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The distribution of charge induced by a gate voltage in a graphene strip is investigated. We analytically
calculate the charge profile and demonstrate a strong �macroscopic� charge accumulation along the boundaries
of a micrometer-wide strip. This charge inhomogeneity is especially important in the quantum Hall regime,
where we predict the doubling of the number of edge states and the coexistence of two different types of such
states. Applications to graphene-based nanoelectronics are discussed.
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Graphene, which is a monolayer of carbon atoms with a
honeycomb lattice structure, has been attracting a lot of in-
terest since 2005 when the first transport measurements in
this material were reported.1–3 The interest in two-
dimensional electron gases in graphene originates from the
Dirac-type spectrum of low-energy quasiparticles.4 Several
prominent phenomena have been experimentally and theo-
retically investigated in this “relativistic” system, including
quantum Hall effect �QH�,5,6 weak localization, and other
effects of disorder,7,8 superconducting proximity effects,9–12

etc.
In the experiments,1–3 mechanically exfoliated graphene

samples were separated from the metallic gate by a b
�0.3 �m wide insulating layer �SiO2�. The width of the
insulator is dictated by the necessity to optically identify the
single-layer graphene. In the undoped graphene �half-filling�,
the charge of the conduction electrons is compensated by the
charge of the carbon ions forming the lattice. By applying a
large �Vg�100 V� voltage Vg to the lower gate, one induces
a considerable �ne /Vg�7.2�1010 cm−2 /V� �Ref. 1� uncom-
pensated charge e�ne in the graphene plane. This extra
charge is screened by “image charges” induced in the metal-
lic gate. However, since the images are located 0.6 �m be-
low graphene, such a screening becomes effective only in the
central region of several micron large graphene samples. As
a result, the charge distribution cannot be homogeneous.

In this paper, we analytically calculate the charge distri-
bution in the graphene strip and demonstrate a strong in-
crease in the charge density near the strip edges �numerically,
a charge accumulation near the edges was seen in Ref. 13�.
For a gate voltage of �10 V, the distance between the excess
electrons in the sheet is of the order of �10 nm. This means
that for the 0.1–1 �m wide strips, one may speak of a con-
tinuous charge distribution and determine the latter by mini-
mizing the electrostatic energy of the electrons. In semicon-
ductor heterostructures, the electron redistribution has been
discussed in the context of compressible or incompressible
QH stripes formation.14 However, in that case, electrons
were confined by a smooth potential, which resulted in a
continuous charge density profile at the edge. As we will see,
at the sharp graphene edge, the charge develops a 1 /�x sin-
gularity.

The charge inhomogeneity discussed in the present paper

develops at the scale �0.1 �m. So this is a macroscopic
effect that should have clear experimental consequences. The
distribution of classical excess charges found below is valid
for any metallic strip. However, only in graphene does the
excess charge density coincide with the carrier density and
directly determine the Fermi momentum, pF��ne. The
charge accumulation at the graphene boundaries is especially
important for the quantum Hall effect, where we predict the
coexistence of two types of edge states.14–16 The strong de-
pendence of the charge density on the strip width may have
interesting nanoelectronic applications, which are discussed
at the end of the paper.

The electrostatic potential created by the charge located
on the surface of the insulator, both above and inside, is
given by17

� =
2

1 + �

e

�R�
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where the dielectric constant �SiO2
=3.9. In order to describe

the potential created by the charge placed on a dielectric
layer �−b�y�0� with a metallic gate attached underneath
�y�−b�, one has to consider the potentials of a string of
image charges, as illustrated in Fig. 1. �We reserve the coor-
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FIG. 1. �Color online� Considered experimental setup. Charges
�doped graphene strip� are placed on the surface �y=0� of a 0.3 �m
thick insulating layer �SiO2, dielectric constant �=3.9� above the
metallic �n+Si� gate. Image charges �charged strips� are shown
above and below the graphene plane.
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dinates x and z for the graphene plane or the surface of the
insulator.� Two different expressions describe now the poten-
tial inside the insulator, at −b�y�0,

� = 	
n=0

	
2e
n

1 + �

 1

�R − 2nb�
−

1

�R + 2nb + 2b�� , �2�

and above it, at y�0,
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Here, 
= �1−�� / �1+��, and the vector b, �b�=b is directed
along the y axis, perpendicular to the graphene plane. One
may easily show that the potential Eqs. �2� and �3� satisfy the
boundary conditions �1=�2 and �1��1 /�y=�2��2 /�y at the
surface of the insulator �y=0� and Eq. �2� gives �=const
=0 at the metallic surface �y=−b�. Figure 2 shows the in-
plane potential found from these formulas. This potential de-
scribes the electron interaction in mechanically exfoliated
graphene.

Let us consider now a narrow graphene strip with the
width 2a, such that a�b, directed in the x ,z plane along the
z axis. Since the charge is distributed uniformly along the
strip, the potential both inside and above the insulating SiO2
may be obtained from the real part of a holomorphic function
w�Z� as �=Re w�Z�, Z=x+ iy, w�Z��0. In particular, the
function

�0 =
4�

1 + �
L�x + iy�, L�Z� = Re ln

Z − �Z2 − a2

a
�4�

is a solution of the Poisson equation �0=−4��0 with the
charge density

�0 =
�

�

��y�
�a2 − x2

, �5�

where ��y� is the delta function and � is the charge per unit
length of the strip. The factor 2 / �1+�� in Eqs. �1� and �4�

accounts for the polarization of the dielectric substrate. The
function �0 �Eq. �5�� is the equilibrium charge distribution,
since the potential �0 is constant in the strip, ��0 at −a
�x�a ,y=0 �Eq. �4��. The inverse square root edge singu-
larity in Eq. �5�, ��1 /�x−a, drastically differs from the
square root density profile ���x at the soft-wall edge in the
conventional heterostructures.14

Straightforward generalization of Eq. �2� gives the poten-
tial inside the insulating layer sandwiched between the me-
tallic gate and narrow �a�b� graphene strip as follows:

� = 	
n=0

	
4�
n

1 + �
�L�Z − 2inb� − L„Z + 2i�n + 1�b…� . �6�

Equations �5� and �6� are the central result in this paper,
which describe the charge and potential distributions in the
narrow mechanically exfoliated graphene strip. Below, we
show that these results remain quantitatively accurate even
for sufficiently wide strips when a�b.

After the image charges are added, the potential on a strip
acquires a small, ��a /b�2, coordinate dependent correction.
From Eq. �6� at y=0, −a�x�a, we find

��x,0� =
4�

� + 1
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where C0=	n=2
	 2�

1−�
n ln n and C2=	n=1
	 �

1−�
nn−2. For �=3.9,
we found C0�−0.31 and C2�0.175.

The coordinate dependence of the potential Eqs. �6� and
�7� on the metallic strip should be compensated by a proper
charge redistribution. Since ��x� �Eq. �7�� increases toward
the edges, one should transfer some charges from the bound-
aries to the strip center. To find the equilibrium distribution
for finite a /b, we add a series of “multipole” corrections to
the potential �0 �Eq. �4��,18

� = �0 + 	
n=1
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2��Z − �Z2 − a2� j

�1 + ��aj . �8�

The same corrections should be added to all image strip po-
tentials in Eq. �6�. Corresponding corrections to the charge
density �Eq. �5�� are
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For example, �2= �2x2 /a2−1��0. Still the singularity �
�1 /�x−a at the edge is generic for any strip width.

To compensate for the �x2 term in Eq. �7�, it is enough to
consider the first correction only, �2=−0.175�a /b�2. This al-
lows us to approximate the equilibrium distribution ��x�
=const with the accuracy better than 0.2% for a�0.5b �strip
width 2a�0.3 �m�. A simple formula �both Vg and � have
the dimensionality charge/distance�

Vg = ��0.82 ln�b/a� + 0.88 + 0.29�a/b�2� �10�

relates, in this case, the linear charge density � in the narrow
strip to the applied gate voltage.

An appropriate fit with only two parameters ��2 ,�4�0�
allows us to reach ��x��const on the strip, with the accu-
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FIG. 2. Screening of the electron potential on the surface of the
insulator ��=3.9�, as described by Eqs. �2� and �3�. The solid line
shows the screened potential; the upper dashed line is the potential
of the charge on the surface without image charges �Eq. �1�� and the
lower dashed line stands for the separate contribution due to image
charges. We measure all distances in units of the width of the insu-
lating layer, b=0.3 �m, which is fixed in the experiment. For the
in-plane distance r=�x2+z2�b, we have ��2b2e /�2r3.
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racy �0.5% even for a=5b �strip width 2a=3 �m�. Re-
markably, even for such a wide strip, the amplitude of the
1 /�x singularity is reduced only by a factor of 0.55 as com-
pared to the simple formula �Eq. �5��. Figure 3 shows the
results of the single parameter fit ��2�0� for a=b.

The classical charge equilibration condition, which is ap-
plicable for any metallic strip, allows us to find the inhomo-
geneous electron density �Eqs. �5� and �9��, but leads to the
constant potential in plane. A nontrivial graphene-specific
potential profile across the strip appears due to quantum ef-
fects. The quantum dynamics of electrons in graphene is de-
scribed by the Dirac equation

�vF��xpx � �ypy� + U�x���� = ���, �11�

where �x,y are the Pauli matrices interchanging the sublattice
index on the honeycomb lattice. �Strictly speaking, we
should write here ��xpx��ypz�, since we use coordinates x ,z
for the graphene plane, not x ,y used usually in the literature.�
The two signs � correspond to two valleys in graphene, and
�� are envelope functions. Solutions of Eq. �11� are double
degenerate due to spin, and vF�108 cm /s. The Pauli prin-
ciple prevents all uncompensated electrons in the strip from
having the same zero momentum �p=0� as was assumed in
the electrostatic solution �Eq. �5��. To account for the coor-
dinate dependent electron density, we introduced in Eq. �11�
a potential U�x��0, while keeping the zero Fermi energy
�EF�0�. For a large charge density, the potential U�x� varies
slowly on the scale of the wavelength �, which allows us to
introduce the local Fermi momentum pF=� /�F= �U�x�� /vF.
The density of electrons can be found in the Thomas-Fermi
approximation as

ne = 4�
�p��pF

d2p

�2���2 =
1

�

U�x�

�vF
�2

. �12�

The two-dimensional density of electrons ne is related to the
three-dimensional charge density used in Eqs. �5� and �9� as

�=ene��y�. Thus, for a narrow strip �a�b�, we find the fol-
lowing from Eqs. �5� and �12�:

U�x� = − �vF
��/e�a2 − x2�−1/4. �13�

For the gate voltage Vg=100 V and the strip width 2a
=0.6 �m, we estimate U�0�=−0.335 eV. This quantum
�U�x���� correction to the electrostatic potential on the strip
locally describes the position of the Dirac crossing point with
respect to Fermi energy.

The semiclassical approximation used here is justified
provided �d�F /dx��1. Thus, we may use Eqs. �5� and �13�
only at distances �x�a1/3�e /��2/3 from the strip edge. At
�x�a1/3�e /��2/3, the singular increase in both the density
�Eq. �5�� and the potential �Eq. �13�� is stopped in a way that
is dependent on the details of the graphene edge. In particu-
lar, the maximal value of the density is nmax=const
� ��2 /e2a�2/3 with const�1 depending on the type of the
edge.

Experimentally, the conductivity � of graphene increases
linearly with the gate voltage.1–3 This implies ��vFpF���.
The increase in the carrier density near the edges of the strip
should lead to an inhomogeneous current density distribu-
tion, j�x�����x�. The presence of a �moderately strong� dis-
order should not change the density distribution in the strip.

The nonmonotonic charge distribution across the
graphene strip19 should be particularly important in the QH
regime when the electron transport is due to the existence of
edge states.15 The charge density in this case is roughly given
again by Eq. �5�, with the 1 /�x edge singularity smoothed at
the distances �lB=��c /eB. The number of occupied Landau
levels as a function of the transverse coordinate x first in-
creases almost abruptly �at the length �lB� at the strip edge
and then decreases toward the strip center �length scale �a�.
This leads to the formation of a double set of QH edge states,
which have a very different microscopic nature �see Fig. 4�.
At the graphene edge, one may effectively neglect the elec-
tron interaction and consider the QH edge states formed by
the last occupied electron state on the nth branch of solutions
of a single-particle Dirac equation En�x0� �the nth Landau
level�.15,16 This is an adequate description of the outer edge
states in graphene.6 Away from the boundaries, the electron
repulsion transforms the narrow ��lB� edge states into the
wide compressible stripes with a macroscopic number of
electrons that have similar energies, Ueff�x�=const. These
compressible stripes alternate with the incompressible ones
that have a constant electron density, ne�x�=const.14

The energy of the Nth Landau level in graphene is5

E � �NE0, E0 = �vF
�2eB/�c . �14�

There is a series of such levels for each spin and valley
component. So, we find the number of occupied Landau lev-
els at a given point in a strip

N�x� = �U�x�/E0�2 = nehc/4eB . �15�

This formula shows the smoothed number of occupied Lan-
dau levels for N�x��1. Going beyond this approximation
reveals the compressible and incompressible striped QH
states shown in Fig. 4. The picture is schematic since the
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FIG. 3. Potential �thick lines� and density �thin lines� across the
strip of width 2a=2b=0.6 �m. The dashed lines show the curves
for the density �0 �Eq. �5�� and the solid ones for the density �
=�0−0.12�2 �Eq. �8��. At the plateau, one has ��x��0.99�. A gate
voltage Vg=100 V creates in such a strip an averaged electron den-
sity �n�=11.6�1012 cm−2 and the minimal density n�0�=8.25
�1012 cm−2, while an infinite graphene plane gives n	=7.2
�1012 cm−2 �Ref. 1�. Semiclassical approximation used for the
density calculation breaks at the distance �x /b�0.05�V /Vg�2/3

from the boundary.
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details of compressible or incompressible stripes are not de-
scribed by the smooth Eq. �15�. �Still this may be done elec-
trostatically, see Ref. 14; in the regions there, dU /dx
�E0 / lB.� The form of the density close to the edge ��x
� lB� as well as the physics of outer edge states6,20 depend on
the form of the graphene edge. Nevertheless, we may say
that the lower gate voltage Vg�5 V should be sufficient to
create several edge states of both kinds for the strip width
2a�0.6 �m.

Each QH edge channel supports the electric current flow-
ing only in one direction. For the appropriate sign of the bias
voltage V, the channel may carry the current j=e2V /h. Since
electrons belonging to inner and outer QH edge channels
drift in opposite directions, corresponding currents have a
tendency to compensate for each other. In Fig. 5, we suggest
a simple five-terminal device, which would allow one to
measure separately the currents carried by the outer and in-
ner channels.21 The QH effect in such a setup would be seen

at parametrically smaller values of the gate voltage than in
the existing experiments.2,3

A striking consequence of the result �Eq. �7�� �see also
Ref. 13� for the strip potential is that for a�b, the in-plane
charge density is inversely proportional to the strip width.
�The linear density of charge �=���x�dx depends only loga-
rithmically on the strip width �Eq. �10��, hence ��x��1 /a.�
This offers a possibility of creating lakes of a large charge
density, quantum dots �QDs�, by cutting narrow constrictions
in the graphene strip. Examples of such devices are shown in
Fig. 6. This semimechanical way of confining electrons �po-
tentials that appear due to the narrowing of the strip lead to
the longitudinal confinement� may be complementary to the
pure electrical way of fabricating QDs in graphene.22–24

Without the electric field doping �Vg=0�, graphene be-
haves as a hole metal.1 The shift of the Fermi energy away
from the Dirac crossing point is attributed to an unintentional
doping of the film by absorbed water. It is compensated by
the application of a sufficient lower gate voltage ��40 eV
�Ref. 1��. However, as we have shown, the gate-induced
charging is nonuniform, and it is impossible to reach the
Dirac point simultaneously in the whole sample by varying
Vg. This charge distribution evolves differently for Vg below
and above the value corresponding to the strip minimum
conductivity �for example, the local crossing of the Fermi
energy by the Dirac point is shifted toward the center or the
boundary of the strip�. This may explain the asymmetry in
the I-V characteristics of graphene �observed, e.g., in Ref.
12�.

In conclusion, in this paper, we predict and describe the
macroscopic charge accumulation along the boundaries of
graphene strips, which are made up of experimentally used
mechanically exfoliated films, for moderately ��10 V�
lower gate voltages. Information about the local Fermi mo-
mentum and charge density �pF��ne� may be extracted from
the scanning tunneling microscope measurements of the den-
sity of states in graphene.25 The average charge density ���
=� /2a for a given gate voltage also strongly increases for
narrow strips ��0.5 �m� as described by Eq. �10�. Transport
in graphene would be especially sensitive to the predicted
charge accumulation in the experiments2,3 in the QH regime,
where the two kinds of edge states14–16 should coexist in the
same sample. The experimental setup capable of measuring
currents carried by different edge states is suggested �Fig. 5�.

This work was supported by the SFB TR 12. Discussions
with A. F. Volkov and M. V. Fistul are greatly appreciated.
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FIG. 4. Schematic charge distribution ��x� in units of 1011 cm−2

in the QH regime for a strip width 2a=2b=0.6 �m, B=10 T, and
Vg=5 V �thick solid line�. The �1 /�x increase in density at the
edge is stopped at x� lB=��c /eB�8 nm. The short-dashed line
shows the electrostatic solution, which is the same as in Fig. 2. We
assume valley-degenerate Landau levels and choose the Zeeman
splitting EZeeman=0.25E0 �Ref. 6�. Lower dashed curves show the
effective potential for different Landau levels Ueff�x�=U�x�
+�NE0�EZeeman �in units of 0.2 eV�. All electronic states with
Ueff�0 ��0� are occupied �empty�. Regions with Ueff=0 corre-
spond to partially occupied Landau levels �compressible stripes�.
The figure shows the coexistence of two types of edge states: com-
pressible stripes in the center and usual noninteracting edge states at
the borders.
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FIG. 5. �Color online� Five-terminal device for measuring sepa-
rately the Hall currents in inner and outer edge states. Only the
current carrying channels are shown. The two currents cancel each
other in gate 2, while the split gates 4 and 5 each measure the
current due to several inner or outer states.
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FIG. 6. �Color online� Creation of quantum dots via the charge
accumulation in narrow constrictions: �a� single QD, �b� double
�parallel� QDs, and �c� side coupled QD. Shaded areas show the
lakes of large electron density. A constriction in biased graphene
strip works not as a quantum point contact but as a QD.
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