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We propose experiments to observe Bose-Einstein condensation and superfluidity of quasi-two-dimensional
spatially indirect magnetoexcitons in two-layer graphene. The energy spectrum of collective excitations, the
sound spectrum, and the effective magnetic mass of magnetoexcitons are presented in the strong magnetic field
regime. The superfluid density nS and the temperature of the Kosterlitz-Thouless phase transition Tc are shown
to be increasing functions of the excitonic density n but decreasing functions of B and the interlayer separation
D.
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I. INTRODUCTION

Indirect exciton in coupled quantum wells �CQWs� in the
presence or absence of a magnetic field B have been the
subject of recent experimental investigations.1–4 These sys-
tems are of particular interest because of the possibility of
Bose-Einstein condensation �BEC� and the superfluidity of
indirect exciton formed from electron-hole �e-h� pairs. These
may result in persistent electrical currents in each quantum
well �QW� or coherent optical properties and Josephson
junction phenomena.5–12 In high magnetic fields, two-
dimensional �2D� exciton survive in a substantially wider
temperature range, as the exciton binding energies increase
with magnetic field.13–19

In this paper, we consider physical realizations of 2D
magnetoexcitonic BEC and superfluidity in two spatially
separated graphene layers in high magnetic field �Fig. 1�.
Recent technological advances have allowed the production
of graphene, which is a 2D honeycomb lattice of carbon
atoms that form the basic planar structure in graphite.20,21

Graphene has been attracting a great deal of experimental
and theoretical attention because of unusual properties in its
band structure.22–28 It is a gapless semiconductor with mass-
less electrons and holes, which have been described as Dirac
fermions.23 Since there is no gap between the conduction and
valence bands in graphene without magnetic field, the
screening effects result in the absence of exciton in graphene
in the absence of magnetic field. A strong magnetic field
produces a gap since the energy spectrum becomes discrete
formed by Landau levels. The gap reduces screening and
leads to the formation of magnetoexcitons.

We consider two parallel graphene layers separated by an
insulating slab �e.g., SiO2�. The equilibrium system of local
pairs of spatially separated electrons and holes can be created
by varying the chemical potential by using a bias voltage
between two graphene layers or between two gates located
near the corresponding graphene sheets �case 1� �for simplic-
ity, we also call these equilibrium local e-h pairs as indirect
magnetoexcitons�. In case 1, a magnetoexciton is formed by
an electron on the Landau level 1 and hole on the Landau

level −1. Magnetoexcitons with spatially separated electrons
and holes can be created also by laser pumping �far infrared
in graphene� �case 2� and by applying perpendicular electric
field as for CQWs.1–3 In case 2, a magnetoexciton is formed
by an electron on the Landau level 1 and hole on the Landau
level 0. We assume the system is in quasiequilibrium state.
Below, we assume the low-density regime for magnetoexci-
tons, i.e., magnetoexciton radius a�n−1/2, where n is the 2D
magnetoexciton density.

The paper is organized in the following way. In Sec. II,
we represent the eigenfunctions and eigenvalues of the Dirac
Hamiltonian for an isolated electron-hole pair without the
Coulomb interaction. In Sec. III, the spectrum of isolated
indirect magnetoexciton with the spatially separated electron
and hole in bilayer graphene is derived applying the pertur-
bation theory respect to Coulomb electron-hole attraction. In
Sec. IV, the sound spectrum of collective excitations in
weakly interacting gas of magnetoexcitons with dipole-
dipole repulsion in bilayer graphene is calculated in the lad-
der approximation. In Sec. V, the phase transition in the su-
perfluid liquid of magnetoexcitons is analyzed in bilayer
graphene. In Sec. VI, we discuss our results.

II. ISOLATED ELECTRON-HOLE PAIR WITHOUT THE
COULOMB INTERACTION

We consider two parallel graphene layers separated by an
insulating slab of SiO2. The spatial separation of electrons
and holes in different graphene layers can be achieved by

-

+h

e

B

SiO2 SiO2

gate

gate

graphene

FIG. 1. The indirect magnetoexciton in bilayer graphene in per-
pendicular magnetic field B.
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applying an external electric field. Furthermore, the spatially
separated electrons and holes can be created by varying the
chemical potential by using a bias voltage between two
graphene layers or between two gates located near the corre-
sponding graphene sheets. Indirect magnetoexcitons are
bound states of spatially separated electrons and holes in an
external magnetic field. The ratio of the external voltage Vext
to the interlayer separation D required to create spatially
separated electrons and holes in graphene layers with
the 2D density n=1011 cm−2 is given by Vext /D=4�enD /�b
=4.021�104 V /cm. Here, −e is the electron charge and �b
=4.5 is the dielectric constant of SiO2. Since the critical
electric field Ecr of the dielectric breakdown for SiO2 is
Ecr�106 V /cm, we conclude that the external electric field
for the spatially separated electrons and holes is less than the
critical electric field for dielectric breakdown in SiO2.

The contributions to the single-electron Hamiltonian from
the Zeeman splitting and very small pseudospin splitting
�caused by two valleys in graphene� set identically to zero.29

The 2D Hamiltonian of an isolated electron-hole pair in bi-
layer graphene with spatially separated electrons �e� and
holes �h� in one valley in magnetic field B neglecting the
Coulomb interaction is given by29

Ĥ = vF�
0 px

�e� + ipy
�e� 0 0

px
�e� − ipy

�e� 0 0 0

0 0 0 px
�h� − ipy

�h�

0 0 px
�h� + ipy

�h� 0
� ,

�1�

where

p�e� = − i��e +
e

c
Ae, p�h� = − i��h −

e

c
Ah, �2�

where e is an electron charge, c is the speed of light, re and
rh are 2D vectors of coordinates of electron and hole, respec-
tively, Ae and Ah are the vector potential of electron and
hole, respectively, and vF=�3at / �2�� is the Fermi velocity
of electrons in graphene �a=2.566 Å is a lattice constant and
t�2.71 eV is the overlap integral between the nearest car-
bon atoms�.30

A conserved quantity for an isolated electron-hole pair in

magnetic field B �the exciton magnetic momentum� P̂
is13,15,31

P̂ = − i��e − i��h +
e

c
�Ae − Ah� −

e

c
�B � �re − rh�� . �3�

The conservation of this quantity is related to the invariance
of the system upon a simultaneous translation of e and h and
gauge transformation. The cylindrical gauge for vector po-
tential is used: Ae�h�=1 /2�B�re�h��.

The eigenfunction of the Hamiltonian �Eq. �1�� of the
two-dimensional electron-hole pair �� in the perpendicular
magnetic field B, which is also the eigenfunction of the mag-

netic momentum P̂ has the form13,15,31

�P�R,r� = exp	i
P +
e

2c
�B � r��R

�
��̃�r − 	0� , �4�

where R= �re+rh� /2, and r=re−rh, and 	0=c�B�P� / �eB2�.
The wave function of the relative coordinate �̃�r� can be

expressed in terms of the two-dimensional harmonic oscilla-
tor eigenfunctions �n1,n2

�r�. For an electron in Landau level
n+ and a hole in level n−, the four-component wave functions
for the relative coordinate are29

�̃n+,n−
�r� = ��2�
n+,0+
n−,0−2�

s+s−�
n+
−1,
n−
−1�r�

s+�
n+
−1,
n−
�r�

s−�
n+
,
n−
−1�r�

�
n+
,
n−
�r� ,
� , �5�

where s�=sgn�n��. The corresponding energy of the
electron-hole pair En+,n−

�0� �which is the eigenvalue of the
Hamiltonian �Eq. �1��� is given by29

En+,n−

�0� =
�vF

rB

�2�sgn�n+��
n+
 − sgn�n−��
n−
� , �6�

where rB=�c� / �eB� is a magnetic length and vF
=�3at / �2�� is the Fermi velocity of electrons in graphene
�a=2.566 Å is a lattice constant and t�2.71eV is the overlap
integral between the nearest carbon atoms�.30 The two-
dimensional harmonic oscillator wave functions eigenfunc-
tions �n1,n2

�r� are given by29

�n1,n2
�r� = �2��−1/22−
m
/2 ñ!

�n1!n2!

1

rB
sgn�m�mr
m


rB

m


�exp	− im� −
r2

4rB
2 �Lñ


m

 r2

2rB
2 � , �7�

where Lñ

m
 denotes Laguerre polynomials, m=n1−n2,

ñ=min�n1 ,n2�, and sgn�m�m=1 for m=0.

III. ISOLATED INDIRECT MAGNETOEXCITON

In high magnetic field, the magnetoexciton energy can be
calculated by applying the perturbation theory respect to
Coulomb electron-hole attraction analogously to 2D quan-
tum wells with nonzero electron and hole masses �me�0 and
mh�0�.13 This approach allows us to derive the spectrum of
isolated indirect magnetoexciton with the spatially separated
electron and hole in bilayer graphene. For bilayer graphene,
this perturbation theory is valid only for the relatively large
separation D between electron and hole graphene layers
and relatively high magnetic fields B �at D
rB� when
e2 / ��D���vF /rB. Here, e2 / ��D� is the characteristic Cou-
lomb electron-hole attraction for the graphene bilayer and
�vF /rB is the energy difference between the first and zeroth
Landau levels in graphene. The operator of electron-hole
Coulomb attraction is
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V̂�r� = −
e2

��r2 + D2
, �8�

where � is the dielectric constant of the insulator �SiO2� be-
tween electron and hole graphene layers and D is the sepa-
ration between electron and hole graphene layers.

The magnetoexciton energies En+,n−
�P� in the first order

perturbation are equal to

En+,n−
�P� = En+,n−

�0� + En+,n−
�P� , �9�

where En+,n−

�0� is the unperturbed spectrum given by Eq. �6�
and

En+,n−
�P� = − �n+n−P� e2

��D2 + �re − rh�2�n+n−P� .

�10�

For case 1, we calculate the magnetoexciton energy by
using the expectation value for an electron in Landau level 1
and a hole in level 1.

In high magnetic field, the magnetoexciton is constructed
by electron and hole on the lowest Landau level with the
following four-component wave function of the relative co-
ordinate,

�̃1,1�r� =
1

2�
�0,0�r�
�0,1�r�
�1,0�r�
�1,1�r�

� . �11�

Neglecting the transitions between different Landau levels,
the first order perturbation respect to Coulomb attraction re-
sults in the following expression for the energy of magne-
toexciton:

E1,1�P� = E1,1�P� = − �1,1,P� e2

��D2 + �re − rh�2�1,1,P� .

�12�

Denoting the averaging by the two-dimensional harmonic
oscillator eigenfunctions �n1,n2

�r� �Eq. �7�� as
��ñmP
¯ 
ñmP�� �ñ and m are defined below, Eq. �7��, we
get the energy of an indirect magnetoexciton created by the
spatially separated electron and hole on the lowest Landau
level,

E1,1�P� = �1,1,P
V̂�r�
1,1,P�

= ��0,0,P
V̂�r�
0,0,P�� + ��0,1,P
V̂�r�
0,1,P��

+ ��0,1,P
V̂�r�
0,1,P�� + ��1,0,P
V̂�r�
1,0,P�� .

�13�

Substituting for small magnetic momenta P�� /rB and P
��D /rB

2 the following relations:17

��ñmP
V̂�r�
ñmP�� = Eñm
�b� +

P2

2Mñm�B,D�
�14�

into Eq. �13�, we get the dispersion law of a magnetoexciton
for small magnetic momenta,

E1,1�P� = E00
�b��B,D� + 2E01

�b��B,D� + E10
�b��B,D�

+ 
 1

M00�B,D�
+

2

M01�B,D�
+

1

M10�B,D��P2

2

= EB
�b��D� +

P2

2mB�D�
, �15�

where the binding energy EB
�b��D� and the effective magnetic

mass mB�D� of a magnetoexciton with spatially separated
electron and hole in bilayer graphene are

EB
�b��D� = E00

�b��B,D� + 2E01
�b��B,D� + E10

�b��B,D� ,

1

mB�D�
=

1

M00�B,D�
+

2

M01�B,D�
+

1

M10�B,D�
, �16�

where constants E00
�b��B ,D�, E01

�b��B ,D�, E10
�b��B ,D�, M00�B ,D�,

M01�B ,D�, and M10�B ,D� depending on magnetic field B
and the interlayer separation D are given in Ref. 17,

E00
�b��B,D� = − E0 exp	 D2

2rB
2 �erfc	 D

�2rB
� ,

E01
�b��B,D� = − E0	
1

2
−

D2

2rB
2 �exp	 D2

2rB
2 �erfc	 D

�2rB
�

+
D

�2�rB
� ,

E10
�b��B,D� = − E0	
3

4
+

D2

2rB
2 +

D4

4rB
4 �exp	 D2

2rB
2 �erfc	 D

�2rB
�

−
D

2�2�rB

− 
 D
�2rB

�3 1
��

� ,

M00�B,D� = M0	
1 +
D2

rB
2 �exp	 D2

2rB
2 �erfc	 D

�2rB
�

−� 2

�

D

rB
�−1

,

M01�B,D� = M0	
3 +
D2

rB
2 � D

�2�rB

− 
1

2
+ 2

D2

rB
2

+
D4

2rB
4 �exp	 D2

2rB
2 �erfc	 D

�2rB
��−1

,
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M10�B,D� = M0	1

4

7 + 25

D2

rB
2 + 11

D4

rB
4 +

D6

rB
6 �

�exp	 D2

2rB
2 �erfc	 D

�2rB
�

− 
17

2
+ 5

D2

rB
2 +

D4

2rB
4 � D

�2�rB
�−1

, �17�

where constants E0 and M0 and function erfc�z� are defined
as17

E0 = ��00P� e2

�
r

�00P��

P=0

=
e2

�rB
��

2
,

M0 = − 	2
��00P� e2

�
r

�00P�� − E0��−1

P2 =
23/2��2

��e2rB

,

erfc�z� =
2

��
�

z

+�

exp�− t2�dt . �18�

For case 2, we calculate the magnetoexciton energy by
using the expectation value for an electron in Landau level 1
and a hole in level 0. We have E1,0�P�
= �0,0 ,P
V̂�r�
0,0 ,P�+ �0,1 ,P
V̂�r�
0,1 ,P�.

Since below we will be interested in the description of
magnetoexcitonic gas as a 2D dilute gas of weakly interact-
ing bosons with pair dipole-dipole repulsion, we consider
bilayer graphene structure with relatively large interlayer
separation D
rB with the corresponding magnetoexcitonic
binding energy EB

�b��D� and effective magnetic mass mB�D�
defined according to Eq. �15� by using the following con-
stants:

Eñm
�b��B,D� = −

e2

�D

1 −

lñm
2

2D2� ,

Mñm�B,D� =
��

23/2
D3

rB
3 M0
1 −

3lñm
2

2D2�−1

, �19�

where lñm
2 = ��ñmP
r2̂
ñmP��P=0 and �l00

2 =2rB
2 , l01

2 =4rB
2 ,

l10
2 =6rB

2�. The 2D radius of magnetoexciton on the lowest
Landau level for the case 1 is given by

r1,1
2 �P = 0� = �1,1,P
r2
1,1,P�P=0 = l00

2 + 2l01
2 + l10

2 = 16rB
2 ,

r1,1 = 4rB. �20�

Substitution Eq. �19� into Eq. �16� gives the binding energy
EB

�b��D� and the effective magnetic mass mB�D� of the indi-
rect magnetoexciton for the case 1 at D
rB in bilayer
graphene in high magnetic field,

EB
�b��B,D� = −

e2

�D

4 −

l00
2 + 2l01

2 + l10
2

2D2 � = −
4e2

�D

1 −

2rB
2

D2 � ,

mB�D� =
��

23/2
D3

rB
3 M0
4 −

3�l00
2 + 2l01

2 + l10
2 �

2D2 �−1

=
1

8
��

2

D3

rB
3 M0
1 −

6rB
2

D2 �−1

=
�2�D3

4e2rB
4 
1 −

6rB
2

D2 �−1

.

�21�

In the limit of very large interlayer separation D
rB for case
1, the asymptotical values of the binding energy EB

�b��D� and
the effective magnetic mass mB�D� of an indirect magnetoex-
citon in bilayer graphene are

EB
�b��B,D� = −

4e2

�D
, mB�D� =

�

4c2D3B2. �22�

We can see that the effective magnetic mass of indirect mag-
netoexciton is approximately four times lower in bilayer
graphene than in CQWs at the same D, �, and B �compare
Eq. �22� to Ref. 17�. The magnetoexcitonic energy is ap-
proximately four times higher in bilayer graphene than in
CQWs at the same D, �, and B.

Counting energy from the binding energy of magnetoex-
citon, the dispersion relation �k�P� of isolated magnetoexci-
ton is a quadratic function at small magnetic momenta
P�� /rB and P��D /rB

2 ,

�k�P� =
P2

2mBk
, �23�

where mBk is the effective magnetic mass, which dependent
on B and the distance D between electron and hole layers
and quantum number k �where k= �n+ ,n−� are the magne-
toexcitonic quantum numbers�.

By using the Feynman theorem �we denote �Pk
¯ 
Pk� as
�¯��, one can obtain for isolated magnetoexciton velocity v
the following expression:31

v = �v̂� =� �Ĥ

�P
� =

��k�P�
�P

=
P

mBk
. �24�

In the limit of large excitonic magnetic momenta
P
� /rB and P
�D /rB

2 substituting the following
relations:17

��ñmP
V̂�r�
ñmP�� = −
�e2

�PrB
2	1 − 
D2 −

lñm
2

2
� �2

2rB
4 P2�

�25�

into Eq. �13�, we obtain the asymptotic of the magnetoexci-
tonic dispersion law at large magnetic momenta,

E1,1�P� = −
�e2

�PrB
2 	4 − 
4D2 −

l00
2 + 2l01

2 + l10
2

2
� �2

2rB
4 P2�

= −
4�e2

�PrB
2 	1 − �D2 − 2rB

2�
�2

2rB
4 P2� . �26�
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Analogously to case 1, for case 2, by applying E1,1�P�
instead of E1,0�P� in Eq. �13�, we obtain the binding energy
EB

�b��D� and the effective magnetic mass mB�D� of a magne-
toexciton with spatially separated electron and hole in two-
layer graphene as EB

�b��D�=E00
�b��B ,D�+E01

�b��B ,D� and
mB

−1�D�=M00
−1�B ,D�+M01

−1�B ,D�. The radius of a magnetoex-
citon in the lowest Landau level is given by r1,0�B�=�6rB.

For case 1 for large interlayer separation D
rB, the
asymptotic values of the binding energy EB

�b��D� and the ef-
fective magnetic mass mB�D� are EB

�b��B ,D�=−4e2 / ��bD�,
and mB�D�=�bD3B2 / �4c2�. When D�rB, these quantities de-
noted by E0 and M0 are presented above. We can see that the
effective magnetic mass of an indirect magnetoexciton is ap-
proximately four times smaller than in CQWs at the same D,
�b, and B.17 The magnetoexcitonic energy is approximately
four times larger in two-layer graphene than in CQWs. For
case 2 for large interlayer separation D
rB, the asymptotic
values of the binding energy EB

�b��D� and the effective mag-
netic mass mB�D� are EB

�b��B ,D�=−2e2 / ��bD� and mB�D�
=�bD3B2 / �2c2�. For case 2, we can see that the effective
magnetic mass of an indirect magnetoexciton is approxi-
mately two times smaller than in CQWs at the same D, �b,
and B.17 The magnetoexcitonic energy is approximately two
times larger in two-layer graphene than in CQWs.

IV. COLLECTIVE PROPERTIES OF DIPOLE
MAGNETOEXCITONS IN BILAYER GRAPHENE

Due to interlayer separation D indirect magnetoexcitons
both in ground state and in excited states have electrical di-
pole moments. We suppose that indirect exciton interact as
parallel dipoles. This is valid, when D is larger than the
mean separation �r� between electron and hole along
graphene layers D
 �r�. We take into account that at high
magnetic fields �r�� PrB

2 /� ��r� is normal to P� and that the
typical value of magnetic momenta �with exactness to loga-
rithm of the exciton density, log�n�, see below� is P���n,
where n is two-dimensional density of magnetoexcitons. So,
the inequality D
 �r� is valid at D
�nrB

2 .
Since electrons on a graphene lattice can be in two val-

leys, there are four types of exciton in bilayer graphene. Due
to the fact that all these types of exciton have identical en-
velope wave functions and energies,29 we consider below
only exciton in one valley. Also, we use n0=n / �4s� as the
density of exciton in one layer, with n denoting the total
density of exciton and s is the spin degeneracy �equal to 4 for
magnetoexcitons in bilayer graphene�.

The distinction between exciton and bosons manifests it-
self in exchange effects.11,12,32,33 These effects for exciton
with spatially separated e and h in a dilute system
na2�B ,D��1 are suppressed due to the negligible overlap-
ping of wave functions of two exciton on account of the
potential barrier, which is associated with the dipole-dipole
repulsion of indirect exciton11 �here, a�B ,D� is the magne-
toexciton radius along graphene layers�. Two indirect exciton
in a dilute system interact as U�R�=e2D2 / ��R3�, where R is
the distance between exciton dipoles along the graphene lay-
ers. Small tunneling parameter connected with this barrier is

exp	−
1

�
�

a�B,D�

r0 �2mBk
 e2D2

�R3 −
�2

2mBk
�dR� ,

where

�2 � �2 n

s log�s�4�2/�2�nmBk
2 e4D4��

is the characteristic momentum of the system �see below�
and r0= �2mBke

2D2 /�2�1/3 is the classical turning point for
the dipole-dipole interaction. In high magnetic fields, the
small parameter mentioned above has the form
exp�−2�−1�mBk�1/2eDa−1/2�B ,D��. So, at zero temperature
T=0, the dilute gas of magnetoexcitons, which is a boson
system, form the Bose-Einstein condensate.34,35 Therefore,
the system of indirect magnetoexcitons can be treated by the
diagram technique for a boson system.

In contrast to a 2D boson system in the absence of mag-
netic field,36 due to nonseparation of the relative motion of e
and h and the motion of magnetoexciton as a whole in mag-
netic fields �Eq. �4��, the Green’s functions depend on both
the external coordinates R and R� and the internal coordi-
nates r and r�.

For the dilute two-dimensional magnetoexciton system �at
na2�B ,D��1�, the summation of ladder diagrams is ad-
equate. The integral equation for vertex � in the ladder ap-
proximation is represented in Fig. 2. In the strong magnetic
fields, the representation by using as a basis of isolated mag-
netoexciton wave functions �P,n+,n−

�r ,R� given by Eq. �4� is
convenient.

We use the following approximation for the interaction
between two magnetoexcitons U�P�=U0 at P��a−1�B ,D�
and U�P�=0 at P��a−1�B ,D�. After exciton-exciton scatter-
ing, their total magnetic momentum is conserved, but mag-
netic momentum of each exciton can be changed. Since the
mean distance between e and h along graphene layers is
proportional to the magnetic momentum, the scattering is
accompanied by the exciton polarization. We consider suffi-
ciently low temperatures when magnetoexciton states with
only small magnetic momenta P�� /rB are filled. The
change of these magnetic momenta due to exciton-exciton
scattering is also negligible due to the conservation of the
total magnetic momentum. However, these small magnetic
momenta correspond to small separation between electrons
and holes along graphene layers r�rB. So, magnetoexciton
polarization due to scattering is negligible and the magne-
toexciton dipole moment keeps to be almost normal to
graphene layers d=eD, i.e., the interexciton interaction law
is not changed due to the scattering.

P2 P4 P2 P4 P2 P1+P2-P P4

P1 P3 P1 P3 P1 P P3

FIG. 2. The equation for the vertex � in the representation of
magnetic momenta P and quantum numbers n+ and n−.
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The equation for � can be solved in the strong magnetic
fields e2 / ��D���vF /rB, when the characteristic value of e-h
separation in the magnetoexciton 
�r�
 has the order of the

magnetic length rB=�c� / �eB�. The functions �̃k�P ,r� �see
Eq. �4�� are dependent on the difference �r−	0�, where 	0
= �rB

2 /B��B�P�. At small magnetic momenta P�� /rB, we
have 	0�rB, and, therefore, in functions �k�r−	0�, we can
ignore the variable 	0 compare to r. In the strong magnetic
field, quantum numbers k correspond to the quantum num-
bers �n+ ,n−� �see above�. For the lowest Landau level, we
denote for case 1 �11�P�=��P� and for case 2 �10�P�=��P�.
By using the orthonormality of the four-component wave
functions of the relative coordinate for a noninteracting pair
of an electron in Landau level n+ and a hole in level n−

��̃n+,n−
�P=0 ,r��,29 we obtain an approximate equation for

the vertex � in strong magnetic fields. Due to the orthonor-

mality of the four-component wave functions �̃n+,n−
�0 ,r�,

the projection of the equation for the vertex in the ladder
approximation for a dilute system onto the lowest Landau
level results in the scalar integral equation, which does not
reflect the spinor nature of the four-component magnetoex-
citonic wave functions in graphene. In high magnetic field,
one can ignore transitions between Landau levels and con-
sider only the lowest Landau level states in case 1 n+=n−
=1 and in the case 2 n+=1; n−=0. Since typically the value
of r is rB and P�� /rB in this approximation, the equation
for the vertex in the magnetic momentum representation P
for the lowest Landau level �for graphene layers in case 1
n+=n−=1 and in case 2 n+=1; n−=0� has the same form
�compare to Ref. 5� as for a 2D boson system in the absence
of magnetic field, but with the magnetoexciton magnetic
mass mB �which depends on B and D� instead of the exciton
mass �M =me+mB� and magnetic momentum instead of iner-
tial momentum,

��p,p�;P� = U�p − p��

+ s� d2q

�2���2

U�p − q���q,p�;P�
�2

mB
+ � −

P2

4mB
−

q2

mB
+ i


,


 → + 0,

� =
�2

2mB
= n0�0 = n0��0,0;0� , �27�

where P= �P ,�� and � is the chemical potential of the sys-
tem.

The specific feature of two-dimensional Bose system is
connected with logarithmic divergence of two-dimensional
scattering amplitude at zero energy.11,12,36 A simple analytical
solution of Eq. �27� for the chemical potential can be
obtained if �mBe2D2 / ��3���1. In strong magnetic fields at
D
rB according to Eq. �21�, the exciton magnetic mass is
defined as mB��2�D3 / �4e2rB

4�. So, the inequality
�mBe2D2 / ��3���1 is valid if D� �rB

4 /n1/2�1/5. As a result,
the chemical potential � is obtained in the form

� =
�2

2mB
=

��2n

smB log�s�4�2/�2�nmB
2e4D4��

. �28�

The solution of Eq. �27� at small magnetic momenta cor-
responds to the sound spectrum of collective excitations
��P�=csP with the sound velocity cs=��n / �4smB�=�� /mB,
where � is defined by Eq. �28�. Since magnetoexcitons have
a sound spectrum of collective excitations at small magnetic
momenta P due to the dipole-dipole repulsion, the magne-
toexcitonic superfluidity is possible at small temperatures T
in bilayer graphene because the sound spectrum satisfies to
the Landau criterion of superfluidity.34,35

It can be shown that the interaction between two
magnetoexcitons on the lowest Landau level can be
neglected in strong magnetic field at D=0 analogously to
Ref. 13. The dipole moment of each exciton at is
d1,2=e	0=rB

2�B�P1,2� /B �see Eq. �4��, where P1 and
P2 are the magnetic momenta of each exciton and P1,
P2�1 /rB. The magnetoexcitons are located at a distance
R
rB from each other. The corresponding contribution to
the energy of their dipole-dipole interaction is
�Eb�rB /R�3P1P2rB

2 /���rB /R�3P1P2 / ��M0�. Applying for
the radius of magnetoexciton in bilayer graphene r1,1=4rB
given by Eq. �20�, the van der Waals attraction of the exciton
at zero momenta are proportional to ��rB /R�6. Therefore, at
D=0 in the limit of the strong magnetic field for dilute sys-
tem rB�R, both the dipole-dipole interaction and the van der
Waals attraction vanish, and magnetoexcitons form an ideal
Bose gas analogously to Ref. 13. So, at D=0 and T=0, there
is BEC of the ideal magnetoexcitonic gas. There is no super-
fluidity at D=0 because the quadratic spectrum of noninter-
acting magnetoexcitons given by Eq. �23� does not satisfy to
the Landau criterion of superfluidity. For the system with
spatially separated electrons and hole at D
rB, the superflu-
idity appears because the pair dipole-dipole interaction
U�R�=e2D2 /�R3 and magnetoexcitonic dipole moment
d=eD do not depend on magnetic field B �see above�.

V. SUPERFLUIDITY OF DIPOLE MAGNETOEXCITONS IN
BILAYER GRAPHENE

The magnetoexcitons that are constructed by spatially
separated electrons and holes in bilayer graphene at large
interlayer separations D
rB form two-dimensional weakly
nonideal gas of bosons with the pair dipole-dipole repulsion.
So, the phase transition superfluid-normal phase in this sys-
tem is the Kosterlitz–Thouless transition.37 The temperature
of the Kosterlitz-Thouless transition Tc to the superfluid state
in a two-dimensional magnetoexciton system is determined
by

Tc =
��2ns�Tc�

2kBmB
, �29�

where ns�T� is the superfluid density of the magnetoexciton
system as a function of temperature T, magnetic field B and
interlayer distance D, and kB is the Boltzmann constant.

The function ns�T� �Eq. �29�� can be found from the rela-
tion ns=n / �4s�−nn �where n is the total density and nn is the
normal component density�. We determine the normal com-

BERMAN, LOZOVIK, AND GUMBS PHYSICAL REVIEW B 77, 155433 �2008�

155433-6



ponent density by the usual procedure.34 Suppose that the
magnetoexciton system moves with a velocity u. At nonzero
temperatures T, dissipating quasiparticles will appear in this
system. Since their density is small at low temperatures, one
can assume that the gas of quasiparticles is an ideal Bose gas.
To calculate the superfluid component density, we find the
total current of quasiparticles in a frame in which the super-
fluid component is at rest. Then, by using Eq. �24�, we obtain
the mean total current of 2D magnetoexcitons in the coordi-
nate system, moving with a velocity u,

�J� =
1

mB
�P� =

s

mB
� dP

�2���2Pf���P� − Pu� , �30�

where f���P��= �exp���P� / �kBT��−1�−1 is the Bose-Einstein
distribution function. Expanding the expression inside the
integral in the first order by Pu / �kBT�, we have

�J� = − s
u

2mB
� dP

�2���2 P2�f���P��
��

=
3��3�s
2��2

kB
3T3

mBcs
4u ,

�31�

where ��z� is the Riemann zeta function ���3��1.202�.
Then, we define the normal component density nn as34

�J� = nnu . �32�

By comparing Eqs. �32� and �31�, we obtain the expression
for the normal density nn. Consequently, we have for the
superfluid density,

ns = n/�4s� − nn = n/�4s� −
3��3�
2��2

kB
3T3

cs
4mB

. �33�

It turns out that the expression for the superfluid density ns in
the strong magnetic field for the magnetoexciton rare system
differs from analogous expression in the absence of magnetic
field in semiconductor CQWs �compare to Refs. 11 and 12�
by replacing the total exciton mass M =me+mB with the
magnetoexciton exciton magnetic mass mB taken from Eq.
�16�.

In a 2D system, superfluidity of magnetoexcitons appears
below the Kosterlitz-Thouless transition temperature �Eq.
�29��, where only coupled vortices are present.37 By using
Eq. �33� for the density ns of the superfluid component, we
obtain an equation for the Kosterlitz-Thouless transition tem-
perature Tc. Its solution is

Tc = 	
1 +�32

27

 smBkBTc

0

��2n
�3

+ 1�1/3

− 
�32

27

 smBkBTc

0

��2n
�3

+ 1 − 1�1/3� Tc
0

21/3 . �34�

Here, Tc
0 is an auxiliary quantity, which is equal to the tem-

perature at which the superfluid density vanishes in the
mean-field approximation �i.e., ns�Tc

0�=0�,

Tc
0 =

1

kB

��2ncs

4mB

6s��3�
�1/3

. �35�

The temperature Tc
0=Tc

0�B ,D� may be used as a crude esti-
mate of the crossover region where local superfluid density
appearers for rare magnetoexciton system on the scales
smaller or of order of mean intervortex separation in the
system. The local superfluid density can manifest itself in
local optical properties or local transport properties.

According to Eqs. �34� and �35�, the temperature of the
onset of superfluidity due to the Kosterlitz-Thouless transi-
tion at a fixed magnetoexciton density Tc decreases as a func-
tion of magnetic field B and interlayer separation D due to
the increase in mB as a function of B and D �see Eq. �21��. Tc
decreases as B−1/2 at D�rB or as B−2 at D
rB.

The dependence of Tc on B and D for cases 1 and 2 is
represented in Fig. 3 �since in case 1, the binding energy two
times higher and the effective magnetic mass is two times
smaller than in case 2, the magnetoexcitons in case 1 are
expected to be twice more stable and Tc in case 1 is expected
to be approximately twice higher than in case 2 at fixed n, D
and B�. According to Eq. �34�, the temperature Tc for the
onset of superfluidity due to the Kosterlitz-Thouless transi-
tion at a fixed magnetoexciton density decreases as a function
of magnetic field B and interlayer separation D. This is due
to the increased mB as a functions of B and D. Tc decreases
as B−1/2 at D�rB or as B−2 when D
rB.

We note that, according to Eq. �34�, the Kosterlitz-
Thouless transition temperature is presented above as a func-
tion of the density of excitons. The calculation carried out at
fixed density which leads to Eq. �34� is appropriate only for
optically generated metastable indirect exciton �case 2�. For
local pairs of “exciton” created by biasing the two-layer
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FIG. 3. �Color online� Dependence of Kosterlitz-Thouless tran-
sition temperature Tc=Tc�B� �in units of kelvins� versus magnetic
field for two-layer graphene separated by SiO2, with �b=4.5. The
magnetoexciton density n=4�1011 cm−2. Different interlayer sepa-
rations D are chosen for case 1: D=30 nm �solid curve�,
D=28 nm �dotted curve�, and D=27 nm �dashed curve�. For case 2:
D=30 nm �dashed-dotted curve�, D=28 nm �thin solid curve�, and
D=27 nm �thin dotted curve�.
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structure �case 1�, the chemical potential is fixed rather than
the density. In this case, the chemical potential of the exciton
can be controlled by changing the external electric field. The
Kosterlitz-Thouless transition temperature for case 2 can also
be determined by Eqs. �34� and �35� if we replace n by the
following expression n�smB� / ���2�, which comes from
a numerical estimate obtained from Eq. �28�, i.e.,
����2n / �14smB�. The denominator on the right-hand side
of Eq. �28� depends on n very weakly for the densities in the
range from 1010 to 4�1011 cm−2�.

According to Eq. �26�, for large magnetic momenta P, the
isolated magnetoexciton spectrum ��P� contrary to the case
H=0 has a constant limit �we count energy from the magne-
toexcitonic binding energy Eb� given by

��P� � 4��

2

e2

�rB
−

4�e2

�PrB
2 , D � a�B,D�, PrB

2 
 D ,

��P� �
4e2

�D
−

4�e2

�PrB
2 , D 
 a�B,D�, PrB

2 
 D . �36�

Consequently, the spectrum of interacting magnetoexciton
system also have a plateau at great momenta. So, Landau
criterion of superfluidity is not valid at large P for the inter-
acting magnetoexciton system. However, the probability of
excitation of quasiparticles with magnetic momenta
P
1 /rB by moving magnetoexciton system is negligibly
small at small superfluid velocities. In this sense, the super-
fluidity of 2D magnetoexcitons keeps to be almost meta-
stable one. This can be shown by the estimation of the prob-
ability dW of the excitation of the quasiparticle on the
plateau with magnetic momenta P
1 /rB; the energy of qua-
siparticles on the plateau ��P� equals to the magnetoexciton
binding energy.

At the motion of magnetoexciton liquid in a graphene
lattice with the small velocity u, which is smaller than the
sound velocity cs, according to the Landau criterion34 cre-
ation of the quasiparticles in the region of plateau at great
momenta with the magnetic momentum P
1 /rB and the
energy �Eb is possible due to the friction between liquid and
impurities, defects in the lattice or roughness of boundaries
of the graphene layers. So, when one quasiparticle appears
the liquid gets the magnetic momentum P. The appearance
of the large magnetic momentum in the liquid is equivalent
to the great mean separation between electron and hole along
one layer 	=rB

2�B ,P� /B. So, magnetoexcitons with very
large P does not exist due to the interaction of electron and
hole with impurities, etc.

Let us estimate the probability dWP of the transition of the
superfluid system from the initial state with the magnetic
momentum P=0 without quasiparticles to the final state with
one quasiparticle with the large magnetic momentum
P
1 /rB by using Fermi golden rule by taking into account
the “friction” interaction Vf. We have for the probability per
unit time dW�P�,

dW�P� =
2�

�

�0
V̂f�̂

†
0�
2
��Ek + ��P� + Pu�d��, �37�

where �� is the density of final states of the system, �Ek is

the change in the kinetic energy of superfluid liquid, V̂ is the

friction interaction, 
0� is a ground state of magnetoexciton
superfluid, and �P

† is the quasiparticle creation operator. After
quasiparticle creation total magnetic momentum of the sys-
tem is conserved.

At large momentum P
1 /rB, the wave function of qua-
siparticle is almost the same as wave function of the isolated
magnetoexciton. It means that the quasiparticle annihilation
operator �P is almost the same as the ordinary particle anni-
hilation operator aP.

In second quantified representation, the friction interac-

tion operator V̂ can be represented as

V̂f = �
P�P�

VfP�P�aP�
† aP�, �38�

where VfP�P� is the matrix element of friction interaction that
is calculated with the use of isolated magnetoexciton eigen-
functions �Eq. �4��. Due to the factor exp�−r2 / �4rB

2�� in Eq.

�7� �0
V̂f�̂
†
0�→0 at P
rB. Thus, the probability dWP of the

creation of the quasiparticle with the large magnetic mo-
menta P
1 /rB is negligibly small. So, the superfluidity of
2D magnetoexcitons keeps to be almost metastable one. Note
that at small magnetic momenta P�1 /rB in the region of the
sound spectrum of interacting magnetoexcitons Landau cri-
terion of superfluidity is valid and the probability dWP of the
creation of the quasiparticle in the region of the sound spec-
trum at u�cs is zero due to 
��E+��P�+Pu�=0 in Eq. �37�.

At low temperatures T�Tc�Eb, states with large mag-
netic momenta are negligibly filled �exp�−��P� / �kBT���1,
where ��P� is the magnetoexciton energy, which has the
same order as magnetoexciton binding energy Eb; at high
magnetic fields Eb=4�� /2e2 / ��rB� at D�a�B ,D� and
E0=4e2 / ��D� at D
a�B ,D��. So, quasiparticles at large
magnetic momenta P give a small contribution to the densi-
ties of the normal component nn and superfluid component ns
�see Eq. �33��. Hence, the expressions given above for the
temperature of Kosterlitz-Thouless transition are valid.

Note that the contributions to the single-electron Hamil-
tonian from the Zeeman splitting and very small pseudospin
splitting �caused by two valleys in graphene� set identically
to zero analogously to Ref. 29. We assume the energy degen-
eracy respect to two possible spin projections and two
graphene valleys �two pseudospins� for an electron and a
hole. The Zeeman term is much smaller than the character-
istic separation between the nearest Landau levels. The ratio
of the contribution to the energy from the Zeeman term
�EZ�B� to the characteristic separation between the
nearest Landau levels �EL�B� is negligible �at B=10T,
this ratio is �EZ�B� /�EL�B���BB / ��2�vFrB

−1��5�10−3,
where �B=�e / �2mec� is the Bohr magneton and me is the
mass of a free electron�. Besides, the Zeeman term is negli-
gible compare to the binding energy of a magnetoexciton on
the lowest Landau level �at B=10 T and D=2 nm this ratio
is �EZ�B� /Eb�9�10−4�. The Zeeman term is much smaller
than the chemical potential � corresponding to the dipole-
dipole repulsion between magnetoexcitons �at n=1010 cm−2,
B=10 T, and D=2 nm, this ratio is �EZ�B� /��10−2�.
Therefore, the Zeeman term is negligible compare to all en-
ergies in this system.
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VI. DISCUSSION

The rare excitonic system is stable at D�Dcr�B� and
T=0 when the magnetoexciton energy Eexc�D ,H� �given in
Eq. �21�� is larger than the sum of activation energies
EL=ke2 / ��rB� for incompressible Laughlin liquids of elec-
trons or holes in the fractional quantum Hall effect regime in
graphene; k=0.06 for the filling factor �=1 /3 at the Landau
level nL=1 and the number of particles N corresponding to
N−1�0.16, etc.28 For coupled quantum wells, the activation
energy is for incompressible Laughlin liquids of electrons or
holes at �=1 /3 at the Landau level nL=0 is the same as for
graphene at the Landau level nL=1 �compare to Ref. 16�.
Since k�1, the critical value Dcr
rB. In this case, one has
Eexc=4e2 / ��D��1−2rB

2 /D2� for a magnetoexciton with quan-
tum numbers n+=n−=1. Since in the dilute system in high
magnetic fields ��Eex, the contribution to the energy from
the dipole-dipole repulsion between magnetoexcitons can be
neglected compare to the binding energy of magnetoexciton.
As a result, we have from the stability condition
Dcr=2−1/2rB��2 /k−k /�2�. For greater �, it gives an upper
bound on Dcr. The excitonic phase is more stable than the
Laughlin states of electrons and holes at a given Landau
filling � if D�Dcr. Below the Kosterlitz-Thouless tempera-
ture, one can observe the appearance of persistent currents in
separate graphene layer. Note that in some region of Landau
filling inside �0,�cr�, crystal phase of indirect magnetoexci-
tons must exist in bilayer graphene �analogous to Ref. 38�.

The appearance of local superfluid density above Tc can
be manifested, for example, in observations of temperature
dependence of the exciton diffusion on intermediate dis-
tances �with the help of local measurements of exciton pho-
toluminescence at two points using optical fibers or pinhole.
The superfluid state at T�Tc can manifested itself in the
existence of persistent �“superconducting”� oppositely di-
rected electric currents in each graphene layer. The interlayer
tunneling in an equilibrium spatially separated electron-hole
system �our case 2� leads to interesting Josephson phenom-
ena in the system: to a transverse Josephson current, inho-
mogeneous �many sin-Gordon soliton� longitudinal
currents,6 diamagnetism in a magnetic field B parallel to the
junction �when B is less than some critical value Bc1, de-
pending on the tunneling coefficient�, and a mixed state with

Josephson vortices for B�Bc1 �in addition, taking tunneling
into account leads to a loss of symmetry of the order param-
eter and to a change in the character of the phase transition�.
The interlayer resistance relating to the drag of electrons and
holes can also be a sensitive indicator of the transition to the
superfluid of the electron hole system.10

In conclusion, we have studied BEC and superfluidity of
magnetoexcitons in two graphene layers with applied exter-
nal voltage in perpendicular magnetic field. We have reduced
the problem of magnetoexcitons in random fields to the prob-
lem of exciton at B=0 and in a renormalized random field
depending on H. The superfluid density nS�T� and the tem-
perature of the Kosterlitz-Thouless phase transition to the
superfluid state have been calculated. We have shown that at
fixed exciton density n, the Kosterlitz-Thouless temperature
Tc for the onset of superfluidity of magnetoexcitons de-
creases as a function of magnetic field like B−1/2 at D�rB
and as B−2 when D
rB. We have shown that Tc increases
when the density n increases and decreases when the mag-
netic field B and the interlayer separation increase. The ad-
vantage of the observation of magnetoexciton superfluidity
and BEC in graphene in comparison with this in CQWs con-
sists of essentially weak influence of the random field on Tc
due to the fact that the density of defects in graphene is
sufficiently lower than in CQWs �due to the absence of the
roughness of QWs boundaries�. Another thing which makes
the observation of the 2D magnetoexcitonic BEC in two-
layer graphene easier than in CQWs is the fact that the avail-
able effective mass of magnetoexciton in graphene can be
essentially smaller than in CQWs because in the latter only
in sufficiently strong magnetic fields manifests mB
me+mh,
while in graphene, me=mh=0. Note that we considered the
superfluidity in two cases: case 1, when electrons and holes
are created by the gates and are in the equilibrium with each
other, and case 2, when electrons and holes are created by the
laser pumping and the magnetoexcitons are in quasiequilib-
rium thermodynamical state.
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