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We study the role of zero point fluctuations �ZPF� in dephasing at low temperatures. Unlike the Caldeira–
Leggett model, wherein the interaction is with a homogeneous fluctuating field of force, here we consider the
effect of short range scattering by localized bath modes. We find that in the presence of ZPF, the inelastic cross
section gets renormalized. Thus, ZPF might indirectly contribute to the dephasing at low temperatures.
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I. INTRODUCTION

The coherent motion of a quantum mechanical particle in
a fluctuating environment is endangered by decoherence due
to inelastic scattering events. The temperature dependence of
the resulting “dephasing” effect was worked out in numerous
studies.1–3 During the past decade, a controversy has
emerged in the mesoscopic literature regarding the role of
zero point fluctuations �ZPFs� in the theory of low tempera-
ture dephasing. The controversy was sparked by the experi-
ment in Ref. 4, wherein a saturation of the dephasing rate in
the limit of zero temperature was reported and, consequently,
ZPF induced dephasing was suggested as an explanation5

and was debated upon.6–9

Possibly, one can insist that a ZPF leads to “T=0” dephas-
ing for a Brownian particle that interacts with an Ohmic
Caldeira–Leggett �CL� bath,10 wherein the fluctuations of the
environment consist of long wavelength �q=0� modes.
However,11,12 in a metallic environment, the effective fluc-
tuations are characterized by a finite correlation distance and,
hence, consist of modes with wave numbers q that range up
to the Fermi momentum. It was largely accepted7,9 that if the
interactions are short range, such that the fluctuations are
characterized by a finite correlation distance, then the effect
of the ZPF would be to renormalize the scattering cross sec-
tion and the mass of the particle. It turns out that in the case
of physical interest, particularly for the prototype model of
Refs. 13 and 14, this renormalization effect is nondiverging
in the zero temperature limit: both mass renormalization15

and dephasing16 for a single particle in the presence of a
dirty metal environment have been studied. Essentially the
same formulation as in Refs. 9 and 16 arises also in a more
complicated many body treatment of the dephasing
problem.17

Although it is not diverging in problems of physical inter-
est, still the renormalization effect due to ZPF might be sig-
nificant in the actual analysis. The simplest possibility is to
have an overall suppression of both elastic and inelastic scat-
tering via a Debye–Waller factor �DWF�.18 However, we
would like to explore the more exotic possibility of having a
distinct enhancement “factor” for the inelastic effect. It is
therefore desired to have at least one exactly solvable model
for dephasing due to short range scattering with environmen-
tal modes, which can be contrasted to the opposite CL limit,
where all of the modes have q=0. The objective of the

present paper is to present such a model: in the proposed
model �see Fig. 1�, the environment consists of infinitely
many localized fluctuating modes with �say� an Ohmic spec-
tral function, while the interaction is short range and de-
scribed by ��x� as in “s scattering.” This should be contrasted
to the long range interaction of the CL model, which is linear
in x.

The outline of this paper is as follows: In Sec. II, we
define a model for a localized bath that induces both ZPF and
thermal fluctuations �TRFs�. In Secs. III and IV, explicit ex-
pressions for its scattering matrix are derived following Ref.
19. In Secs. V and VI, low temperatures are considered, at
which the TRFs are treated as a small perturbation. The ex-
ample and the numerical analysis in Secs. VII and VIII es-
tablish that for a weak TRF, the effect of the ZPF background
can be taken into account by defining a renormalized inten-
sity of the TRF. Accordingly, ZPF may contribute to the
dephasing at low temperatures, although not directly.

II. MODEL

The Hamiltonian of the particle plus the local bath is

H =
p2

2m
+ ��x��

�

c�Q� + �
�

n̂���. �1�

The index n�=0,1 ,2 ,3 , . . ., may indicate the state of the �
oscillator, or optionally n�=0 and 1 may indicate the state of
a two level �“spin”� entity, as in our numerics. From now on,
we use the notation

|T−1| |T|2

inelastic
p

ZPF

TRF
+

2

FIG. 1. �Color online� Schematic of the model system. The scat-
tered wave of a particle that collides from the right with a thermal s
scatterer consists of forward elastic scattering with an amplitude T,
backward elastic scattering with an amplitude T−1, and isotropic
inelastic scattering with a probability pinelastic. Our purpose is to find
the dependence of T and pinelastic on the intensity of the low tem-
perature TRFs with an arbitrarily large background of ZPFs.
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Q̂ = �
�

c�Q�. �2�

By assuming an incident particle with a kinetic energy �k, we
divide the oscillators into two groups: those with ����k and
those with ����k. We further assume low temperatures such
that all of the oscillators in the latter group are in the ground
state. Note that the particle has enough energy to induce real
�nonvirtual� excitation of any of the TRF oscillators. Hence,
we can schematically write the following:

Q̂ = cS + �
��ZPF

c�Q� + �
��TRF

c�Q�, �3�

where cS represents a static scatterer. The particle is affected
by the fluctuations in Q. By assuming that the bath is pre-
pared in the state n=m, the fluctuations are characterized by
the following nonsymmetrized power spectrum:

S̃��� = �
n��m�

�Qnm�22	��� − �En − Em�� . �4�

In Sec. III, we show how the ZPF oscillators can be elimi-
nated, such that the interaction is characterized by a dressed
interaction matrix Q. Accordingly, we define the effective
power spectrum as

S̃eff��� = �
n��m�

�Qnm�22	��� − �En − Em�� �5�

and the effective “size” of the elastic scatterer as

ceff = Qm,m. �6�

In the following sections, we will explain how to define Q
and how to make the exact calculation of the elastic scatter-
ing amplitude T and of the inelastic scattering cross section
pinelastic �see Fig. 1�. Then, we discuss whether the results can

be deduced from the effective values of ceff and S̃eff���.

III. SCATTERING STATES

Outside of the scattering region, the total energy of the
system �particle plus bath� is

E = �k + En = �k + �
�

n���. �7�

We look for scattering states that satisfy the equation

H�
� = E�
� .

Open �propagating� channels are those for which �k�0 after
scattering. Otherwise, the channels are closed �evanescent�.
The channels are labeled as

n = �n0,n� = �n0,nZPF,nTRF� = �n0,n1,n2,n3, . . . ,n�, . . .� ,

�8�

where n0=L,R for left/right, and nZPF,nTRF are collective
indices for the two group of scatterers. We define the follow-
ing:

kn = �2m�E − En� for n � open, �9�

�n = �− 2m�E − En� for n � closed. �10�

Later, we use the notations

vn = kn/m, �11�

un = �n/m, �12�

and define diagonal matrices v=diag	vn
 and u=diag	un
.
The channel radial functions are written as follows:

R�r� = Ane−iknr + Bne+iknr, n � open, �13�

R�r� = Cne−�nr, n � closed, �14�

where r= �x�. The wave function can be written as


�r,n0,Q� = �
n

Rn0,n�r��n�Q� . �15�

The matching equations are


�0,right,Q� − 
�0,left,Q� = 0, �16�

1

2m
�
��0,right,Q� + 
��0,left,Q�� = Q̂
�0,Q� . �17�

The operator Q̂ is represented by the matrix Qnm that has the
following block structure:

Qnm = �Qvv Qvu

Quv Quu
� . �18�

The matching conditions lead to the following set of matrix
equations:

AR + BR = AL + BL,

CR = CL,

− iv�AR − BR + AL − BL� = 2Qvv�AL + BL� + 2QvuCL,

− u�CR + CL� = 2Quv�AL + BL� + 2QuuCL.

From here, we get the following matching equations that
relate the ingoing and the outgoing amplitudes:

AR + BR = AL + BL, �19�

AR − BR + AL − BL = i2�v�−1Q�AL + BL� , �20�

where the dressed interaction matrix is defined as

Q = Qvv − Qvu
1

�u + Quu�
Quv. �21�

In Sec. IV, we deduce the S matrix from the above set of
equations and obtain explicit expressions for the elastic scat-
tering amplitude and inelastic cross section.

IV. S MATRIX

The unitary description of the scattering in terms of ingo-
ing and outgoing probability currents requires defining the
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normalized ingoing and outgoing amplitudes as Ãn=�vnAn

and Bn=�vnBn. Consequently, we defined a rescaled version
of the Qnm matrix as follows:

Mnm = �Mvv Mvu

Muv Muu
� =


1
�v

Qvv
1
�v

1
�v

Qvu
1
�u

1
�u

Quv
1
�v

1
�u

Quu
1
�u
� .

�22�

We also define a corresponding reduced matrix as follows:

M =
1
�v

Q 1
�v

= Mvv − Mvu
1

1 + Muu
Muv. �23�

By using these notations, the set of matching conditions can
be expressed by using a transfer matrix as follows:

�B̃R

ÃR

� = T�ÃL

B̃L

� . �24�

The transfer 2N�2N matrix can be written in block form as
follows:

T = �T++ T+−

T−+ T−−
� = �1 − iM − iM

iM 1 + iM � . �25�

The S matrix is defined via

�B̃L

B̃R

� = S�ÃL

ÃR

� �26�

and can be written in block form as

Sn,m = �SR ST

ST SR
� . �27�

A straightforward elimination gives

S = � − T−−
−1T−+ T−−

−1

T++ − T−+T−−
−1T+− T+−T−−

−1 � . �28�

Now we can write the following expressions for SR and ST
by using the M matrix:

ST =
1

1 + iM
= 1 − iM − M2 + iM3 + ¯ , �29�

SR = ST − 1 . �30�

The elastic forward scattering amplitude is

T = �ST�m,m = � 1

1 + iM�
m,m

. �31�

The total elastic scattering probability is

pelastic = �T�2 + �T − 1�2 = 1 − 2�R�T� − �T�2� . �32�

We observe that the inelastic scattering is isotropic and its
line shape �per direction� is

p��� = �
n��m�

��ST�nm�22	��� − �En − Em�� , �33�

with the measurement d� /2	. The total inelastic cross sec-
tion is obtained by integration as follows:

pinelastic = 2� d�

2	
p��� = 2 �

n��m�
��ST�n,m�2

= 2 �
n��m�

�� 1

1 + iM�
n,m
�2

. �34�

One can verify that pinelastic and pelastic sum up to unity, which
is essentially the “optical theorem.”

V. PERTURBATION THEORY

Since the temperature is low, we treat the small effect of
the TRF in leading order. We write

Q̂ = Q̂ZPF
� 1TRF + 1ZPF

� Q̂TRF � Q̂0 + �Q̂ , �35�

where Q̂0 is the sum over the ZPF coordinates including the

static scatterer cS, while �Q̂ is the sum over the TRF coor-
dinates. For the reduced Q matrix, we get

Q = Qvv
0 + �Qvv − Qvu

0 � 1

u + Quu
0 −

1

u + Quu
0 �Quu

1

u + Quu
0 �Quv

0 .

�36�

We assume that all of the “important” open modes are well
above the evanescent threshold. This means that a single
TRF transition is not enough to push the scattered particle
into an evanescent mode. Accordingly, �Quv and �Qvu are
not included. In the same spirit, we further assume that the
TRF transitions hardly affect the evanescent velocity; hence,

unZPF,nTRF
� unZPF,0. �37�

When calculating the matrix element Qnm, the second term
constitutes a sum over sequences as Qn,


0 . . . ��Q�
�,�� . . .Q�,m
0 .

To have a nonzero term, the TRF oscillators of the 
 state
should remain in the same state as in the n state, while one
ZPF oscillator of the 
 state has to be excited. A similar
observation applies to the states of the oscillators of the �
state. The TRF transitions are induced by �Q during the eva-
nescent motion of the particle. Accordingly, we deduce that

Q = ��Qvv
ZPF − Qvu

ZPF� 1

u + Quu
ZPF�Quv

ZPF�
m,m

�1TRF

+ �1 + �Qvu
ZPF� 1

u + Quu
ZPF�2

Quv
ZPF�

m,m
�QTRF,

which can be written schematically as follows:

Q = c01TRF + �0QTRF, �38�

where the effective elastic scattering amplitude and the scal-
ing factor of the inelastic effect are

c0 = cS − �Qvu
ZPF� 1

u + Quu
ZPF�Quv

ZPF�
m,m

, �39�
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�0 = 1 + �Qvu
ZPF� 1

u + Quu
ZPF�2

Quv
ZPF�

m,m

. �40�

With an appropriate counterterm, we can make c0=0. More
interestingly, we see that the effective TRFs are characterized
by the dressed power spectrum as follows:

S̃eff��� = ��0�2S̃��� . �41�

VI. DRESSED BORN APPROXIMATION

The first order �“Born”� approximation relates the inelas-
tic line shape to the power spectrum of the fluctuations. We
use the term “dressed Born approximation” to indicate that
we use a first order perturbation theory with respect to the
TRF, while the ZPF including the static scatterer are treated
to infinite order �Fig. 2�. Within this framework, the leading
order expression for the S matrix, by using Eqs. �38�–�40�, is

ST �
1

1 + i�c0/v�� + i�0MTRF = T01 − iT0
2�0MTRF + ¯ ,

�42�

where the elastic forward scattering amplitude is

T0 =
1

1 + i�c0/v��
. �43�

Consequently, for the inelastic scattering, we get

p��� �
1

v�v�−�

�T0�4��0�2S̃��� . �44�

Since we have assumed that the change in the kinetic energy
of the particle due to TRF inelastic scattering is relatively
small, one can take v�−��v�.

VII. SIMPLEST EXAMPLE

Consider a particle with a velocity v� that collides with a
“bath” that consists of an elastic scatterer cS and a single two
level TRF scatterer cT, whose excitation energy is �T���k�.
The interaction matrix is

Q = Q = �cS cT

cT cS
� , �45�

which we substitute in M��1 /v��2Q so as to get ST= �1
+ iM�−1. To avoid crowded expressions, we set the units
such that v�=1 and write

ST =
1

�1 + icS�2 + cT
2�1 + icS − icT

− icT 1 + icS
� . �46�

�Note again that in order to restore the units, each c in the
above expression should be replaced with c /v�.� From here,
it follows that

pinelastic =
2
TRF

�1 − c0
2 + 
TRF�2 + 4c0

2 �scaled� , �47�

where 
TRF�cT
2 characterizes the intensity of the TRF and

c0�cS. One observes that for a strong TRF, the inelastic
effect is suppressed and we get mainly elastic back reflec-
tion. However, in the regime of interest, of a weak TRF, the
inelastic scattering is proportional to 
TRF and agree with
Eq. �44�, where �T0�2=1 / �1+c0

2� and �0=1.
Next, we complicate the bath by adding a single ZPF

scatterer cZ, whose excitation energy is �Z���k�. The pos-
sible values of the mode index are n= �0,0��1, n= �0,1�
�2, n= �1,0��3, and n= �1,1��4. The ZPF scatterer is as-
sumed to be in the ground state �m=1� and, hence, only the
first two modes are open. The interaction matrix is

Q =

cS cT cZ 0

cT cS 0 cZ

cZ 0 cS cT

0 cZ cT cS

� .

If we did not have the TRF oscillator, it would be a 2�2
matrix as follows:

QZPF = �cS cZ

cZ cS
� . �48�

If we ignored the ZPF oscillator, we would get Eq. �45�.
However, by using Eq. �21�, we get the dressed interaction
matrix as follows:

Q = �cS cT

cT cS
� −

cZ
2

�u3 + cS��u4 + cS� − cT
2

���u3 + cS� − cT

− cT �u4 + cS�
� ,

with u3=���k−�Z� and u4=���k−�Z−�T�. Consequently,
from ceff�Q1,1, we get

ceff = cS −
�u3 + cS�
ZPF

�u3 + cS��u4 + cS� − 
TRF
, �49�

and from 
eff��Q2,1�2, we get 
eff=�2
TRF, where

ω αε−

time

εε

FIG. 2. Diagrams that describe the time evolution of kinetic
energy can be used in order to illustrate the terms in the scattering
calculation. The dotted line represents a contribution to the elastic
cross section due to �virtual� scattering by ZPF modes. The solid
lines represent contributions to the first order inelastic cross section,
wherein the intensity of the TRF is regarded as the small parameter.
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� = 1 +

ZPF

�u3 + cS��u4 + cS� − 
TRF
, �50�

where 
ZPF�cZ
2 and 
TRF�cT

2. Optionally, we can get for Q
the approximated result of Eq. �38�, which treats the TRF
coupling in leading order. This treatment assumes that in the
vicinity of the energy shell, v1�v2�v� and u3�u4�uZ.
The parameters c0 and �0 are calculated by using Eqs. �39�
and �40� with Quu

ZPF=cS and Qvu
ZPF=Quv

ZPF=cZ, which leads to

c0 = cS −

ZPF

�uZ + cS�
, �51�

�0 = 1 +

ZPF

�uZ + cS�2 . �52�

In this simple example, the dependence of c0 and �0 on 
ZPF
is linear. However, once we have more than one ZPF scat-
terer �as in the numerical example in Sec. VIII�, the relation
is no longer linear. It might also be of interest to solve the
first equation c0=0 for cS, and substitute the result into the
second equation. The outcome of this procedure is illustrated
in Fig. 3.

The calculation of the S matrix proceeds in the same way
as in the single TRF case, with the effective interaction ma-
trix �no approximation involved� as follows:

Q = �cS − �� − 1��u3 + cS� �cT

�cT cS − �� − 1��u4 + cS�
� .

�53�

By setting v1�v2�v� and u3�u4�uZ as before, we label
both diagonal terms as ceff. Still we are not making any ap-
proximation with regard to the intensities 
TRF and 
ZPF, so
as to get essentially exact results as follows:

�T�2 =
�v�

2 + �ceff�2�v�
2

�v�
2 − �ceff�2 + �2
TRF�2 + 4v�

2�ceff�2 �54�

and the generalization of Eq. �47� as follows:

pinelastic =
2

v�
2 �T̃�2�T�2�2
TRF, �55�

where �T̃�2 is Eq. �54� without the �2
TRF term. For a weak
TRF intensity, by using ���0 and T�T0, one obtains the
dressed Born approximation �Eq. �44��. One observes that
the presence of the factor � has two implications: one is to
enhance the inelastic scattering for a weak TRF, while the
other is to limit the range over which the weak TRF approxi-
mation applies.

VIII. DISCUSSION, EXPECTATIONS, AND NUMERICAL
DEMONSTRATION

The analysis in the present paper is focused primarily on
the low temperature scattering, due to a weak TRF, where the
dressed Born approximation of Sec. VI applies. Still, to get
the “big picture,” we consider below the full range of 
TRF
values. We first highlight some qualitative observations that
are based on the analysis of the simple examples of Sec. VII,
and then proceed with a numerical demonstration that in-
volves a larger bath of scatterers.

From the Born approximation, we deduce that for a weak
TRF, the inelastic cross section pinelastic is proportional to

TRF. For a strong TRF, it drops down as implied, e.g., by the
simplest example Eq. �47�. The maximum pinelastic=1 /2 is
attained for the intermediate value 
TRF=c0

2+1. A priori we
could not expect a larger inelastic effect because the elastic
cross section �T�2+ �T−1�2 is bound from below by the mini-
mum value of 50%. We can interpret the condition for attain-
ing a minimum elastic cross section by using a Fabry–Pérot
double barrier picture: the elastic scattering and the inelastic
scattering are like two barriers separated by an infinitesimal
distance. The strongest interference effect is expected when
the two barriers are comparable.

The suppression of the inelastic effect for strong TRF is a
generic effect: it becomes almost obvious if we consider the
scattering of a particle from a fluctuating region in a three-
dimensional space. In the latter context, strong fluctuations
would repel the particle from the scattering region, hence,
making inelastic excitations within the excluded volume less
likely. So the strongest inelastic effect is experienced for in-
termediate values of 
TRF.

The inclusion of ZPF into the model renormalizes 
TRF.
The enhancement factor � is larger than unity �but finite� in
the Born approximation limit, but if we go to very high tem-
peratures �large 
TRF�, this renormalization effect fades away
and we get �=1 �see, e.g., Eq. �50��. The crossover involves
a wild variation in � �see Fig. 4�, which implies that
0� pinelastic�1 /2 goes through the whole range of possible
values �Fig. 5�.

It is important to point out that if the fluctuations had a
continuous �rather than discrete� power spectrum, the above
described intermediate wild variation would be smoothed

0

1

2

3

4

5

0.01 0.1 1 10

λ 0

νZPF

cs=0
c0=0

FIG. 3. �Color online� The renormalization factor for inelastic
effect �ZPF is plotted as a function of 
ZPF for the simple model of
Sec. VII by using Eq. �52� with a fixed static scatterer cS=0 �solid
red curve� and with an adaptive static scatterer such that c0=0
�dashed blue curve�. The other parameters for this and for the next
figures are �Z=0.96 and �T=0.03 and �k=0.6, respectively.
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away. Thus, in realistic circumstances, we expect that also in
the presence of ZPF, the qualitative dependence of pinelastic on

TRF would be smooth, although renormalized by �0 at the
limit of low temperatures.

For the numerical study, we consider a bath that consists
of two level scatterers. The energy splitting of the � scatterer
is ��, and the interaction is described by the operator

Q� = �0 1

1 0
� .

The strength of the interaction with the bath is characterized
by the intensity of the fluctuations as obtained by integrating

over their power spectrum S̃���. Consequently, we distin-
guish between the intensity of the ZPF and the intensity of
the TRF as follows:


ZPF = �
��ZPF

c�
2 , �56�


TRF = �
��TRF

c�
2 . �57�

The effective intensity of the thermal fluctuations is similarly
defined and accordingly calculated from the dressed interac-
tion matrix as follows:


eff = �
n��m�

�Qn,m�2. �58�

Given a set of N ZPF scatterers with couplings cZ and a
static scatterer cS, we calculate c0 �which determines T0� and
�0 as a function of 
ZPF�N�cZ�2 �see Fig. 6�. Then, for vari-
ous values of 
ZPF, we calculate the exact results for 
eff and
pinelastic versus 
TRF �see Fig. 7�. One expects that for weak
TRF, the effective intensity 
eff would be proportional to

TRF, namely,


eff � ��0�2
TRF. �59�

Furthermore, our perturbative scheme implies that

pinelastic �
2

v�
2 �T�4
eff. �60�

To test the quality of the latter approximation, we replot the
results for pinelastic versus �T�4
eff �see Fig. 8�. The numerical
results confirm our qualitative expectations and are in agree-
ment with the analysis of the simple example of Sec. VII. In
particular, one observes that the presence of ZPF has two
implications: one is to enhance the inelastic scattering for a
weak TRF, while the other is to limit the range over which
the weak TRF approximation applies.
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FIG. 4. �Color online� Plots of ceff �upper panel� and � �lower
panel� versus 
TRF for the simple model of Sec. VII, with the same
parameters as in Fig. 3. The red solid curves are for 
ZPF=0.5 and
the blue dashed curves are for 
ZPF=5.
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FIG. 5. �Color online� The transmission �T�2 �upper panel� and
the inelastic cross section pinelastic �lower panel� versus 
TRF for the
simple model of Sec. VII, with the same parameters as in Figs. 3
and 4.
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IX. SUMMARY

In the Caldeira–Leggett model, the effect of the environ-
ment is characterized by a friction coefficient � and by a
temperature T. However, more generally,9,11,12,16 it has been
emphasized that the proper way to characterize the environ-

ment is by its form factor S̃�q ,��. The form factor contains
information on both the temporal and the spatial aspects of
the fluctuations and, in particular, one can extract from it not
only T and � but also the spatial correlations. The general
formula for the rate of dephasing9,16 involves a dqd� integral

over S̃�q ,�� and, for short range interactions, simply reflect
the rate of inelastic events.

We find for our model system that the inelastic scattering
cross section pinelastic is enhanced in the presence of ZPF and,
accordingly, ZPF may contribute to the dephasing at low
temperatures, although indirectly. This might come as a sur-
prise since in Ref. 18 it was argued that both elastic and
inelastic scatterings are suppressed by ZPF by the same

DWF. A closer look reveals the difference between the two
models involved. In Ref. 18, one considers the scattering of a

particle �x̂� from a vibrating scatterer �Q̂�, where the interac-

tion is ��x̂− Q̂�. Accordingly, the particle experiences a fluc-

tuating field Û�x�=��Q̂−x�, and S̃�q ,�� is the Fourier trans-

form of �e−iqQ̂�t�eiqQ̂�0��, which is suppressed by the DWF

e−�Q̂2q2�. In our model, the interaction is ��x̂�Q̂. Accordingly,

S̃�q ,�� is the Fourier transform of �Q̂�t�Q̂�0��, and within the
framework of the conventional Born approximation, there is
no DWF involved: in our model, adding high frequency
components to the fluctuating field has no implication on the

low frequency behavior of S̃�q ,��.
The renormalization factor of the inelastic effect ��� in

our dressed Born approximation comes from higher orders of
the perturbation theory with respect to the ZPF, while the
TRF is treated in leading order. The renormalization factor �

multiplies the power spectrum S̃��� that describes the ther-
mal fluctuations. The power spectrum itself does not involve
a DWF. The � renormalization of the inelastic scattering
comes “on top” of the expected renormalization of the po-
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tential floor and inertial mass, which are familiar from the
solution of the polaron problem. In our scattering theory
framework, the expected renormalization of the potential
floor can be deduced from the ZPF induced offset in the

effective size of the elastic scatterer �cS�, while the renormal-
ization of the mass comes from the associated energy depen-
dence of the forward scattering amplitude �T�.

One can construct an extended bath that consists of a
homogeneously distributed set of s scatterers, as described in
Ref. 11. This would allow the modeling of a fluctuating en-
vironment of physical interest �say a dirty metal environ-

ment� with the desired S̃�q ,��. In such physical circum-
stances, we expect a renormalization of �i� the potential floor,
�ii� the inertial mass, and �iii� the effective thermal fluctua-
tions. Our results imply that these renormalization effects are
nondivergent if the fluctuations are characterized by short
range spatial correlations, but still they might modify the low
temperature dependence of the dephasing effect.
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