ilE-r‘j ikr=i2or (30)

The result is

Effp=-

3
3:32 [T- k6] - Rk - 5)(3C2+ 4C,C,+ 8CY)

+ [k - ) + 2k £))(C, - €)%
5 [E E(z)(;j)ei(zléa—li)ij] pikr-i2or, 31)
j

where, to simplify the expression, we define
C=—""—, C=—". (32)
w

We write the x component, etc., of k as k(l€~)2))2 SO we can
move the magnitude of k to the prefactor, and therefore
eliminate an easily overlooked source of error. The separate
longitudinal and transverse contributions can be obtained by
setting C,=0 or C;=0, respectively. The sum over r; is
clearly a Fourier transform of the square of the envelope
function of the driving beam and will be evaluated in Sec.
1ID2.

We next consider the contributions from SD. These are
given by
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Ny Q[g(ArU-V;)(nE,»)E
aa K

Eff
— 4dmw?

SD,j —

q(Arlj V )(t E) :| —ik-¥; ikr—i2wt (33)
e

4mw

We evaluate Eq. (33) by dividing the field gradient into lon-
gitudinal and transverse parts with respect to k,, i.e., letting
V: E( 1)=8% o ELy ay+le After performing the averages,
we obtaln

. 20%q ~ s -
Ef(7.0 =15 5T - kk] - 2 E,(r)

"

ok,
{ _a(‘L)(SClDZ + 2C]D + 2C Dl + SCDZ)

+ {)7&;}();2 + ifkoEo(Fj)] (G- C)(D; - Df)}

% ei(ZI;O—IE)-Fj gikr-i2on (34)
where
q q
D=—"——, D=—""7"5. 35
! Ky — 4mw? " Ky, - Ame’ (33)

The envelope function for the z component is the same as
that for the RD contribution, but those for X and y involve
gradients of the driving field.

The MG contribution is given by

207~ a1 N

X E;)]- bYb + DA[AF,; X (V7 % E)]- i + DA[AF
X (V5 % E)]- (b x Db x e e 201, (36)
Here, all three dimensions are involved. By suitable vector-

calculus identities, the double-cross-product operation can be

cast into apparent spatial-dispersion form, (E-V)E,> but an
exact cancellation of the resulting dominant terms makes this
approach unproductive. After performing the cross-product
operations with the assumed propagation and field directions
and then averaging over bond orientations, we obtain

= 2w2q ~ an R
Elig==7 2= k- 2 E(7)2C,D,+ CD)
7

IE,(r; oo | ik ik
)A] o(r!) " l.ZAkgEo(rj) ez(2k0—k)~rjelkr—12wt.
(37)

2. Diffraction

We consider now the sums over ;7J These not only yield
the geometric properties of the emerging SHG beam but also
affect the phases and amplitudes of the prefactors of the in-
dividual constituents. In the derivation below, we assume
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forward scattering, but will discuss backscattering in Sec.
I D. We consider throughout only single-beam excitation.
Crossed-beam configurations follow the same principles but
are complicated by the need to consider large observation
angles, so they will be treated in a subsequent paper.

We assume that the incident beam is Gaussian. For the
RD, Z SD, and Z MG contributions, the relevant sum is

S B2 2R (38)

where W is the width of the incident beam and for our con-
figuration, k,=k,Z. Converting the sum to an integral, we
have

% L
> —>Nf dxdyf dz, (39)
rj - 0

where N is the volume density and L the thickness of the
sample. The integrals are all standard and we find

2 2
S B, (7)ot = T o s (40)
; 22k, — k)

Tj

where we have assumed that L is much larger than the co-
herence length 1/(2k,—k.). As expected, the emerging beam
also has a Gaussian cross section, with a contributing volume
determined by the size of the original beam and the coher-
ence length of the configuration.

For the x and y SD components and the y MG component,
the integrals are also standard. Taking the x term as an ex-
ample, the result is

2 E ( )M t(ZEo—lz)'Fj__

272
TNk WE, KT+ WS
42k, - k,) '

(41)

This is also a Gaussian beam but with a nodal line passing
through the center. This is the analytical representation of the
two-lobed pattern reported by Figliozzi et al.! for various
configurations of SHG from an amorphous material and
spherical Si nanoinclusions.

E. Net results

We now combine the results of the above sections. The
overall RD contribution is

i T gN W2E2

0= 30,32k, k)[l kk] - {2 (k - $n,(3CT +4C,C,
+8C) + [k - D)y + 2(k - 2n,)(C

—c)? e-(k§+k§)wz/s pikr-i2or (42)

The corresponding expressions for SD and MG are, respec-
tively,
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3 2 2
S Tw gNWE
ngD(r,t) = m[[ kk] {x(k X)ny(3C,D;
+2C,D,+2C,D; +8C,D,) +[$(k - $)n, + 2n,1(C,
_ Cz) (Dl _ Df)}e—(k§+k}2,)W2/8€ikr—i2wt’ (43)
=i 7w gNW?E E’

MG= 3, S0k, k)[l k] - [)’(k Y)ny + 2 J(C,D,

+2C,D, )e 2 ks )W2/8 ikr=i2wt (44)

Equations (42)—(44) give the far fields from the retardation,
spatial-dispersion, and magnetic contributions, respectively.
Despite the appearance of assorted phase factors at different
stages of the derivation, to the extent that the refractive in-
dices are real, all net contributions have the same phase to
within a plus or minus sign. The RD contributions in the two
directions perpendicular to that of the polarization of the
incident beam are equal, as expected by symmetry. This is
not the case for SD and MG, since SD involves gradients and

B is an axial vector.

As noted in the Introduction, the linear response cannot be
calculated by factoring as done above. A full self-consistent
Ewald-Oseen treatment is necessary.

1I1. DISCUSSION

Although Egs. (42)—(44) are complete, their general prop-
erties are not immediately evident. Hence, we consider spe-
cial cases. We also estimate conversion efficiency for fused
silica, basing our calculations on several assumptions and the
known LO properties of this material.

A. Paraxial-ray approximation

In the usual case of a highly collimated source beam of
relatively small cross section, the emerging beam will also be
initially relatively well localized but will diverge over a solid
angle where the components essentially add in phase. Taking
the diameter of the cross section W to be equal to at least a
few wavelengths of the emerging beam, we make the
paraxial-ray approximation, writing the observation direction

for forward scattering as l€=)20x+)30y+2, where the beam-
divergence (observation) angles 6, and 6, are first-order
quantities. With this representation, the various projection

operations are easily evaluated and we find

[(T - kk) - 2] - k) = %6,
[(T-kk) - $1(5 - k) = 76,

(I-kk) - 2=-3%6,~76,. (45)

Considering also Eqgs. (42)—(44), it is apparent that all con-
tributions vanish in the forward direction and exhibit two-
lobed patterns characteristic of gradient effects. Note that the
z component also contributes on the same first-order scale
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when the viewer is off axis. We shall use these equations in
the following.

B. Reduction to the isotropic case for large x;

If the polarizable points are isotropic, then C;=C,=C and
D,=D,=D. If we assume further that «,>4mew?, then C
=~ D. For clarity, we write

2AT2 2 (2
g(kor i) = 7W‘;+EOC oUW k2wt (46)
rc

since this is a common factor for all cases discussed in the
rest of Sec. III. Then, Egs. (42)—(44) reduce to

- k,r.t
EJ;{DZ—ZXAI’ZZGX g( 4 )’ (47)
(ny—ny)
~ff A g(E’r7t)
El, = 4%n,0 , 48
SD 2 X(nz_ 1) ( )
f A ~ g(]ar’t)
Efjg=4[%n,0, - $(ny - n) O ——-:, (49)
(ny—ny)

where we have used the fact that &, differs from k only by
terms of second order in #. The net result is

g(k,r,1)

E,=2[£2n, +n,) 6, - $2(ny — n))6,]
(ny—ny)

net — (5 0)
This limit applies to the SHG response of systems where the
bond charge is strongly bound, for example, organic materi-
als and glasses. All three mechanisms generate polarization
in the direction X of the applied field, and all have similar
magnitudes, so none can be neglected. The fact that the RD
term is important may not be at variance with the conclusion
of Brudny et al.> which pertains to a configuration where the
anharmonic contribution does not vanish completely. In par-
ticular, the RD contribution here is exactly half that of SD
and with opposite sign, so the net effect of the RD and SD
combination is to reduce the SD contribution by half. For
n, = n,, the magnitude of the forward-scattered field intensity
clearly significantly benefits from a long coherence length.

Equation (49) shows that two y contributions are present,
but to the extent that n;=~n,, the overall term is small and
can be easily overlooked since detection depends on inten-
sity, not fields. This near cancellation is a result of the sign of
the z contribution in off-axis viewing. The cancellation of the
y component is exact in Eq. (42) even in the general case
where C;# C,. A near cancellation of the y component also
occurs in the general case for Eq. (43), although a second
near cancellation contributes if C;=~C, or D;~D,. Thus, if
the y component is analyzed quantitatively, the more general
equations must be used. We conclude that the z component is
important in determining the properties of the emerging
beam.

C. Metals

A second limit of the above is that corresponding to those
metals for which the effective mass of the carriers is itself
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essentially isotropic. As a result of strong attenuation of op-
tical signals, metals are usually measured in backscattering,
where the results can be further complicated by surface
reconstructions.”~!7 Although much attention has been fo-
cused on these surface contributions,!” 2% we consider here
only signals originating from the bulk. In absorbing media,
the Green function retains its form, so the above develop-
ment is still valid although the propagation vectors are now
generally complex. With no restoring force, x;=0, so C
=4D. In the paraxial-ray approximation, the RD contribution
is unchanged, but the SD and MG terms are reduced by a
factor of 4. For forward scattering, the equations are

> kot
EgDm=_2xAn20x g( : ) 5 (51)
’ (ny—ny)
- k.t
E?;) m= 'fnZexM s (52)
’ (ny—ny)
- ) ) g(k,r,1)
Effigm=[30,0,-$(ny—n,) ﬁy]m, (53)
1
- gk
E]r?:zt,m == (l’lz - nl)[xax - yav]m (54)

The x and y components now have equal amplitudes, but to
the extent that n; = n,, the net result shows that the enhance-
ment of the signal strength that results from the nearly sin-
gular denominator is canceled. Again, all three contributing
mechanisms are important. Thus, the assumption that the
SHG contribution from metals arises entirely from spatial-
dispersion and magnetic effects is not quite correct.!®!7

SHG signals from surface reconstructions could be de-
scribed in the above formalism by assigning suitable
anisotropies to electrons in the surface region, although we
do not do this here.

D. Backscattering

For backscattering, the major difference is the reduction
of the correlation length and corresponding reduction in the
radiated field since for negative k_, the two terms of 2k,—k,
add instead of subtract. As we shall show in Sec. III E, this
effectively eliminates any possibility of observing SHG from
the bulk of amorphous materials. The other effect is to re-
verse the sign of the result of the projection operation on Z.
When everything is taken into account, the paraxial-ray ex-
pressions for ;> 4maw? are

~f A g(lg’r’t)
EY . =2%n,6 _—, 55
RD,p = <X x(nl + 1)) (55)
~f A a g(/g,r, t)
El,, =—4%n,0 84—, 56
SD,b X1y xx(n, ) (56)
> . . g(k,r,1)
Efjg,=40%n,0,+ $(n; +ny) ,]——— (57)

(n +”2)’
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- k,r.t
E,, = 2[£2n, - )6, + 25(n, + no) ay]M. (58)
’ () +ny)

While both polarizations are present, the dominant contribu-
tion in backscattering is that perpendicular to that of the
driving field. Although an x contribution is still generated, its
strength is expected to be small compared to that polarized
along y.

The expressions for isotropic metals are

B ging 2B (59)
’ (ny +ny)
BoZ xnﬁ% (60)
Elf = [8016,+ 9(ny + 1) QV]%, (61)
EY, o= (ng +ny)[£6,+ Wy]é(i—r:j)' (62)

E. Power and conversion efficiency

In many experiments, what is determined is not the SHG
intensity but the integrated SHG power. To obtain an order-
of-magnitude estimate, we consider the net x-polarized com-
ponent for forward scattering with «;>4mw* and with C,
=C,=C and D;=D,=D. The SHG intensity is given by

ISH = net

8m
The SHG power is obtained by integrating this expression
over a hemisphere of radius r. We are also interested in the
conversion efficiency #», which we define as

- Py
= 3
(P inc)
where P;,. is the power of the incident beam. By assuming
that the incident beam is collimated, the evaluation of its

power in terms of the beam properties is straightforward, and
we obtain

(64)

* ) cn
Pinc _ f dxf dy 1 |E0|Ze—2(x2+y2)/w2 _ 1 W2|Eg|2-
o o 8T 16

(65)

That for the emerging beam is more complicated. The first
issue concerns angular dependences. If the incident beam is
reasonably well collimated and its diameter is equal to at
least several SHG wavelengths, the SHG beam is also fairly
well collimated. Then, a small-term expansion in 6 is a good
approximation. To show this, we consider

220 2 <in? a2
e (kx+ky)W/8=g (k= sin H)W/S' (66)

Taking k=2mn,/\gy, n,=1.3, Agy=400 nm, and an incident
beam width of 5 um, we have K*?W?/8~50. Hence the
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small-term approximation sin #= 6 is acceptable. This also
provides justification for our use of the paraxial-ray approxi-
mation in the previous sections. With these simplifications,
the area integral is straightforward and we find for X polar-
ization

eny POt PWNPEC!

SHA= @r 16¢*(ny —ny)?

(2”1 + n2)2

21 o
x f dé f 0d6(6 cos® )e K TWHA
0 0

71'2cc12N2E3C2
= m(an + I’lz)z. (67)
2\t = I

By combining the above expressions, we find the corre-
sponding conversion efficiency to be

47> N*C*(2n, + ny)?
’r] -
T eWrndnd(ny —ny)?
The efficiency decreases as the fourth power of the diameter
of the incident beam. This is in contrast to the intensity,

which decreases as 1/W9.
From the definition of C;, we have

(68)

ﬁ = aEloc = qA};): quEloc’ (69)

where E,,. is the field at the charge site and « is the linear
polarizability. Then, we can write C=«a/q. We can connect «
to the dielectric function 61=n% and bond density N of the
material by the Clausius—Mossotti relation

4 61—1

= . 70
3 “ € +2 ( )
Then,
~ 81(2n; +ny)* (61—1>4 )
= 64 c®N*Wnind(ny —ny)* \ €, +2/

Using a driving wavelength A=800 nm, dielectric functions
of quartz of 2.112 and 2.161 at 800 and 400 nm, respectively,
a bond density of 1.06X 10?* cm™ 2! and a Gaussian beam
of characteristic dimension W=10 um, we find 7n,=14
X 1078 W-!. Thus, 1 W input power at 800 nm is expected
to generate about 3 SHG photons/s. If W is reduced to 1 um,
the output would increase to about 10* SHG photons/s.
These results appear to be consistent with experiment,'
where few if any photons were seen emerging from the glass
substrate.

IV. CONCLUSIONS

We have developed an ABM that describes SHG on the
atomic scale, uses physically meaningful parameters, and in-
cludes all contributing mechanisms, thereby providing a
more complete understanding of the physics of SHG than
previously available. In disordered materials, the anharmonic
restoring force acting on the bond charge does not contribute
to the overall SHG signal, which instead arises from a com-
bination of LO and beam-geometry effects, and therefore
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provides limited new information about the material. For a
Gaussian driving beam, we obtain analytic expressions that
give the phase, amplitude, and spatial distribution of the
SHG radiation field for each of the remaining contributing
mechanisms: RD, SD, and MG effects. All have the same
order of magnitude, so any complete description must con-
sider each. The expressions are reduced to simpler forms for
both forward- and backscattering configurations in two iso-
tropic limits, the first where the linear restoring force domi-
nates, such as in glasses, and the second where it is absent,

PHYSICAL REVIEW B 77, 165102 (2008)

such as in metals. We estimate the conversion efficiency for
forward scattering in fused quartz. Predictions appear to be
in agreement with observations where available.! Specific
additional predictions allow critical tests of these results.

With the basic physics established, we can now consider
more complicated configurations, including nanospherical
inclusions in glass and the reported SHG enhancement with
crossed-beam, crossed-polarization driving fields.! The re-
sults presented here are also expected to be useful for ana-
lyzing SHG data of liquids and biological materials.
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