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We study the effects of electron-electron interactions on the transport properties of a junction of three
quantum wires enclosing a magnetic flux. The wires are modeled as single channel spin-1

2 Tomonaga–Luttinger
liquids. The system exhibits a rich phase diagram as a function of the electronic interaction strength, which
includes a chiral fixed point with an asymmetric current flow highly sensitive to the sign of the flux and another
fixed point where pair tunneling dominates, which is similar to the case of spinless electrons. While in the case
of spinless electrons the perturbations that correspond to unequal couplings between the three wires are always
irrelevant, we find that, when the electron spin is included, there are small regions in the phase diagram where
a current flows only between two of the wires and the third wire is decoupled.
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I. INTRODUCTION

The transport properties of quantum wire systems have
been the subject of intensive investigation in the past one and
a half decade, both because they can have practical applica-
tions in nanoelectronic circuits and because they provide an
experimentally realizable way for understanding exotic prop-
erties of one-dimensional interacting electron systems. As
opposed to two- and three-dimensional electronic systems,
one-dimensional �1D� systems cannot be described by the
Fermi liquid theory; instead, they are described as
Tomonaga–Luttinger liquids �TLLs�,1–4 and experiments on
carbon nanotubes are consistent with this description.5,6

Recently, there has been a number of studies of junctions
of multiple TLL wires.7–25 Such studies are relevant because
junctions of three or more quantum wires would inevitably
appear in any quantum circuit. New tools and methods for
investigating junctions of three quantum wires with spinless
electrons were proposed in Ref. 7. These new methods al-
lowed for the identification of a low energy chiral fixed point
with an asymmetric current flow that is highly sensitive to
the sign of the magnetic flux enclosed at the junction. There
are, however, important outstanding issues in the three-wire
junction problem, for instance, the behavior of the more re-
alistic model in which the electron spin is taken into account.

Even in the case of tunneling between two wires, the in-
clusion of spin degrees of freedom already brings about a
rich phase diagram in the charge and spin interaction param-
eter space.26–28 For example, one can find a situation where
the charge conductance vanishes while the spin conductance
does not or vice versa. In the case of junctions of three quan-
tum wires �Y junction� for electrons with spin, the phase
diagram becomes much richer. In addition to a phase similar
to the two-wire case in which electron pair tunneling domi-
nates while the spin conductance vanishes or vice versa, the
chiral fixed point previously revealed in the spinless
Y-junction case persists when the spin degrees of freedom
are taken into account. Moreover, while the strong asymmet-
ric limit in which one of the wires is totally decoupled was
proved always unstable for the spinless case,7 we find a small
region in the coupling parameter space in which this asym-
metric fixed point is stable.

The paper is organized as follows. In Sec. II, we summa-
rize the results and present the phase diagram in coupling
constant space at zero temperature. We also discuss the con-
ductance tensor corresponding to each stable fixed point. In
Sec. III, we present our effective model for the junctions of
three quantum wires for spin-1

2 electrons. In Sec. IV, we re-
view the delayed evaluation of boundary condition �DEBC�
method previously introduced for identifying the stable fixed
points for the Y-junction system with spinless electrons. Tak-
ing advantage of charge-spin separation in one dimension,
we generalize this approach to the system with spin-1

2 elec-
trons and illustrate the method by describing the phase dia-
gram of a junction of two quantum wires. In Sec. V, we
apply the DEBC method described in Sec. IV to the Y junc-
tion with spin-1

2 electrons and determine the stability of each
fixed point. In Sec. VI, we briefly review the method of
boundary conformal field theory �BCFT� and apply it, as a
warm up, to study a junction of two quantum wires. We then
apply BCFT methods to the Y-junction problem in Sec. VII
and obtain results consistent with those found with the
DEBC method. We briefly conclude in Sec. VIII.

II. SUMMARY OF RESULTS

In this section, we summarize our study of the stability of
the fixed points associated with the different boundary con-
ditions of Y junctions for spin-1

2 electrons and their corre-
sponding conductance tensors. Based on the stability of each
phase, we propose a zero-temperature phase diagram in
terms of the TLL interaction parameters, gc and gs. The ge-
ometry of the device is depicted in Fig. 1, where three iden-
tical quantum wires are attached to a ring, with equal cou-
plings and thus having a Z3 symmetry. The ring can be
threaded by a magnetic flux and the quantum wires are mod-
eled as TLLs characterized by the interaction parameters gc
and gs. We will only consider spin conserving transport.

Due to the charge and spin separation in the bulk of TLL
quantum wires, independent boundary conditions can be im-
posed on the charge and spin degrees of freedom. Hence, we
introduce the notation BcBs in which Bc and Bs represent the
corresponding boundary condition in the charge and spin
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sectors, respectively. For instance, DN represents Dirichlet
boundary condition �BC� in the charge sector and Neumann
BC in the spin sector. Moreover, since each combination of
the boundary conditions corresponds to a fixed point in the
framework of the renormalization group �RG�, the fixed
point corresponding to BcBs BC will be referred to as the
BcBs fixed point. The physical meaning of each boundary
condition will be discussed in this section and the detailed
analysis and assumptions of the model are given in later
sections.

The charge and spin conductance tensors associated with
each fixed point are important physical response functions
characterizing the Y junction for spin-1

2 electrons. Within the
linear response theory, the total current Ij flowing into the
junction from wire j is related to the voltage applied at the
wire k through

Ij
c = �

k

Gjk
c Vk, �2.1�

where j ,k=1,2 ,3 and Gjk is the 3�3 conductance tensor.
One can similarly define

Ij
s = �

k

Gjk
s ����k/e , �2.2�

where ��k=�k
↑−�k

↓ is the chemical potential difference be-
tween up and down spins in lead k and e is the electron
charge �with this definition, spin and charge conductances
are both measured in units of e2 /h�.

Note that current conservation implies that

�
j

Ij
c�s� = 0. �2.3�

Furthermore, a common voltage applied to all three wires
results in zero current. Thus,

�
j

Gjk
c�s� = �

k

Gjk
c�s� = 0. �2.4�

For Z3 symmetry junctions, the conductance tensor takes
the form7

Gjk
c�s� =

GS
c�s�

2
�3� jk − 1� +

GA
c�s�

2
� jk, �2.5�

where we separate the symmetric and antisymmetric compo-
nents of the tensor and GS and GA are scalar conductances.
�The �ij are defined as follows: �12=�23=�31=1, �21=�32
=�13=−1, and �11=�22=�33=0.� The antisymmetric compo-
nent GA

c�s� will only appear when time reversal invariance is
broken. Even in the presence of the magnetic flux which
would normally break time reversal symmetry �TRS�, GA
may vanish at some low energy fixed points, in which case
time reversal symmetry is restored. However, in the absence
of the Z3 symmetry �in the asymmetric fixed point�, the
condition of Eq. �2.5� becomes unnecessary. Observe that
Gs=Gjj represents the conductance of each wire when zero
voltage is applied to the other two wires �i.e., a potential
difference is applied between one of the wires and the other
two, which are held at the same potential�.

We are mostly interested in the stable RG fixed points,
which describe the physics in the low energy limit, i.e., low
voltage bias and low temperature. As in the case of junctions
of two quantum wires, the interaction parameters control the
stability of the fixed points and determine the phase diagram.
Below, we list our results for conductance tensors and for the
basins of attraction around each fixed point �with their cor-
responding boundary conditions� as a function of the inter-
action parameters gc and gs.

A. Neumann boundary condition in both charge
and spin sector

The NN boundary condition corresponds to a fixed point
in which the hopping amplitudes between the wires are zero
and the three quantum wires are totally decoupled from each
other, as illustrated in the inset of Fig. 2. When the interac-
tions in the quantum wire are repulsive, the hopping ampli-
tudes decrease along the RG flow both in junctions of two
quantum wires26–28 and in junctions of three quantum wires
for spinless electrons.7 Generically, the window of stability
for a fixed point with decoupled wires should be independent
of the number of wires in the junction. Notice that the effec-
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FIG. 1. �Color online� A junction of three quantum wires with a
magnetic flux threading through the ring. The I1,2,3

c�s� are the charge
and spin currents arriving at the junction from each of the three
wires. The lighter line �blue� indicates the charge sector and the
darker line �red� presents the spin sector.

FIG. 2. �Color online� The painted area �red� shows the attrac-
tive basin of NN fixed point. The border shows the marginal line of
scaling dimension �=1 for all leading order perturbations. The in-
set depicts the physical consequence of the fixed point related to the
NN BC, a disconnection for both charge and spin sectors.
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tive flux � has no effect in the decoupled limit.
The three most relevant perturbations at the NN fixed

point are as follows:
�1� single electron hopping between two wires, with scal-

ing dimension �NN= 1
2 � 1

gc
+ 1

gs
�;

�2� electron pair singlet hopping between two wires, with
scaling dimension �NN= 2

gc
;

�3� exchange of electrons with opposite spins between
two of the wires �thus carrying a spin current�, with scaling
dimension �NN= 2

gs
.

By requiring that all scaling dimensions corresponding to
these leading order perturbations �NN�1, we can identify
the attractive basin in the interaction parameter space, as
shown in Fig. 2. The conductance tensor for the NN fixed
point is zero for both the charge and spin sector.

�Gjk
c�s��NN = 0. �2.6�

B. Dirichlet boundary condition in both charge
and spin sectors

The DD BC corresponds to a fixed point where the
paired-electron hopping and Andreev reflecting processes,
depicted in the inset of the Fig. 3, dominate the tunneling
processes in both charge and spin degrees of freedom.
Hence, the charge and spin conductances will be enhanced.
Moreover, the conductance tensor takes the symmetric form
in which the scalar conductance GS

c�s�=2�4gc�s� /3��e2 /h� and
the antisymmetric component GA=0 and is given by

�Gjk
c�s��DD = 2

2gc�s�

3
�3� jk − 1� . �2.7�

Here, the factor of 2 comes from the doubling of the degrees
of freedom due to the spin. Since GA=0, the presence of the
effective flux � which breaks TRS has no physical conse-
quence and the TRS is restored in DD fixed point.

We shall study the leading order perturbations to deter-
mine the stability of the DD fixed point. Since several

boundary operators possess the same scaling dimensions, we
only list the dimensions of the leading order perturbations
without specifying the corresponding operators,

�DD
1 =

1

6
�gc + gs�, �DD

2 =
2gc

3
, �DD

3 =
2gs

3
. �2.8�

The attractive basin of the DD fixed point, shown in Fig. 3,
can be obtained by requiring the dimensions of these leading
order perturbations to be larger than 1.

C. ND and DN boundary condition

We have seen that the charge and spin current terminate or
flow at the same direction for both NN and DD fixed points.
However, phases with decoupled charge and spin degrees of
freedom are also possible. Indeed, the ND and DN BC cor-
respond to fixed points where the charge or spin degrees of
freedom are disentangled at the boundary. The ND fixed
point possesses a pure spin current; likewise, the DN fixed
point possesses a pure charge current. The dominant pro-
cesses corresponding to these two fixed points are illustrated
in the insets of Fig. 4. Notice that similar phases also exist in
the system of junction of two quantum wires for spin-1

2 elec-
trons.

Observe that the dominating process of the ND fixed
points carries no net charge current, while that of DN fixed
point carries no net spin current; hence, the charge and spin
conductances vanish at the ND and DN fixed points, respec-
tively. The conductance tensors, taking the symmetric form
with Z3 symmetry, are given by

FIG. 3. �Color online� The painted area �green� shows the at-
tractive basin for the DD fixed point. The border shows the mar-
ginal line when all leading order perturbations have �=1. The inset
shows one of the tunneling processes associated with the DD fixed
point. The conductances in both charge and spin sectors are en-
hanced by the pair hopping �or Andreev-like� processes in both spin
and charge sectors.

FIG. 4. �Color online� The painted area shows the stable region
for the ND and DN fixed points. The borders �blue for ND BC and
yellow for DN BC� show the marginal line of scaling dimensions
�=1 for all leading order perturbations. The inset shows a pictorial
representation of the ND and DN fixed points. The fundamental
process associated with the ND fixed point leads to an enhancement
of the spin conductance due to a spin exchange between two wires,
while the fundamental process associated with the DN fixed point
leads to an enhancement of the charge conductance due to a
electron-hole exchange. Notice that the processes described here
occur between any two arbitrary wires.
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�Gjk
s �ND = 2

2gs

3
�3� jk − 1�, �Gjk

c �ND = 0, �2.9�

�Gjk
c �DN = 2

2gc

3
�3� jk − 1�, �Gjk

s �DN = 0. �2.10�

The leading order perturbations of the ND BC have the
dimensions, discussed in detail in Secs. V and VII,

�ND
1 =

1

2gc
+

gs

6
, �ND

2 =
2gs

3
, �ND

3 =
2

gc
. �2.11�

The basin of attraction relative to the ND fixed point is ob-
tained by requiring all �ND

j 	1 and is depicted in Fig. 4. By
exchanging gc and gs in Eq. �2.11�, we can obtain the dimen-
sions of the leading order perturbations for the DN fixed
points. The basins of attraction corresponding to the ND and
DN fixed points thus show a mirror symmetry with respect to
the line gc=gs in the interaction parameter space.

Unlike the case of the junction of two quantum wires,
where basins of attraction corresponding to the NN, DD, ND,
and DN fixed points patch the whole space of the interaction
parameters with some overlap �see Sec. IV�, a section of the
parameter space remains uncovered. This implies the exis-
tence of nontrivial fixed points. Notice that both ND and DN
fixed points restore TRS even in the presence of the magnetic
field.

D. �+�+ and �−�− boundary conditions

The most striking consequences of 
+ and 
− fixed point
are that TRS is broken explicitly and the stability of the fixed
points is determined both by the effective flux � and the
interaction parameters. For spinless electrons, the 
+ fixed
point can be stable when 0����, while 
− can be stable
when −����0.7 As a result, the charge and spin currents
always flow together for spin-1

2 electrons, i.e., mixed chiral
fixed points, 


�, are never stable. Moreover, among all
combinations of BCs corresponding to chiral BC, only 





fixed points are stable. One can conjecture that the criterion
of stability of the 

 BC due to the flux for spin-1

2 electrons
is the same as for spinless electrons. The boundary operators
of leading order perturbations, such as backscattering pro-
cesses, have a scaling dimension in terms of interaction pa-
rameters,

� =
2gc

3 + gc
2 +

2gs

3 + gs
2 , �2.12�

and provide the only constraint for determining the stability.
The basin of attraction is thus common for both 



 fixed
points and is depicted in Fig. 5. However, which phase is
preferred in the low energy limit is completely determined
by the effective flux.

The conductance tensors at the 



 fixed points takes
the Z3 symmetric form in Eq. �2.5�,

�Gjk
c�s��



=
4gc�s�

3 + gc�s�
2

e2

h
��3� jk − 1� 
 gc�s�� jk� , �2.13�

with the scalar conductance GS
c�s�=

8gc�s�

3+gc�s�
2

e2

h and the antisym-
metric component GA

c�s�=gc�s�GS
c�s�. The dominating hopping

processes are schematically shown in the inset of Fig. 5.
Notice that the conductance at the 



 fixed points be-
comes the perfect transmission of charge and spin from wire
j to wire j
1 when gc�s�→1.

E. Asymmetric boundary conditions, DADA boundary
condition

We shall consider the simplest Z3 asymmetric BC, DA,
corresponding to a situation where, as shown in the inset of
Fig. 6, two of the wires are strongly coupled, while the third
one is decoupled from the rest of system. Note that the DA
fixed point has been proven unstable in the Y-junction sys-
tem for spinless electrons.7 However, for spin-1

2 electrons,
there is a window in which the DADA fixed point is stable. Of
course, it depends on the detailed structure of the hopping
amplitudes to determine which wire will be decoupled.

As shown in Fig. 6, the stable area of DADA fixed point
emerges from the borders of the attractive basins of other
fixed points. Several boundary operators contribute to the
leading order perturbations and need to be considered for
determining the stability. Here, we will only present the ba-
sins of attraction corresponding to DADA BC and postpone
the discussion of scaling dimensions.

The conductance at the asymmetric fixed points will not
take the form in Eq. �2.5� due to the broken Z3 symmetry.
The conductance tensor at the DADA fixed point is given in
the matrix representation

�Gc�s��DADA
= 2gc�s�

e2

h � 1 − 1 0

− 1 1 0

0 0 0
� . �2.14�

Despite an extra component representing the decoupled third
wire, the conductance tensor is exactly the same as that at the

FIG. 5. �Color online� The painted area is the basin of attraction
of both 



 fixed points. This area sits between and osculates the
stable regions of the NN, DD, ND, and DN fixed points. The border
shows the marginal line for the scaling dimension �=1 of Eq.
�2.12�. The pictorial representation of the tunneling processes asso-
ciated with 
+
+ fixed point is shown in the inset. An incoming
electron from wire i will always divert to wire i+1. The currents
associated with the 
−
− fixed point flow in the inverse direction.
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DD fixed point for junction of two quantum wires.
We shall conclude this section by proposing a phase dia-

gram based on the results discussed above. The stability of
phases at some area in the parameter space is uniquely de-
fined because there exists only one stable fixed point. As a
result, the painted areas in Fig. 7 with red, green, blue, or-
ange, purple, and gray colors unambiguously correspond to
the NN, DD, ND, DN, 



, and DADA fixed points, respec-

tively. When there are more than one possible candidates for
stable fixed points, determining the stability of phases be-
comes tricky and generically nonuniversal. Hence, the
phases in the low energy limit are defined not only by the
interaction parameters, gc�s�, but also by the details of the
device. For instance, the different hopping amplitudes of
single electron tunneling between wires may determine the
final destination of the RG flow and the phase at the overlaps
of DD and DADA fixed points. However, determining the
stable fixed points in these cases is beyond the scope of our
methods and can only be conjectured.

Let us consider the system along the SUs�2� invariant line,
gs=1: the NN fixed point is stable when gc�1, the chiral
fixed points are stable when 1�gc�3, and the DN fixed
point is stable when gc�3. This result is expected due to the
similarity with a system of spinless electrons where N fixed
point is stable when gc�1, the chiral fixed points are stable
when 1�gc�3, and D fixed point is stable when gc�3.
Notice that four common tangential points of marginal lines
when �gc ,gs�= �1,1� , �1,3� , �3,1� , �3,3� remain marginal for
all adjacent phases.

III. MODEL AND BOSONIZATION

In this section, we define the simplest model including the
TLL effects and spin degree of freedom. As depicted in Fig.
1, we study three identical single channel quantum wires
with spin-1

2 electrons joined with a ring enclosing a magnetic
flux. We will ignore phonons and impurities and assume that
the electron-electron interaction is short ranged in the wires.
The Euclidean action of a semi-infinite interacting single
channel TLL with spin-1

2 electrons is described in terms of
the independent charge and spin boson fields,

S = �
j=1

3 	 d�dx
vcgc

4�
���x� j,c�2 +

1

vc
2 ���� j,c�2�

+
vsgs

4�
���x� j,s�2 +

1

vs
2 ���� j,s�2�
 , �3.1�

where the subscript j=1,2 ,3 represent each wire and vc�s� is
the sound velocity for the charge and spin degree of freedom,
respectively, or in terms of dual field �,

S = �
j=1

3 	 d�dx
 vc

4�gc
���x� j,c�2 +

1

vc
2 ���� j,c�2�

+
vs

4�gs
���x� j,s�2 +

1

vs
2 ���� j,s�2�
 . �3.2�

Here, �c�s� and �c�s� are phase fields which follow the canoni-
cal commutation relation ��c�s��x� ,�c�s��x���=−i��x−x��,
where ��x� is the Heaviside step function. Notice that
gc=gs=1 corresponds to the noninteracting point, and in the
absence of a magnetic field and any spin-dependent interac-
tions, we must take gs=1 in order to respect the underlying
SU�2� symmetry.26

The fields with spin up and down degrees of freedom can
be represented as linear combinations of these charge and
spin boson fields,

FIG. 6. �Color online� The painted areas are the basins of attrac-
tion for the DADA fixed point. The overlap of the attractive basin for
the DADA fixed point and others is very complicated and will be
illustrated in Fig. 7. A pictorial representation of the DADA fixed
point with the decoupled third wire is shown in the inset. Notice
that there is a threefold degeneracy of this fixed point, i.e., the
decoupled wire can be arbitrary, resulting from breaking the Z3

symmetry.

FIG. 7. �Color online� The proposed phase diagram: the colored
lines indicate the marginal boundary of �=1 for each fixed point
upon the identification of the leading order perturbations. The
painted areas show the regions with only one stable fixed point,
while the unpainted regions represent those where two or three
fixed points have an overlapping region of stability. Notice that the
DADA fixed point is the sole stable one in four tiny gray areas
surrounded by the unpainted regions.
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��,i =
�c,i + ��s,i

�2
and ��,i =

�c,i + ��si,

�2
, �3.3�

where the commutation relation between � and � fields is
still followed. It is convenient to introduce left and right
mover representations

��,i
L =

��,i + ��,i

2
and ��,i

R =
��,i − ��,i

2
, �3.4�

and to identify the electron fermion field in terms of the
boson field,

� j,�
L�R� = ��,j

L�R�ei�2��,j
L�R�

, �3.5�

with Klein factors �� that satisfy the anticommutation rela-
tion ��� ,���=2��,� and commute with the boson fields.

The effect of interactions at the boundary in the action
Eqs. �3.1� and �3.2� will be entered in the form of tunneling
operators between wires. These boundary operators must
conserve both charge and spin and, therefore, they are con-
strained to respect the corresponding U�1� symmetries.

IV. DELAYED EVALUATION OF BOUNDARY CONDITION

The DEBC method was recently introduced for determin-
ing the stability of the boundary conditions �fixed points� of
the Y junction for spinless electrons.7 In this section, we will
generalize this method to the case of spin-1

2 electrons and use
this method to determine the phase diagram of a junction of
two quantum wires.

Generically, fermionic operators can be represented in
terms of the boson fields, �c�s��x , t�, and their conjugate
fields, �c�s��x , t�, up to a Klein factor in an infinite wire. For
a semi-infinite wire, the relation between left and right
moving fields leads to an analytical continuation
�R�−x , t�=�L�x , t�. This is the familiar unfolded picture
where the right mover and the left mover are related by a
particular choice of the boundary condition, namely, the N
BC, at x=0. The DEBC method is an extension of the un-
folded picture to different boundary conditions.

Within the DEBC framework, an arbitrary boundary op-
erator should be first represented in terms of the independent
bulk boson fields � j

L�R� without specifying the boundary con-
dition. Then, the boundary conditions that must be imposed
on � j

L�R��t ,x=0� ��i and �i� are determined a posteriori. Be-
cause � j

L�R� are functions of x
 t, imposing a particular
boundary condition relates � and � fields in the bulk and thus
eliminates the redundancy of working with both � and �
fields in the semi-infinite wire.

The scaling dimension � of a boundary operator OB, with
two-point correlation

�OB�t�OB
†�t��� � �t − t��−2�, �4.1�

depends on the boundary conditions and can be used to de-
termine whether a perturbation consisting of the boundary
operators is relevant or not. When ��1, the perturbation is
irrelevant, and when �=1, the perturbation is marginal.
Thus, a boundary condition is stable when all boundary op-
erators either have scaling dimension, �=0, or are irrelevant
��1.

Now, let us introduce the generic representation of bound-
ary operators and discuss how to obtain their scaling dimen-
sions given a boundary condition.

A. Boundary operators and scaling dimensions

For applying the DEBC scheme, the left and right moving
fields appearing in the boundary operators are initially
treated as independent regardless of the boundary condition.
The boson representation of fermions is given in Eq. �3.5�,

� j,�
L�R��t,x = 0� � ��,j

L�R�ei�2�j,�
L�R��t,x=0�. �4.2�

All boundary operators are constructed by combining cre-
ation and annihilation operators of fermions in each wire.
The Klein factors and extra phases produced by commuting
the boson fields will not affect the scaling dimension of a
boundary operator,

OB � exp�i�2 �
i,�,a

ni,�
a �i,�

a � , �4.3�

near stable fixed points. Here, ni,�
a uniquely defines the tun-

neling processes at the boundary, where i, �, and a represent
the wire, the spin, and the chirality of the fermions, respec-
tively. We shall refer hereafter to ni,�

a as the particle number
vector. Since the boundary operators are constructed from
the full electron, the charge and spin degrees of freedom are
coupled at the boundary. The total charge and spin conserva-
tion imply

�
i,�,a

ni,�
a = 0 and �

i,�,a
�ni,�

a = 0, �4.4�

respectively. For instance, a tunneling process where an up-
spin right mover at wire 1 scatters into a up-spin left mover
at wire 2 leads to n1,↑

R =1=−n2,↑
L with the sign convention

followed from the bosonic representation of the fermions.
It is convenient to introduce scaled bosonic fields

�̃c�s� = �gc�s��c�s� and �̃c�s� =
�c�s�

�gc�s�
, �4.5�

such that the commutation relation between �̃c�s� and �̃c�s� is
still followed. The action of the rescaled fields becomes in-
dependent of the interaction parameters, and their correlation
functions are given by

��̃c�s��z, z̄��̃c�s��0�� = −
1

2
ln �z�2. �4.6�

In terms of the rescaled boson fields, the original left and
right moving fields become

�2�i,�
a = �cosh �c�̃i,c

a + � cosh �s�̃i,s
a �

+ �sinh �c�̃i,c
ā + � sinh �s�̃i,s

ā � , �4.7�

where
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�̃�,i
L =

�̃�,i + �̃�,i

2
and �̃�,i

R =
�̃�,i − �̃�,i

2
, �4.8�

and cosh �= � 1
�g

+�g� /2 and sinh �= � 1
�g

−�g� /2. Further, ā is
defined such that ā=L when a=R and vice versa. Also, short-

handed notations, R̄=L and L̄=R, are used.
In terms of the particle number vector and noninteracting

bosonic fields, the bosonic argument of the boundary opera-
tors becomes

�2 �
i,�,a

ni,�
a �i,�

a = �
i,�,a

�ni,�
a �cosh �c�̃i,c

a + sinh �c�̃i,c
ā �

+ ni,�
a ��cosh �s�̃i,s

a + sinh �s�̃i,s
ā �� .

�4.9�

The nontrivial scaling behaviors of the boundary operators
are attributed to the mixing structure of the left and right
movers in Eq. �4.7�.

Let us introduce vectors �� c�s�
R�L� whose ith components are

the fields �̃i,c�s�
R�L� . The right hand side of Eq. �4.9� becomes

�v�c
R · �� c

R + v�s
R · �� s

R� + �v�c
L · �� c

L + v�s
L · �� s

L� , �4.10�

where the vectors v�c�s�
R�L� are defined as

�vc
R�i = �

�

�ni,�
R cosh �c + ni,�

L sinh �c� , �4.11a�

�vs
R�i = �

�

��ni,�
R cosh �s + ni,�

L sinh �s� , �4.11b�

�vc
L�i = �

�

�ni,�
L cosh �c + ni,�

R sinh �c� , �4.11c�

�vs
L�i = �

�

��ni,�
L cosh �s + ni,�

R sinh �s� . �4.11d�

Here, �� L̄=�� R and �� R̄=�� L were explicitly used. Observe that
the charge and spin degrees of freedom differ only by an
extra � term.

The boundary conditions can be generally identified as

�� R = �R−1�� L + C� �x=0, �4.12�

where C� is a constant vector and R is a rotation matrix. The
total charge and spin conservation imposes the N BC,

�0,c�s�
R = �0,c�s�

L , �4.13�

on the center of mass mode, �0,c�s�=
1

�N
�i=1

N �i,c�s�, which in
turn constraints the rotation matrix R. Moreover, R has to be
an orthogonal transformation to preserve the total length of
the fields.29 The scaling dimension � of the boundary opera-
tors for a boundary condition reads

�R�ni,�
a � =

1

4
�Rcv�c

R + v�c
L�2 +

1

4
�Rsv�s

R + v�s
L�2. �4.14�

The physical processes responsible for pinning a bound-
ary condition determine the rotation R, for which �R=0 for

that specific particle number vector. The corresponding op-
erators thus act as the identity operator at this fixed point.
Once the boundary condition is picked, the stability of the
fixed point can be analyzed by evaluating the scaling dimen-
sions of all other boundary operators. In particular, the fixed
point will be stable if all these dimensions, for all other par-
ticle number vectors, satisfy �R�ni,�

a ��1.
To illustrate the method, here we apply the DEBC scheme

to the case of a junction of two quantum wires for spin-1
2

electrons and find results in agreement with Refs. 26–28.

B. Boundary conditions of junction of two quantum
wires for spin-1

2 electrons

When requiring the spin and charge conservation and or-
thogonality, only two boundary conditions, Neumann and
Dirichlet, are possible in the case of a junction of two quan-
tum wires for spin-1

2 electrons. The R matrix takes a particu-
larly simple form in both cases. The N BC corresponds to the
total reflection fixed point and has RN=1; The D BC corre-
sponds to the perfect transport fixed point and has

RD = �0 1

1 0
� . �4.15�

Since the N and D BCs can be independently imposed in the
charge and spin sectors, we can now separately discuss the
contributions of the charge and spin degrees of freedom to
the scaling dimensions.

1. N boundary condition in charge sector

Focusing on the charge sector of Eq. �4.14� with Rc=1,
the scaling dimension of the charge sector reads

1

4
�Rcv�c

R + v�c
L�2 =

1

4� �
i,�,a

�ni,�
a cosh �c + ni,�

a sinh �c�êi,c�2

=
1

4���,a
n1,�

a � 1
�gc

�ê1,c + �
�,a

n2,�
a � 1

�gc
�ê2,c�2

,

�4.16�

where we introduce êi,c as the basis vectors of v�c and explic-
itly use cosh �c= � 1

�gc
+�gc� /2 and sinh �c= � 1

�gc
−�gc� /2 in

the second equality. Due to the charge conservation, we can
introduce

n ª �
�,a

n1,�
a = − �

�,a
n2,�

a , �4.17�

and the contribution to the scaling dimension reads

�Nc
=

1

2gc
n2. �4.18�

2. N boundary condition in spin sector

The contribution of the spin degree of freedom to the
scaling dimension is very similar to the charge sector with a
substitution of v�s to v�c in Eq. �4.16�. Hence, the scaling
dimension with N BC in the spin sector is given by
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1

4
�Rsv�s

R + v�s
L�2

=
1

4���,a
n1,�

a �� 1
�gs

�ê1,s + �
�,a

n2,�
a �� 1

�gs
�ê2,s�2

.

�4.19�

Due to the spin conservation, we define

s ª �
�,a

n1,�
a � = − �

�,a
n2,�

a � , �4.20�

with the relation n=s�mod 2�. The scaling dimension for the
N BC on the spin degree of freedom reads

�Ns
=

1

2gs
s2. �4.21�

3. D boundary condition in charge sector

The rotation matrix of D BC in Eq. �4.15� implies the
mixing of two quantum wires. Inserting the matrix into the
charge sector of Eq. �4.14�, we obtain

�Rcv�c
R + v�c

L� = ��
�

��n2,�
R + n1,�

L �cosh �c

+ �n2,�
L + n1,�

R �sinh �c�ê1,c + �
�

��n1,�
R + n2,�

L �

�cosh �c + �n1,�
L + n2,�

R �sinh �c�ê2,c� .

By using charge conservation, we introduce a new variable

ñ = n+ = �
l,�,a

nl,�
a ��+ la� = �

�

�n1,�
L + n2,�

R �

= − n− = − �
l,�,a

nl,�
a ��− la� = − �

�

�n1,�
R + n2,�

L � .

�4.22�

Here, when applied inside the � function, the indices of
wires l=1,2 become l= + ,−, respectively, and the left and
right mover indices become a= + ,−, respectively. In terms
of the new variable ñ, the scaling dimension is given by

�Dc
=

1

4
�Rcv�c

R + v�c
L�2 =

1

4
���gcñ�ê1,c − ��gcñ�ê2,c�2 =

1

2
gcñ

2.

�4.23�

4. D boundary condition in spin sector

Observe that the scaling dimensions attributed to the spin
sector can be obtained by replacing v�c with v�s in Eq. �4.22�.
Since we have spin conservation rather than charge conser-
vation, we can define a new variable s̃,

s̃ = s+ = �
l,�,a

�nl,�
a ��+ la� = �

�

��n1,�
L + �n2,�

R �

= − s− = − �
l,�,a

�nl,�
a ��− la� = − �

�

��n1,�
R + �n2,�

L � .

�4.24�

Also, one can show the relation ñ= s̃�mod 2�. The scaling
dimension corresponding to the spin degree of freedom with
the D BC is given by

�Ds
=

1

4
�Rsv�s

R + v�s
L�2 =

1

4
���gss̃�ê1,s − ��gss̃�ê2,s�2 =

1

2
gss̃

2.

�4.25�

C. Stability of the fixed points for junction of two
quantum wires

Since both the total charge and spin are separately con-
served, the boundary conditions can be independently im-
posed in the charge and spin sectors. We follow the catego-
rization in Sec. II by relating a fixed point to a BcBs BC and
explore its instability. The scaling dimensions of boundary
operators given a BC are obtained by adding the contribu-
tions from both the charge and spin degrees of freedom. In
light of the discussion in this section, the possible scaling
dimensions of boundary operators are given by

�NN =
1

2
� 1

gc
n2 +

1

gs
s2� , �4.26a�

�DD =
1

2
�gcñ

2 + gss̃
2� , �4.26b�

�ND =
1

2
� 1

gc
n2 + gss̃

2� , �4.26c�

�DN =
1

2
�gcñ

2 +
1

gs
s2� , �4.26d�

with the constraints n=s�mod 2� and ñ= s̃�mod 2�. Notice
that there is no constraint between n , s̃ and between ñ ,s.

Let us compute, as an example, the scaling dimension of
the following boundary operators given an NN BC:

TB = �1,↑
R† �1,↑

L � ei�2�−�1,↑
R +�1,↑

L � �case 1� , �4.27a�

TF = �2,↑
R† �1,↑

L � ei�2�−�2,↑
R +�1,↑

L � �case 2� , �4.27b�

T = �2,↑
R† �2,↓

R† �1,↑
L �1,↓

L �case 3� , �4.27c�

T = �2,↑
R† �1,↓

R† �1,↑
L �2,↓

L �case 4� . �4.27d�

Case 1 corresponds to the backscattering process with n1,↑
L

=1 and n1,↑
R =−1: hence, n=0=s from Eqs. �4.17� and �4.20�.

Notice that �NN
1 =0, and thus backscattering is the physical

process that fixes this boundary condition. Case 2 corre-
sponds to the forward scattering with n1,↑

L =1 and n2,↑
R =−1
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such that n=1=s and �NN
2 = 1

2 �1 /gc+1 /gs�. Case 3 corre-
sponds to a pair tunneling process with n1,↑

L =1=n1,↓
L and

n2,↑
R =−1=n2,↓

R . One can show that n=2 and s=0 and obtains
�NN

3 =2 /gc. The last case corresponds to a pair exchange tun-
neling process with n1,↑

L =1, n1,↓
R =−1, n2,↓

L =1, and n2,↑
L =−1

such that n=0 and s=2 and �2
NN=2 /gs. The last three bound-

ary operators describe the leading order perturbations for the
NN fixed point. The basin of attraction of the NN fixed point
is determined when all �2,3,4�1.

In principle, we need to know scaling dimensions of all
boundary operators given a boundary condition in order to
determine the basin of attraction for each fixed point. How-
ever, Eq. �4.26� provides a compact way to determine the
stability of the fixed points. Since the basin of attraction is
defined when the scaling dimensions of the perturbations
have ��1, we can obtain the possible scaling dimensions in
an increasing order by inserting the smallest integers for the
quantities n, s, ñ, and s̃ with their respective parity con-
straints. Consequently, the stability of the fixed points can be
completely determined from this minimum construction. The
phase diagram determined by DEBC for junction of two
quantum wires for spin-1

2 electrons is depicted in Fig. 8 and
agrees with the results in Refs. 26–28.

We conclude this section by reviewing the DEBC ap-
proach. First, the boundary operators should be expressed in
terms of redundant fields � and � or �R�L�. Second, one has
to identify the rotation matrix R corresponding to a given
boundary condition. Finally, the scaling dimensions of
boundary operators given a boundary condition are evaluated
using the rotation matrix R, and the basin of attraction of the
fixed point can be determined by requiring all dimensions to
be larger than 1.

V. JUNCTION OF THREE QUANTUM WIRES FOR SPIN-1
2

ELECTRONS: DELAYED EVALUATION OF
BOUNDARY CONDITION

Following the DEBC scheme developed in the last sec-
tion, we have to first identify the rotation matrix representa-
tions of boundary conditions for junctions of three quantum
wires for spin-1

2 electrons. The conservation of the total
charge and spin at the boundary can be implemented by im-

posing the N BC on the zero mode �total charge or spin
mode�, as shown in Eq. �4.13�. Also, R has to be orthogonal
to preserve the length of the field vector. Observe that any
rotation around the unit vector u�0= 1

�3
�1,1 ,1� will leave the

total charge and spin mode invariant; hence, naively, R can
be an arbitrary rotation around u�0. However, there are some
boundary conditions corresponding to discrete transforma-
tions, where R cannot be totally classified by a rotation.
Moreover, as discussed in Appendix A, the conductance of
fixed points can be directly related to the rotation matrices
�Eq. �A13��,

Gij,c�s� = 2gc�s�
e2

h
��ij − R ji� . �5.1�

We will compute the conductance by the construction of the
rotation matrices associated with different boundary condi-
tions.

A. Boundary conditions

We will construct in this subsection the transformations R
corresponding to different boundary conditions. Generically,
any rotation matrix satisfying the constraint of conservation
and orthogonality can be a candidate for a physical boundary
condition. However, only some of them correspond to stable
fixed points. Below, we will calculate the R matrices for
physically motivated boundary conditions.

1. Neumann boundary condition

The Neumann boundary condition,

�

�x
��� �x��x=0 = 0 ⇔ ��� �x=0 = 0, �5.2�

corresponds to a fixed point where the three wires are decou-

pled from each other. The relation ��� �x=0=0 can be repre-
sented in terms of the left and right moving fields,
�� R= ��� L�x=0. The backscattering processes thus yield zero
scaling dimension and dominate the low energy physics. The
rotation matrix of the N BC is given as RN=1.

By using Eq. �5.1� and the rotation matrix of N BC, the
conductance is

Gij,N
c�s� = 2gc�s�

e2

h
��ij − � ji� = 0. �5.3�

2. Dirichlect boundary condition: Andreev reflection
fixed point

Since the D BC, ���x��x=0=C, cannot be imposed on all
boson fields due to the N BC imposed on the center of mass
mode, it can be only imposed on two independent fields,

�1�x� =
1
�2

���1 − �2��x��x=0 = 0, �5.4a�

�2�x� =
1
�6

���1 + �2 − 2�3��x��x=0 = 0, �5.4b�

where �1 and �2 are orthogonal to the center of mass mode.
Hence, the D BC is given by the condition

FIG. 8. �Color online� Phase diagram of a junction of two quan-
tum wires: the shaded area is common to the NN and DD stable
regions. There should be an unstable intermediary fixed point in this
range of gc�s�.
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�c�s�
R,1�2��x� = − �c�s�

L,1�2��x� . �5.5�

This transformation can be described by a rotation around u�0
by � and is given by

RD = �− 1
3

2
3

2
3

2
3 − 1

3
2
3

2
3

2
3 − 1

3

� �5.6a�

or

Rij =
1

3
�2 − 3�i,j� . �5.6b�

Then, the conductance of the D BC is

Gij,D
c�s� = 2gc�s�

e2

h
��i,j −

1

3
�2 − 3�i,j�� , �5.7a�

=2
2gc�s�

3

e2

h
�3�i,j − 1� , �5.7b�

with GS
c�s�=

8gc�s�

3 .

3. Chiral boundary condition

It is trickier to obtain the transformation corresponding to
the chiral fixed points since the rotation matrix depends on
the coupling constants. However, the pinning processes with
�=0 for the chiral fixed points provide the conditions for
constructing the rotation matrix.

Let us consider the charge sector of the chiral-like tunnel-
ing processes: a left mover at wire i scatters to a right mover
at wire i+ p, i.e., ni,�

L =1 and ni+p,�
R =−1 for all i. The scaling

dimension of these boundary operators for arbitrary rotation
matrix can be written using Eq. �4.14� as

� = �R�sinh �cêi − cosh �cêi+p� + �cosh �cêi − sinh �cêi+p��2.

�5.8�

By using the fact that �
+
=0 for all chiral boundary opera-

tors with p=1 and �
−
=0 for those with p=2 and after some

algebra, one obtains the rotation matrices

R
+
=�

− 1 + gc
2

3 + gc
2

2�1 + gc�
3 + gc

2

2�1 − gc�
3 + gc

2

2�1 − gc�
3 + gc

2

− 1 + gc
2

3 + gc
2

2�1 + gc�
3 + gc

2

2�1 + gc�
3 + gc

2

2�1 − gc�
3 + gc

2

− 1 + gc
2

3 + gc
2

� , �5.9a�

and

R
−
=�

− 1 + gc
2

3 + gc
2

2�1 − gc�
3 + gc

2

2�1 + gc�
3 + gc

2

2�1 + gc�
3 + gc

2

− 1 + gc
2

3 + gc
2

2�1 − gc�
3 + gc

2

2�1 − gc�
3 + gc

2

2�1 + gc�
3 + gc

2

− 1 + gc
2

3 + gc
2

� �5.9b�

or in the tensor form

Rij




=
1

3 + g2 ��− 3 + g2��i,j + 2�1 
 g�ij�� , �5.10�

for 

 BC, respectively. Similarly, the R matrix for the spin
sector will be in the same form as Eqs. �5.9a� and �5.9b� with
a simple substitution, gc→gs. For the case of more than three
wires, there may exist more than two “chiral” boundary con-
ditions. In this paper, we will restrict ourself in the case of
three quantum wires.

Using Eq. �5.1�, the conductance is given by

Gij,


c�s� = 2gc�s�

e2

h ��i,j −
�gc�s�

2 − 3��i,j + 2�1 
 gc�s�� j,i�

3 + gc�s�
2 �

= 2gc�s�
e2

h

2

3 + gc�s�
2 ��3�i,j − 1� 
 gc�s��ij� . �5.11�

4. Asymmetric fixed points, DA

There are boundary conditions that cannot be represented
by a simple rotation around u�0; instead, they correspond to
improper rotations. The only important fixed point that falls
into this category corresponds to the asymmetric boundary
condition �DA BC�, in which one of the wires is totally de-
coupled from the system. The matrix representation of this
boundary condition can be constructed by imposing the N
BC on the third wire and the D BC on the first and second
wires. �Here, one can choose to decouple any of the three
wires. Hence, there are three distinct DA

i BC, where i
=1,2 ,3 represent the decoupled wire. However, they are
identical up to a Z3 transformation.� The matrix representa-
tion of DA

3 BC is given by

RDA
3 = �0 1 0

1 0 0

0 0 1
� . �5.12�

According to Eq. �5.1�, the conductance tensor of the DA
3 BC

becomes

GDA
3

c�s� = 2gc�s�
e2

h � 1 − 1 0

− 1 1 0

0 0 0
� . �5.13�

Now, we can separately impose these boundary conditions
on charge and spin sectors and determine the stability of each
fixed point by computing the scaling dimensions of the
boundary operators.
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B. Boundary operators

Now, we have to write the boundary operators in terms of
redundant bosonic degrees of freedom. In principle, we need
to consider all tunneling operators between three wires at x
=0. However, since more particle processes tend to be less
relevant, we will merely consider single and two particle
tunneling processes. The scaling dimensions of these opera-
tors given the BC will be evaluated later and provide mea-
sures of relevant or irrelevant perturbations. A more system-
atic method to compute all scaling dimensions of boundary
operators, which relies on the conformal symmetry of the
system, will be introduced in the next section. From the full
spectrum of the dimensions, one will conclude that the lead-
ing order perturbations indeed come from the few particle
tunneling processes.

The single electron tunneling processes can be classified
into four groups and their Hermitian conjugates.

�1� � cycle,

S1,�
+ = ��2,�

R† �1,�
L �0 � e−i�2�2,�

R
ei�2�1,�

L
, �5.14a�

S2,�
+ = ��3,�

R† �2,�
L �0 � e−i�2�3,�

R
ei�2�2,�

L
, �5.14b�

S3,�
+ = ��1,�

R† �3,�
L �0 � e−i�2�1,�

R
ei�2�3,�

L
. �5.14c�

These boundary operators can be categorized by the nonzero
elements of particle number vectors nj,�

a for Si,�
+ :ni,�

L =1 and
ni+1,�

R =−1.
�2� � cycle,

S1,�
− = ��3,�

R† �1,�
L �0 � e−i�2�3,�

R
ei�2�1,�

L
, �5.15a�

S2,�
− = ��1,�

R† �2,�
L �0 � e−i�2�1,�

R
ei�2�2,�

L
, �5.15b�

S3,�
− = ��2,�

R† �3,�
L �0 � e−i�2�2,�

R
ei�2�3,�

L
, �5.15c�

and also classified by the nonzero elements of particle num-
ber vector for Si,�

− :ni,�
L =1 and ni−1,�

R =−1.
�3� Backscattering,

S1,�
B = ��1,�

R† �1,�
L �0 � e−i�2�1,�

R
ei�2�1,�

L
, �5.16a�

S2,�
B = ��2,�

R† �2,�
L �0 � e−i�2�2,�

R
ei�2�2,�

L
, �5.16b�

S3,�
B = ��3,�

R† �3,�
L �0 � e−i�2�3,�

R
ei�2�3,�

L
. �5.16c�

Again, we should identify the representation of the particle
number vector for Si,�

B :ni,�
L =1 and ni,�

R =−1.
�4� LL-RR combinations,

S1,�
L = ��2,�

L† �1,�
L �0 � e−i�2�2,�

L
ei�2�1,�

L
, �5.17a�

S2,�
L = ��3,�

L† �2,�
L �0 � e−i�2�3,�

L
ei�2�2,�

L
, �5.17b�

S3,�
L = ��1,�

L† �3,�
L �0 � e−i�2�1,�

L
ei�2�3,�

L
, �5.17c�

S1,�
R = ��2,�

R† �1,�
R �0 � e−i�2�2,�

R
ei�2�1,�

R
, �5.17d�

S2,�
R = ��3,�

R† �2,�
R �0 � e−i�2�3,�

R
ei�2�2,�

R
, �5.17e�

S3,�
R = ��1,�

R† �3,�
R �0 � e−i�2�1,�

R
ei�2�3,�

R
. �5.17f�

Then, we can identify the representation of the particle num-
ber vector for Si,�

L�R� :ni,�
L�R�=1 and ni+1,�

L�R� =−1.
Here, S indicates “single” particle processes. Notice that

there can be no spin flips in single particle processes. How-
ever, the scaling dimensions of multiparticle tunneling pro-
cesses depend on the spin degree of freedom. The multipar-
ticle operators can be constructed from the combinations of
single particle boundary operators and their Hermitian con-
jugates. Here, we list some of the two particle processes that
will be useful for identifying the leading order perturbations.

�1� Pair tunneling in � cycle,

PT1
+ = S1,↑

+ S1,↓
+ , �5.18a�

PT2
+ = S2,↑

+ S2,↓
+ , �5.18b�

PT3
+ = S3,↑

+ S3,↓
+ . �5.18c�

Then, we can identify the representation of the particle num-
ber vector for PTi

+ :ni,↑
L =ni,↓

L =1 and ni+1,↑
R =ni+1,↓

R =−1.
�2� Pair tunneling in � cycle,

PT1
− = S1,↑

− S1,↓
− , �5.19a�

PT2
− = S2,↑

− S2,↓
− , �5.19b�

PT3
− = S3,↑

− S3,↓
− . �5.19c�

In terms of the particle number vector, we obtain for
PTi

− ,ni,↑
L =ni,↓

L =1 and ni−1,↑
R =ni−1,↓

R =−1.
�3� Pair tunneling in LL-RR combinations with net spin,

PTS1,�
LR = S1,�

L S1,�
R , �5.20a�

PTS2,�
LR = S2,�

L S2,�
R , �5.20b�

PTS3,�
LR = S3,�

L S3,�
R . �5.20c�

In terms of the particle number vector, we obtain for
PTSi,�

LR ,ni,�
L =ni,�

R =1 and ni+1,�
L =ni+1,�

R =−1.
�4� Pair tunneling in LL-RR combinations without net

spin,

PT1,�
LR = S1,�

L S1,−�
R , �5.21a�

PT2,�
LR = S2,�

L S2,−�
R , �5.21b�

PT3,�
LR = S3,�

L S3,−�
R . �5.21c�

One can read the particle number vector off for PTi,�
LR :ni,�

L

=ni,−�
R =1 and ni+1,�

L =ni+1,−�
R =−1.

�5� Pair backscattering in the same wire,

PB1 = S1,↑
B S1,↓

B , �5.22a�

PB2 = S2,↑
B S2,↓

B , �5.22b�
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PB3 = S3,↑
B S3,↓

B . �5.22c�

The representations of non-zero elements of particle number
vector become for PBi :ni,↑

L =ni,↓
L =1 and ni,↑

R =ni,↓
R =−1.

�6� Pair backscattering in the different wires without net
spin,

PB12,� = S1,�
B S2,−�

B , �5.23a�

PB23,� = S2,�
B S3,−�

B , �5.23b�

PB31,� = S3,�
B S1,−�

B . �5.23c�

The nonzero elements of the particle number vector are
given for PBij,� :ni,�

L =nj,−�
L =1 and ni,�

R =nj,−�
R =−1.

�7� Pair backscattering in the different wires with net spin,

PBS12,� = S1,�
B S2,�

B , �5.24a�

PBS23,� = S2,�
B S3,�

B , �5.24b�

PBS31,� = S3,�
B S1,�

B . �5.24c�

The nonzero elements of the particle number vector are
given for PBSij,� :ni,�

L =nj,�
L =1 and ni,�

R =nj,�
R =−1.

�8� Pair exchange processes,

PE1,� = S1,�
+ S2,−�

− , �5.25a�

PE2,� = S2,�
+ S3,−�

− , �5.25b�

PE3,� = S3,�
+ S1,−�

− . �5.25c�

The nonzero elements of the particle number vector are
given for PEi,� :ni,�

L =ni+1,−�
L =1 and ni+1,�

R =ni,−�
R =−1.

�9� Particle-hole pair tunneling in � cycle,

PH1
+ = S1,↑

+ S1,↓
+† , �5.26a�

PH2
+ = S2,↑

+ S2,↓
+† , �5.26b�

PH3
+ = S3,↑

+ S3,↓
+† . �5.26c�

The nonzero elements of the particle number vector are
given for PHi

+ :ni,↑
L =ni+1,↓

R =1 and ni,↓
L =ni+1,↑

R =−1.
�10� Particle-hole pair tunneling in � cycle,

PH1
− = S1,↑

− S1,↓
−† , �5.27a�

PH2
− = S2,↑

− S2,↓
−† , �5.27b�

PH3
− = S3,↑

− S3,↓
−† . �5.27c�

The nonzero elements of the particle number vector are
given for PHi

− :ni,↑
L =ni−1,↓

R =1 and ni,↓
L =ni−1,↑

R =−1.
�11� Particle-hole exchange processes,

PHE1,� = S1,�
+ S2,−�

−† , �5.28a�

PHE2,� = S2,�
+ S3,−�

−† , �5.28b�

PHE3,� = S3,�
+ S1,−�

−† . �5.28c�

Here, the nonzero elements of the particle number vector are
given for PHEi,� :ni,�

L =ni,−�
R =1 and ni,�

R =ni+1,−�
L =−1.

Using the particle number vectors of each boundary op-
erator, the dimensions of each operator given the BC can be
evaluated using Eq. �4.14�. Hence, the stability of each BC
can be determined by considering the relevant or irrelevant
perturbations induced by the boundary operators.

C. Stability of fixed points

This section is organized in terms of the different bound-
ary conditions. The boundary conditions are imposed sepa-
rately on the charge and spin degrees of freedom. We will
evaluate the scaling dimensions of the boundary operators
corresponding to the leading order perturbations.

1. NN boundary condition

The NN BC corresponds to the totally reflective fixed
point in both charge and spin degrees of freedom. Hence, all
backscattering processes �Eqs. �5.16� and �5.22�–�5.24�� and
their Hermitian conjugates will have zero scaling dimen-
sions. Now, we identify the boundary operators associated
with the leading order perturbations.

All other single particle processes contribute to the lead-
ing order perturbations with scaling dimension

�NN
S =

1

2gc
+

1

2gs
. �5.29�

The pair tunneling operators in the � and � cycles �Eqs.
�5.18� and �5.19��, the pair tunneling in LL-RR operators
without net spin degree of freedom in Eq. �5.21�, and the
particle-hole exchange operators in Eq. �5.28� are also lead-
ing order perturbations with the scaling dimension

�NN
PT


= �NN
PTLR

= �NN
PHE =

2

gc
. �5.30�

Finally, the pair exchange operators in Eq. �5.25� have the
scaling dimension

�NN
PE =

2

gs
�5.31�

and are therefore leading order perturbations.
Now, we can identify the stable region when all leading

order perturbations are irrelevant, ��1, and obtain the basin
of attraction shown in Fig. 2.

2. DD boundary equation

The DD BC corresponds to the Andreev reflection fixed
point in which all pair tunneling LL-RR operators with net
spin �Eq. �5.20�� have zero scaling dimension. Note that the
dominant processes are multiparticle operators.

First, the single particle processes in the � and � cycles
in Eqs. �5.14� and �5.15� are leading order operators and
have the scaling dimension
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�DD
S
 =

1

6
�gc + gs� . �5.32�

In addition, the pair tunneling operators in 
 cycles in Eqs.
�5.18� and �5.19� and the pair exchange operators in Eq.
�5.25� are also leading order perturbations with scaling di-
mension

�DD
PT
 =

2

3
gc. �5.33�

Moreover, the particle-hole pair tunneling operators in Eqs.
�5.26� and �5.27� and the particle-hole exchange operators in
Eq. �5.28� have scaling dimension

�DD
PHEi = �DD

PHi



=
2

3
gs. �5.34�

Thus, the basin of the attraction corresponding to the DD
fixed point can be obtained by requiring ��1 and is shown
in Fig. 3. Unlike the case in junction of two quantum wires,
the stable region of NN BC and DD BC do not overlap.

3. ND boundary condition

The ND BC corresponds to a fixed point, which describes
a charge insulator but spin conductor. The pair exchange op-
erators in Eq. �5.25� fix the boundary condition with �ND

PEi,�

=0. Intuitively, the pair exchange processes induce a pure
spin current depicted in the inset of Fig. 4. Furthermore, the
processes of pair backscattering in the same wire �Eq. �5.22��
are pinned as well and indicate that there is no charge cur-
rent.

The leading order perturbations are attributed to the op-
erators for the single particle tunneling in the 
 cycles �Eqs.
�5.14� and �5.15�� with the scaling dimension

�ND
S


=
1

2gc
+

gs

6
. �5.35�

The single particle backscattering processes in Eq. �5.16�, the
pair backscattering processes in Eq. �5.24�, and the particle-
hole pair tunneling in Eqs. �5.26� and �5.27� are also leading
order perturbations with

�ND
SB

= �ND
PBS =

2gs

3
. �5.36�

Moreover, the pair tunneling operators in Eqs. �5.18�–�5.20�
are also leading order perturbations with scaling dimension

�ND
PT


= �ND
PTSLR

=
2

gc
. �5.37�

Again, we can identify the basin of attraction for the ND
fixed point by requiring all ��1, as shown in Fig. 4.

4. DN boundary condition

The DN BC is the counterpart of the ND BC and corre-
sponds to a fixed point where the system becomes a charge
conductor but spin insulator. Here, the particle-hole ex-
change operators in Eq. �5.28� fix the boundary condition

with �DN
PHEi,� =0. As illustrated in the inset of Fig. 4, there is

no spin current in these tunneling processes. Moreover, the
pair tunneling operators in the LL-RR channel without net
spin Eq. �5.21� are also pinned at DN fixed point since they
also represent the processes with only net charge current.

The leading order perturbations are attributed to the single
particle processes in the 
 cycles in Eqs. �5.14� and �5.15�
with scaling dimension

�DN
S


=
gc

6
+

1

2gs
. �5.38�

The backscattering in Eq. �5.16�, the pair tunneling operators
both in 
 cycles in Eqs. �5.18� and �5.19�, and the pair
backscattering processes involving different wires in Eqs.
�5.23� and �5.24� are leading order perturbations with

�DN
SB

= �DN
PT


= �DN
PBij = �DN

PBSij =
2gc

3
. �5.39�

Finally, the pair tunneling operators in the LL-RR channel
with the net spin in Eq. �5.20� and the particle-hole pair
tunneling in both 
 cycles in Eqs. �5.26� and �5.27� repre-
sent the other set of leading order perturbations with scaling
dimension

�DN
PTSLR

= �DN
PH


=
2

gs
. �5.40�

Again, the basin of attraction can be found for the DN BC by
requiring all ��1 and is shown in Fig. 4.

5. �+�+ and �−�− boundary conditions

The 
+
+ BC describes a fixed point in which both
charge and spin currents have preferred flow directions
1→2, 2→3, and 3→1. Thus, at the 
+
+ fixed point, the
processes involving current flows in these particular direc-
tions will fix the boundary condition. For instance, the pure
charge current processes in the � cycle �Eqs. �5.14� and
�5.18�� and the pure spin current processes in the � cycle
�Eq. �5.26�� have zero scaling dimension.

Notice that the single particle tunneling operators in the
� cycle have zero scaling dimension regardless of the spin
degree of freedom. However, boundary operators represent-
ing pure spin current, which are constructed from the
particle-hole pair tunneling, have zero scaling dimension
only when the spin current is in the � cycle, i.e., �PH−

�0.
Similarly, operators corresponding to the pure charge cur-
rent, which are constructed from pair tunneling processes,
have zero scaling dimension only when the charge current
flows in the � cycle, i.e., �PT−

�0.
One can confirm that all single particle processes except

the � cycle and some multiparticle processes provide lead-
ing order perturbations with scaling dimension

�
+
+
=

2gc

3 + gc
2 +

2gs

3 + gs
2 . �5.41�

The scenario of 
−
− BC is very similar to the case of

+
+ with relative changes from the � cycle to the � cycle.
The leading order perturbations have the same scaling di-
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mension as that of the 
+
+ BC. Thus, both fixed points
exactly have the same basin of attraction in the coupling
constant space. The stability of the two fixed points is deter-
mined by the direction of the magnetic flux threaded through
the ring. We then plot the stable region of the fixed points in
Fig. 5.

6. DADA boundary condition

Without loss of generality, we will only consider in this
section the boundary condition where the third wire is de-
coupled, DA

3 , both in charge and spin degrees of freedom.
The situations with the first or second wire decoupled are
similar.

In the presence of the Z3 symmetry, the operators in the
same group listed in the previous section have the same scal-
ing dimension. However, the DADA fixed point breaks the Z3
symmetry; hence, the operators in the same group may have
different dimensions. For instance, the operators in Eqs.
�5.14a� and �5.15a� have zero scaling dimension and fix the
BC, while the rest of the operators in the 
 cycle are leading
order perturbations with the scaling dimension

� =
3 + gc

2

8gc
+

3 + gs
2

8gs
. �5.42�

In addition, the single particle backscattering in the third
wire in Eq. �5.16c� has zero scaling dimension at the DA

3DA
3

fixed point, while the backscattering at the first or second
wire becomes another leading order perturbation,

� =
1

2
�gc + gs� . �5.43�

Some of the operators associated with the leading order per-
turbations are listed below,

Operators Dimensions

PTS2�3�,�
LR 3

2 �gc
−1 + gs

−1�

PT2�3�

 ,PT2�3�,�

LR ,PHE2�3�,�
3

2gc
+

gs

2

PT1,�
LR ,PB12,� 2gs

PB1�2� 2gc

PE2�3�,�
gc

2
+

3

2gs

.

�5.44�

Thus, we identify the basin of attraction for DADA BC and
plot it in Fig. 6.

7. NDA and DAN boundary condition: A demonstration
of the unstable fixed points

In principle, one can arbitrarily combine different BCs in
charge and spin sectors to obtain the new boundary condi-
tions. However, the rest of them are unstable against pertur-
bations. We discuss here two unstable fixed points, NDA and
DAN BC, and show explicitly that there are always leading
order perturbations with scaling dimensions smaller than 1 in

any region of the interaction parameter space. Considering
the case where the third wire is decoupled from the ring, the
backscattering in the third wire fixes the BC in both NDA

3 and
DA

3N fixed points. The operators PH1
+ and PH2

−, correspond-
ing to the processes with pure spin current between the first
and second wires, have zero scaling dimensions at the NDA

3

BC, while the operators PT1
+ and PT2

−, corresponding to the
processes with pure charge current, have zero dimension at
the DA

3N BC. Hence, we conclude that NDA
3 BC corresponds

to a fixed point with pure spin current between the first and
second wires, while DA

3N BC corresponds to a fixed point
with pure charge current between them.

We list below some operators which are crucial for deter-
mining the stability of the fixed points with their scaling
dimensions,

�
NDA

3

S1�2�,�
B

=
gs

2
, �

NDA
3

PE2�3�,� =
3

2gs
, �5.45�

�
DA

3N

S1�2�,�
B

=
gc

2
, �

DA
3N

PT2�3�,�
LR

=
3

2gc
. �5.46�

Observe that �
NDA

3
S1�2�,�

B

and �NDA
3

PE2�3�,� cannot be larger than 1 at

the same point in the parameter space; �
DA

3N

S1�2�,�
B

and �
DA

3N

PT2�3�,�
LR

cannot either. Hence, we can conclude that NDA and DAN
fixed points are unstable against the perturbations.

D. Summary of delayed evaluation of boundary condition

We have demonstrated in this section how to implement
the DEBC method for obtaining the scaling dimensions of
the boundary operators and determining the stability of dif-
ferent fixed points. We find that the DEBC method provides
a simple way to examine the junction systems and to deter-
mine the phase diagram. However, the main drawback of this
method is that one has to determine the scaling dimensions
of “all” boundary operators in each given BC. As mentioned
in this section, we have to rely on the conjecture that opera-
tors involving more particles are less relevant to simplify the
computation. Hence, in the next two sections, we shall pro-
vide the confirmation of our results through the approach of
boundary conformal field theory where the full spectrum of
the scaling dimensions of the boundary operators can be ex-
plicitly identified.

VI. REVIEW OF BOUNDARY CONFORMAL FIELD
THEORY

The application of BCFT to the analysis of critical phe-
nomena was developed by Cardy and widely applied to the
Kondo problem and one-dimensional problems.30–32 In the
BCFT, conformally invariant boundary conditions are formu-
lated in terms of boundary states. Here, the boundary states
belong to the Hilbert space of the theory with the periodic
boundary condition in the space direction. Considering the
Fermi statistics of the electrons, the structure of the Hilbert
space is twisted compared to that of the standard free boson.
The twisted structure affects the possible boundary states, the
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scaling dimensions of the boundary operators, and the stabil-
ity of the fixed points.

In this section, we will first review the mode expansion of
bosonic fields �c�s� and �c�s� and derive the twisted structure
of a TLL quantum wire for spin-1

2 electrons. A simplified
version of the BCFT, exclusively for nonresonant tunneling,8

will be implemented by projecting out the degree of freedom
corresponding to the total charge and spin. As a demonstra-
tion, we compute the partition function and obtain the scal-
ing dimensions of the boundary operators corresponding to a
boundary state for the case of a junction of two quantum
wires.

A. Review of mode expansions of boson fields and
derivation of twisted structure

The BCFT of free bosons can be applied to the system of
interacting electrons via bosonization. However, due to the
Fermi statistics of the electrons, there are various differences
compared to the standard compactified boson field theory. In
this section, the effect of the Fermi statistics will be imple-
mented in terms of a twisted structure in the Hilbert space of
the free boson theory.

Since the Matsubara formalism for fermions implies an
antiperiodic boundary condition in the imaginary time, the
space direction will also have an antiperiodic boundary con-
dition after the modular transformation. The boundary con-
dition should be independently imposed on left and right
movers,

�R�L�,��t,x� = − �R�L�,��t,x + �� . �6.1�

In the case of free fermions, g=1, the boundary condition
becomes

exp�i�2�R�L�,��t,��� = − exp�i�2�R�L�,��t,0�� . �6.2�

Since ��R�L� ,�R�L���0, it is not clear how to determine the
boundary condition on the boson field from Eq. �6.2�. We
refer to Ref. 7 for the proof that the antiperiodic BC on
fermions leads to the periodic BC on bosons. Precisely, the
right and left moving boson fields �R�L� are periodic vari-
ables,

�R�L�,��t,x + �� � �R�L�,��t,x� + �2�n , �6.3�

where �n�Z�. The mode expansion of the boson fields com-
pactified on a circle of radius 1 /�2 becomes

�R,��x−� = �̂0,�
R +

�2�

�
Q̂�

Rx−

+
1
�2

�
n=1

�
1
�n

�an,�
R e−i�2�n/��x− + H.c.� , �6.4a�

�L,��x+� = �̂0,�
L +

�2�

�
Q̂�

Lx+

+
1
�2

�
n=1

�
1
�n

�an,�
L e−i�2�n/��x+ + H.c.� , �6.4b�

where �2Q̂�
R�L�, the momentum variable conjugating to �̂0,�

R�L�,

have eigenvalues �2 times an integer, an,�
R/L are oscillator

modes, and x
� t
x.
Following the standard bosonization scheme, the indepen-

dent charge and spin modes are defined as

�R�L�,c =
1
�2

��R�L�,↑ + �R�L�,↓� , �6.5a�

�R�L�,s =
1
�2

��R�L�,↑ − �R�L�,↓� . �6.5b�

Hence, the mode expansions of the boson fields correspond-
ing to the charge and spin degrees of freedom become

�R,c�s� = �̂0,c�s�
R +

�

�
Q̂c�s�

R t−

+
1
�2

�
n=1

�
1
�n

�an,c�s�
R e−i�2�n/��x− + H.c.� , �6.6a�

�L,c�s� = �̂0,c�s�
L +

�

�
Q̂c�s�

L t+

+
1
�2

�
n=1

�
1
�n

�an,c�s�
L e−i�2�n/��x+ + H.c.� , �6.6b�

with the definitions

�̂0,c�s�
R�L� =

1
�2

��̂0,↑
R�L� 
 �̂0,↓

R�L�� ,

an,c�s�
R�L� =

1
�2

�an,↑
R�L� 
 an,↓

R�L��, Q̂c�s�
R�L� = Q̂↑

R�L� 
 Q̂↓
R�L�.

�6.6c�

Notice that the eigenvalues of the operators Q̂c�S�
R�L� follow a

special relation

Qc
R�L� = Qs

R�L��mod 2� , �6.7�

which is named as gluing conditions.
Now, let us define the new boson fields in the new basis,

�c�s� = �R,c�s� + �L,c�s�, �c�s� = �L,c�s� − �R,c�s�. �6.8�

Following Eqs. �6.6a� and �6.6b�, the mode expansion of the
new fields is given by

�c�s� = �̂0,c�s� +
�

�
�Q̂c�s�t + Q̃

ˆ
c�s�x�

+
1
�2

�
n=1

�
1
�n

�an,c�s�
R e−i�2�n/��x− + an,c�s�

L e−i�2�n/��x+ + H.c.� ,

�6.9a�
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�c�s� = �̂0,c�s� +
�

�
�Q̃ˆ c�s�t + Q̂c�s�x�

+
1
�2

�
n=1

�
1
�n

�an,c�s�
L e−i�2�n/��x+ − an,c�s�

R e−i�2�n/��x− + H.c.� ,

�6.9b�

where

�̂0,c�s� = �̂0,c�s�
L + �̂0,c�s�

R , �̂0,c�s� = �̂0,c�s�
L − �̂0,c�s�

R ,

Q̂c�s� = Q̂c�s�
L + Q̂c�s�

R , Q̃
ˆ

c�s� = Q̂c�s�
L − Q̂c�s�

R . �6.9c�

A new gluing condition can be derived from Eq. �6.7�,

Qc = Qs = Q̃c = Q̃s�mod 2� , �6.10a�

Qc + Qs + Q̃c + Q̃s = 0�mod 4� . �6.10b�

Hence, the periodic boundary conditions of the fields �c�s�
and �c�s� are of the forms

�c�s� � �c�s� + �Q̃c�s�, �c�s� � �c�s� + �Qc�s�, �6.11�

which are accompanied by the gluing condition in Eq. �6.10�.
We refer to this as a “twisted structure,” which reflects the
fact that the bosons arise from the bosonized fermions. We
have only discussed the mode expansion of the free fermi-
ons, g=1, so far. However, similar results can be carried over
to the case of interacting fermions with arbitrary g. The
mode expansions of �c�s� and �c�s� become

�c�s� = �̂0,c�s� +
�

�
� 1

gc�s�
Q̂c�s�t + Q̃

ˆ
c�s�x�

+
1

�2gc�s�
�
n=1

�
1
�n

�an,c�s�
R e−i�2�n/��x−

+ an,c�s�
L e−i�2�n/��x+ + H.c.� , �6.12a�

�c�s� = �̂0,c�s� +
�

�
�Q̃ˆ c�s�t + gc�s�Q̂c�s�x�

+�gc�s�

2 �
n=1

�
1
�n

�an,c�s�
L e−i�2�n/��x+

− an,c�s�
R e−i�2�n/��x− + H.c.� , �6.12b�

following the same periodic boundary conditions in Eq.
�6.11� and gluing conditions in Eq. �6.10�.

B. Junction of two quantum wires for spin-1
2 electrons

In this subsection, we analyze the stability of the junction
of two quantum wires for spin-1

2 electrons by computing the
partition function and the scaling dimensions of the bound-
ary operators provided that charge and spin are conserved
and there is no resonant tunneling. This method has been
pursued by Wong and Affleck28 for a junction of two quan-

tum wires; here, we follow closely their approach and only
differ in that we make use of the conservation laws at the
very beginning, thus changing the gluing conditions and sim-
plifying the computation of scaling dimensions obtained
from the expansion of the partition function.

1. finite-size spectrum and bulk operators

Let us consider two sets of independent boson fields �c�s�
i

and �c�s�
i , where i=1,2 label wires 1 and 2. Since total charge

and spin are conserved, it is convenient to work in an alter-
native basis,

�c�s�
0 �

1
�2

��c�s�
1 + �c�s�

2 �, �c�s� �
1
�2

��c�s�
1 − �c�s�

2 � ,

�6.13�

where the total charge and spin modes are explicit. Using
Eqs. �6.12a� and �6.12b�, the mode expansions of �c�s�

0 and
�c�s� become

�c�s�
0 = �̂0,c�s�

0 +
�

�2�
� Q̂c�s�

0

gc�s�
t + Q̃

ˆ
c�s�
0 x�

+
1

�2gc�s�
�
n=1

�
1
�n

�an,c�s�
R,0 e−i�2�n/��x−

+ an,c�s�
L,0 e−i�2�n/��x+ + H.c.� , �6.14a�

�c�s� = �̂0,c�s� +
�

�2�
� Q̂c�s�

gc�s�
t + Q̃

ˆ
c�s�x�

+
1

�2gc�s�
�
n=1

�
1
�n

�an,c�s�
R e−i�2�n/��x−

+ an,c�s�
L e−i�2�n/��x+ + H.c.� , �6.14b�

where

�0,c�s�
0 =

1
�2

��0,c�s�
1 + �0,c�s�

2 �, �0,c�s� =
1
�2

��0,c�s�
1 − �0,c�s�

2 � ,

�6.14c�

an,c�s�
R/L,0 =

1
�2

�an,c�s�
R/L,1 + an,c�s�

R/L,2�, an,c�s�
R/L =

1
�2

�an,c�s�
R/L,1 − an,c�s�

R/L,2� ,

�6.14d�

and the winding operators follow

Q̂c�s�
0 = Q̂c�s�

1 + Q̂c�s�
2 , Q̂c�s� = Q̂c�s�

1 − Q̂c�s�
2 ,

Q̃
ˆ

c�s�
0 = Q̃

ˆ
c�s�
1 + Q̃

ˆ
c�s�
2 , Q̃

ˆ
c�s� = Q̃

ˆ
c�s�
1 − Q̃

ˆ
c�s�
2 . �6.14e�

The eigenvalues of these winding operators are integer and
follow gluing conditions derived from Eq. �6.10�:

Qc
0 = Qs

0 = Q̃c
0 = Q̃s

0 = Qc = Qs = Q̃c

= Q̃s�mod 2� �condition 1� ,
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Qc
0 + Q̃c

0 + Qs
0 + Q̃s

0 = 0�mod 4� �condition 2� ,

Qs
0 + Q̃c

0 + Qs + Q̃c = 0�mod 4� �condition 3� ,

Qs
0 + Qc

0 + Qs + Qc = 0�mod 4� �condition 4� ,

Qc
0 + Qs

0 + Q̃c
0 + Q̃s

0 + Qc + Qs + Q̃c + Q̃s

= 0�mod 8� �condition 5� . �6.15�

Using the Lagrangian density,

L = �
j=1,2

gc

4�
���� j,c�2 +

gs

4�
���� j,s�2,

the Hamiltonian of the two quantum wires can be written in
terms of the winding and number operators as follows:

H�
P =

2�

�
��Q̂c

0�2

16gc
+

gc�Q̃
ˆ

c
0�2

16
+

�Q̂c�2

16gc
+

gc�Q̃
ˆ

c�2

16
+

�Q̂s
0�2

16gs

+
gs�Q̃

ˆ
s
0�2

16
+

�Q̂s�2

16gs
+

gs�Q̃
ˆ

s�2

16
+ �

m=1

�

m�n̂m,c
L,0 + n̂m,c

R,0 + n̂m,s
L,0

+ n̂m,s
R,0� + �

m=1

�

m�n̂m,c
L + n̂m,c

R + n̂m,s
L + n̂m,s

R �� . �6.16�

The corresponding bulk primary operators are in the form

exp�i�Qc
0�c

0 + Q̃c
0�c

0 + Qc�c + Q̃c�c

+ Qs
0�s

0 + Q̃s
0�s

0 + Qs�s + Q̃s�s�/�2�2�� , �6.17�

with the scaling dimensions

�Qc
0�2

16gc
+

gc�Q̃c
0�2

16
+

�Qc�2

16gc
+

gc�Q̃c�2

16
+

�Qs
0�2

16gs

+
gs�Q̃s

0�2

16
+

�Qs�2

16gs
+

gs�Q̃s�2

16
. �6.18�

2. Boundary states

Following Cardy, the boundary conditions can be repre-
sented in terms of the corresponding boundary states upon
modular transformation. Without going into the detail, we
construct the boundary states for the case of two quantum
wires.

Because of the conservation of total charge and spin, it is
natural to impose the Neumann �N� boundary condition on
the center of mass modes, �c�s�

0 . Since the N boundary con-
dition on �0 implies the Dirichlet boundary condition on the
dual field �0, the winding of �0 along the boundary should
be zero; hence, the corresponding winding number Qc�s�

0 =0.

Because of the gluing conditions, the quantum numbers Q̃c�s�
0

are now restricted to even numbers and follow some extra
constraints. The N boundary state for both center of mass
modes is

�N0� = GN
0 exp��

n=1

�

an,c
0,L†an,c

0,R†�exp��
n=1

�

an,s
0,L†an,s

0,R†�
� �

Q̃c�s�
0 =−�

��

exp�− iQ̃c
0�0,c

0 �

�exp�− iQ̃s
0�0,s

0 ��Q̃c
0,0� � �Q̃s

0,0� , �6.19�

where prime over the summation indicates the gluing condi-
tions and GN

0 is the ground state degeneracy which will be
fixed by Cardy’s consistency condition.28,30,33 The vacuum

states are denoted by the winding number �Q̃� ,Q�� of each
independent boson field. For simplicity, the phases �0,c�s�

0

correspond to the applied voltages in the wires and will not
affect the boundary physics; hence, we will take these phases
as zero.

Despite the fixed boundary condition for the center of
mass modes, the other degrees of freedom can have different
boundary conditions. In the case of a junction of two wires,
there are two possible boundary states, which are Neumann
and Dirichlet boundary conditions on the � field �N and D
boundary states�. Similar to the case of the center of mass
mode, the N boundary state for the dynamical fields �c�s� is
given by

�Nc�s�� = GN,c�s� exp��
n=1

�

an,c�s�
L† an,c�s�

R† � �
Q̃c�s�=−�

��

�Q̃c�s�,0� .

�6.20�

The D boundary state implies that the winding of �c�s� along
the boundary is zero. As a result, the quantum number

Q̃c�s�=0 and Qc�s� is restricted to even integers with more
constraints from the gluing conditions. Hence, the boundary
state is given by

�Dc�s�� = GD,c�s� exp�− �
n=1

�

an,c�s�
L† an,c�s�

R† � �
Qc�s�=−�

��

�0,Qc�s�� ,

�6.21�

where the minus sign inside the exponential function comes
from the identification, �R=−�L+C.

3. Projection of center of mass modes

In principle, we have everything we need to compute the
partition function,

�B�e−lH�
P
�B� , �6.22�

with a given boundary state and gluing conditions. Upon
modular transformation, one can read off the scaling dimen-
sions of primary boundary operators. However, the gluing
conditions complicate the calculation of the partition func-
tion. If the charge and spin are conserved, there is a simpler
way to find the dimensions of the boundary operators. Since
the boundary state of �c�s�

0 is Neumann, only the Qc�s�
0 =0

states occur. Hence, the constraints of Eq. �6.15� reduce to
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Q̃c
0 = Q̃s

0 = Qc = Qs = Q̃c = Q̃s = 0�mod 2� ,

Q̃c
0 + Q̃s

0 = 0�mod 4� ,

Q̃c
0 + Qs + Q̃c = 0�mod 4� ,

Qs + Qc = 0�mod 4� ,

Q̃c
0 + Q̃s

0 + Qc + Qs + Q̃c + Q̃s = 0�mod 8� . �6.23�

From the first constraint, we obtain

Q̃c
0 = 2ñc

0, Q̃s
0 = 2ñs

0, Qc = 2nc,

Qs = 2ns, Q̃c = 2ñc, Q̃s = 2ñs. �6.24a�

Here, all n� are integers and follow the constraints below,

ñc
0 + ñs

0 = 0�mod 2� ,

ñc
0 + ns + ñc = 0�mod 2� ,

ns + nc = 0�mod 2� ,

ñc
0 + ñs

0 + nc + ns + ñc + ñs = 0�mod 4� . �6.24b�

There are four sets of possible parametrizations of n� that
satisfy all the constraints,

ñc
0 = 2m̃c

0, ñs
0 = 2m̃s

0, ñc = 2m̃c, nc = 2mc,

ñs = 2m̃s, ns = 2ms �set a� ,

ñc
0 = 2m̃c

0, ñs
0 = 2m̃s

0, ñc = 2m̃c + 1, nc = 2mc + 1,

ñs = 2m̃s + 1, ns = 2ms + 1 �set b� ,

ñc
0 = 2m̃c

0 + 1, ñs
0 = 2m̃s

0 + 1, ñc = 2m̃c + 1, nc = 2mc,

ñs = 2m̃s + 1, ns = 2ms �set c� ,

ñc
0 = 2m̃c

0 + 1, ñs
0 = 2m̃s

0 + 1, ñc = 2m̃c, nc = 2mc + 1,

ñs = 2m̃s, ns = 2ms + 1 �set d� , �6.24c�

with the constraint m̃c
0+ m̃s

0+ m̃c+mc+ m̃s+ms=0�mod 2� for
each set.

In order to disentangle the Hilbert space of �c�s�
0 from the

total Hilbert space, we denote a state with quantum numbers

Q̃c�s� and Qc�s� in the Hilbert space of �c�s� by ��Q̃c�s�,Qc�s�
�.

Note that this state is proportional to �Q̃c�s� ,Qc�s��. Although
only ��Q̃c�s�,0

� is nonzero in the N state and only ��0,Qc�s�
� is

nonzero in the D state case, we would like to consider the
general case. Using Eqs. �6.24a� and �6.24c� and considering

that m̃c�s�
0 =2l̃c�s� or m̃c�s�

0 =2l̃c�s�+1, the boundary states corre-
sponding to the center of mass modes can be generally writ-
ten as

�N0,c�s�
0 � = �4gc�s��1/4 exp��

n=1

�

an,c�s�
0,L† an,c�s�

0,R† � �
l̃c�s��Z

�8l̃c�s�
0 ,0� ,

�6.25a�

�N2,c�s�
0 � = �4gc�s��1/4 exp��

n=1

�

an,c�s�
0,L† an,c�s�

0,R† � �
l̃c�s��Z

�8l̃c�s�
0 + 4,0� ,

�6.25b�

�N1,c�s�
0 � = �4gc�s��1/4 exp��

n=1

�

an,c�s�
0,L† an,c�s�

0,R† � �
l̃c�s��Z

�8l̃c�s�
0 + 2,0� ,

�6.25c�

�N3,c�s�
0 � = �4gc�s��1/4 exp��

n=1

�

an,c�s�
0,L† an,c�s�

0,R† � �
l̃c�s��Z

�8l̃c�s�
0 + 6,0� ,

�6.25d�

where combinations �N0,c�s�
0 � and �N2,c�s�

0 � correspond to sets
�a� and �b� in Eq. �6.24c� and combinations �N1,c�s�

0 � and
�N3,c�s�

0 � correspond to sets �c� and �d�. Hence, the most gen-
eral boundary state can be written as

�B� = ��N0,c
0 � � �N0,s

0 � + �N2,c
0 � � �N2,s

0 �� � �
�

���4m̃c,4mc
� � ��4m̃s,4ms

��

+ ��N0,c
0 � � �N2,s

0 � + �N2,c
0 � � �N0,s

0 �� � �
�

���4m̃c,4mc
� � ��4m̃s,4ms

��

+ ��N0,c
0 � � �N0,s

0 � + �N2,c
0 � � �N2,s

0 �� � �
�

���4m̃c+2,4mc+2� � ��4m̃s+2,4ms+2��

+ ��N0,c
0 � � �N2,s

0 � + �N2,c
0 � � �N0,s

0 �� � �
�

���4m̃c+2,4mc+2� � ��4m̃s+2,4ms+2��

+ ��N1,c
0 � � �N1,s

0 � + �N3,c
0 � � �N3,s

0 �� � �
�

���4m̃c+2,4mc
� � ��4m̃s+2,4ms

��
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+ ��N1,c
0 � � �N3,s

0 � + �N3,c
0 � � �N1,s

0 �� � �
�

���4m̃c+2,4mc
� � ��4m̃s+2,4ms

��

+ ��N1,c
0 � � �N1,s

0 � + �N3,c
0 � � �N3,s

0 �� � �
�

���4m̃c,4mc+2� � ��4m̃s,4ms+2��

+ ��N1,c
0 � � �N3,s

0 � + �N3,c
0 � � �N1,s

0 �� � �
�

���4m̃c,4mc+2� � ��4m̃s,4ms+2�� , �6.26�

where the prime over the summation indicates the constraint m̃c+mc+ m̃s+ms=0�mod 2� for each term and the double prime
over the summation indicates the constraint m̃c+mc+ m̃s+ms=1�mod 2�.

Using Eq. �6.22�, the diagonal partition function is given by

ZBB = �ZN0,c
0 ZN0,s

0 + ZN2,c
0 ZN2,s

0 ����Z4m̃c,4mc
Z4m̃s,4ms

� + �ZN0,c
0 ZN2,s

0 + ZN2,c
0 ZN0,s

0 ����Z4m̃c,4mc
Z4m̃s,4ms

�

+ �ZN0,c
0 ZN0,s

0 + ZN2,c
0 ZN2,s

0 ����Z4m̃c+2,4mc+2Z4m̃s+2,4ms+2� + �ZN0,c
0 ZN2,s

0 + ZN2,c
0 ZN0,s

0 ����Z4m̃c+2,4mc+2Z4m̃s+2,4ms+2�

+ �ZN1,c
0 ZN1,s

0 + ZN3,c
0 ZN3,s

0 ����Z4m̃c+2,4mc
Z4m̃s+2,4ms

� + �ZN1,c
0 ZN3,s

0 + ZN3,c
0 ZN1,s

0 ����Z4m̃c+2,4mc
Z4m̃s+2,4ms

�

+ �ZN1,c
0 ZN1,s

0 + ZN3,c
0 ZN3,s

0 ����Z4m̃c,4mc+2Z4m̃s,4ms+2� + �ZN1,c
0 ZN3,s

0 + ZN3,c
0 ZN1,s

0 ����Z4m̃c,4mc+2Z4m̃s,4ms+2� . �6.27�

Here, ZNi,c�s�
0 are diagonal partition functions in the �c�s�

0 Hil-
bert space, while the ZQ̃c�s�,Qc�s�

are diagonal partition func-
tions in the �c�s� Hilbert space,

ZQ̃c�s�,Qc�s�
� ��Q̃c�s�,Qc�s�

�e−lH�
P
��Q̃c�s�,Qc�s�

� . �6.28�

The partition functions corresponding to the center of
mass modes are given by

ZN0,c�s�
0 =

�4gc�s�

��q̃� �
l̃c�s�
0

q̃2gc�s��l̃c�s�
0 �2

=
1

��q� �
Qc�s�

0 �Z

q�Qc�s�
0 �2/�8gc�s��,

�6.29a�

ZN1,c�s�
0 =

�4gc�s�

��q̃� �
l̃c�s�
0

q̃2gc�s��l̃c�s�
0 + 1/4�2

=
1

��q� �
Qc�s�

0 �Z

e−i�/2Qc�s�
0

q�Qc�s�
0 �2/�8gc�s��, �6.29b�

ZN2,c�s�
0 =

�4gc�s�

��q̃� �
l̃c�s�
0

q̃2gc�s��l̃c�s�
0 + 1/2�2

=
1

��q� �
Qc�s�

0 �Z

e−i�Qc�s�
0

q�Qc�s�
0 �2/�8gc�s��, �6.29c�

ZN3,c�s�
0 =

�4gc�s�

��q̃� �
l̃c�s�
0

q̃2gc�s��l̃c�s�
0 + 3/4�2

=
1

��q� �
Qc�s�

0 �Z

e−i3�/2Qc�s�
0

q�Qc�s�
0 �2/�8gc�s��,

�6.29d�

where the modular transformation has been performed at the
second equality and

q̃ � e−4�l/�, q � e−��/l. �6.30�

Here, we introduce the Dedekind � function,

��q̃� � q̃1/24�
n=1

�

�1 − q̃n� , �6.31�

which comes from the oscillator modes of the boundary
state. One can show that each set of independent oscillator
modes contributes a factor of 1 /��q̃�. Moreover, the modular
transformation of the Dedekind � function is given by

��q̃� =��

2l
��q� . �6.32�

The scaling dimensions in ZNi,c�s�
0 correspond to the boundary

operators that include �c�s�
0 and therefore do not conserve the

total charge and spin. For instance, a nontrivial dimension,
�Qc�s�

0 �2 / �8gc�s��, corresponds to the vertex operator

eiQc�s�
0

�c�s�
0 /�2�2�. Since we only consider the perturbations

which conserve the charge and spin, those vertex operators
should not appear. The term 1 /��q� corresponds to irrelevant
or marginal boundary operators which come from the deriva-
tives of �c�s�

0 and have integer dimensions.
Thus, we shall concentrate on the boundary operators in-

volving only the dynamical fields �c�s� and replace
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ZNi,c�s�
0 → 1. �6.33�

The effective partition function becomes

ZBB → 2 �
m�Z

�Z4m̃c,4mc
Z4m̃s,4ms

�

+ 2 �
m�Z

�Z4m̃c+2,4mc+2Z4m̃s+2,4ms+2�

+ 2 �
m�Z

�Z4m̃c+2,4mc
Z4m̃s+2,4ms

�

+ 2 �
m�Z

�Z4m̃c,4mc+2Z4m̃s,4ms+2� . �6.34�

Observe that this reduced partition function can be obtained
by simply eliminating the charge and spin centers of mass
modes from the full boundary states. The original gluing

conditions can be reduced to a set of constraints on Q̃c�s� and
Qc�s� only, which will be referred to as the “reduced gluing
conditions” �RGCs�.

Here, we outline the procedures for obtaining the scaling
dimensions of boundary operators from the reduced partition
function. First, we eliminate the center of mass modes from
the original boundary state in Eq. �6.26� to obtain the “re-
duced boundary state.” Then, we derive the nontrivial RGC

for Q̃c�s� and Qc�s� from the original gluing conditions. Fi-
nally, we compute the reduced partition function upon a
modular transformation and obtain the complete spectrum of
the scaling dimensions of boundary operators for a given
boundary state. A similar reduction procedure can be applied
to the case of junctions of three quantum wires for spin-1

2
electrons.

C. Partition functions and scaling dimensions of boundary
operators for junction of two quantum wires

In this subsection, we apply the method described above
to compute the reduced partition functions and scaling di-
mensions of boundary operators involving the dynamic field
�c�s� for given boundary conditions.

1. NN boundary state

The reduced NN boundary state can be written as

�NN� = gNN exp��
n=1

�

an,c
L† an,c

R† + �
n=1

�

an,s
L†an,s

R†�����Q̃c,0��

� ��Q̃s,0�� , �6.35�

where gNN is the ground state degeneracy and the prime in-
dicates that the RGC should be obeyed. The corresponding
partition function for the NN boundary state is given by

ZNN,NN = �NN�e−lH�
P
�NN�

=
gNN

2

��q̃�2�� exp
− � l�gc

8�
�Q̃c�2 +

l�gs

8�
�Q̃s�2�
 .

�6.36�

Now, we shall discuss how to obtain the RGC. By
recalling the gluing conditions in Eq. �6.15� and using

Qc�s�
0 =Qc�s�=0, one concludes that Q̃c and Q̃s are even.

Hence, Q̃c�s�=2ñc�s�. Still, we should keep in mind that Q̃c
0

and Q̃s
0 are even and contribute to the reduced gluing condi-

tions. In terms of ñ�, the gluing conditions are reduced to

ñc
0 + ñs

0 = 0�mod 2� �condition a� ,

ñc
0 + ñc = 0�mod 2� �condition b� ,

ñc
0 + ñc + ñs

0 + ñs = 0�mod 4� �condition a� . �6.37�

Conditions a and b imply that ñc
0, ñs

0, and ñc have the same
parity. In addition, one can conclude that ñs has the same
parity as ñc and ñc�s�

0 due to condition c. Hence,

ñc + ñs = 0�mod 2� �6.38�

becomes the only gluing condition for the variable ñc�s�. Na-
ively, one may expect that condition c should provide other
constraints. However, it can be shown that the extra condi-
tion is redundant. We justify this statement below.

First, because all the winding numbers, n�, are of the
same parity, we can set either n�=2m� or n�=2m�+1. For
either case, condition c leads to

m̃c
0 + m̃c + m̃s

0 + m̃s = 0�mod 2� . �6.39�

However, any combinations of integer m̃c and m̃s have rela-
tive sets of m̃c

0 and m̃s
0, which satisfy this gluing condition for

m�. Moreover, since the partition functions corresponding to
the center of mass modes provide an equal constant, set to be
1, for any combinations of m̃c�s�, this condition effectively
provides no constraint on ñc�s�.

Now, the partition function �Eq. �6.36�� becomes

ZNN,NN =
gNN

2

��q̃�2�� exp
− � l�gc

2�
�ñc�2 +

l�gs

2�
�ñs�2�
 ,

�6.40�

in terms of variable n� with the reduced gluing condition
�Eq. �6.38��. Further, the RGC leads to two separate sums,

ZNN,NN =
gNN

2

��q̃�2
 �
m̃c�s��Z

q̃��gc/2��m̃c�2+�gs/2��m̃s�
2�

+ �
m̃c�s��Z

q̃��gc/8��2m̃c + 1�2+�gs/8��2m̃s + 1�2�
 ,

�6.41�

without any constraint on m̃c and m̃s. Upon the modular
transformation, the partition function becomes

ZNN,NN�q� =
gNN

2

�gcgs

1

��q�2 �
mc,ms

q�mc�2/2gc+�ms�
2/2gs

��1 + e−i��mc+ms�� , �6.42a�
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=
2gNN

2

�gcgs

1

��q�2 �
mc+ms=0�mod 2�

q�mc�2/2gc+�ms�
2/2gs.

�6.42b�

Hence, the spectrum of boundary operators can be read
off and the leading order perturbations have the scaling di-
mensions

1

2gc
+

1

2gs
,

2

gc
,

2

gs
, �6.43�

which agree with the previous results obtained using the
DEBC method in Sec. IV. Moreover, the ground state degen-
eracy, which is useful for determining the stability of the
fixed point, can be found by Cardy’s consistency condition
as gNN= �gcgs /4�1/4.

2. DD boundary state

The reduced DD boundary state can be constructed as

�DD� = gDD exp�− �
n=1

�

an,c
L† an,c

R† − �
n=1

�

an,s
L†an,s

R†��
�

��0,Qc��

� ��0,Qs�� , �6.44�

using Eq. �6.21� with ground state degeneracy gDD. Again,
the prime over the summation implies the reduced gluing
conditions. The partition function corresponding to the DD
boundary state is given by

ZDD,DD = �DD�e−lH�
P
�DD�

=
gDD

2

��q̃�2�� exp
− � l�

8�gc
�Qc�2 +

l�

8�gs
�Qs�2�
 .

�6.45�

Since Qc�s�
0 = Q̃c�s�=0, condition 1 of Eq. �6.15� leads to

Q̃c�s�
0 =2ñc�s�

0 and Qc�s�=2nc�s� for integer n�. Hence, the
gluing conditions in terms of the quantum numbers n�

become

ñc
0 + ñs

0 = 0�mod 2� �condition a� ,

ñc
0 + ns = 0�mod 2� �condition b� ,

nc + ns = 0�mod 2� �condition c� ,

ñc
0 + nc + ñs

0 + ns = 0�mod 4� �condition d� . �6.46�

Here, conditions a–c imply that nc�s� and ñc�s�
0 have the same

parity. Condition �d� provides no constraint on the quantum
number nc�s� by a similar reason as in the case of the NN
boundary state.

Upon the modular transformation, the partition function
corresponding to the DD boundary state can be evaluated as

ZDD,DD�q� = gDD
2 2�gcgs

��q�2 ��q�gc/2��m̃c�2+�gs/2��m̃s�
2
,

�6.47�

with the constraint m̃c+ m̃s=0 �mod 2�. Therefore, the scal-
ing dimensions of the leading order perturbations can be read
off as follows:

gc + gs

2
, 2gc, 2gs. �6.48�

This is in agreement with the previous results obtained by
using the DEBC method in Sec. IV. Finally, the ground state
degeneracy is given by gDD= �1 /4gcgs�1/4.

3. ND boundary state

We first construct the reduced boundary state for the ND
boundary condition

�ND� = gND exp��
n=1

�

an,c
L† an,c

R† − �
n=1

�

an,s
L†an,s

R†�����Q̃c,0��

� ��0,Qs�� , �6.49�

where the gND is the ground state degeneracy. Now, the cor-
responding partition function can be computed as

ZND,ND = �ND�e−lH�
P
�ND�

=
gND

2

��q̃�2�
�

exp
− � l�gc

8�
�Q̃c�2 +

l�

8�gs
�Qs�2�
 ,

�6.50�

with proper reduced gluing conditions indicated by the prime
over the summation.

For obtaining the reduced gluing conditions on Q̃c and Qs,

we first observe that Q̃c�s�
0 , Q̃c, and Qs are even integers.

Hence, Q̃c�s�
0 =2ñc�s�

0 , Q̃c=2ñc, and Qs=2ns. After some alge-
bra, one finds the following reduced gluing condition:

ñc = ns = 0�mod 2� . �6.51�

Upon the modular transformation, the partition function be-
comes

ZND,ND�q� =�gs

gc

gND
2

��q�2 � q�1/2gc��mc�2+�gs/2��m̃s�
2
,

�6.52�

without any constraint on mc and m̃s. Thus, the scaling di-
mensions of boundary operators for the leading order pertur-
bations are given by

gs

2
,

1

2gc
. �6.53�

Again, this matches the results from the DEBC method in
Sec. IV. The ground state degeneracy becomes �gc /gs�1/4.

4. DN boundary state

First, we construct the reduced boundary state for the DN
boundary condition
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�DN� = gDN exp�− �
n=1

�

an,c
L† an,c

R† + �
n=1

�

an,s
L†an,s

R†�����0,Qc��

� ��Q̃s,0�� , �6.54�

with gDN defined as the ground state degeneracy. Then, the
corresponding partition function can be written as

ZDN,DN = �DN�e−lH�
P
�DN�

=
gDN

2

��q̃�2�
�

exp
− � l�gs

8�
�Q̃s�2 +

l�

8�gc
�Qc�2�
 ,

�6.55�

with the proper gluing conditions. Again, all relevant mo-

mentum quantum numbers are even. Thus, Q̃c�s�
0 =2ñn�s�

0 , Qc

=2nc, and Q̃s=2ñs. One can show that the only reduced glu-
ing condition for nc and ñs is

nc = ñs = 0�mod 2� . �6.56�

Upon the modular transformation, the partition function be-
comes

ZDN,DN�q� =�gc

gs

gDN
2

��q�2 � q�gc/2��m̃c�2+�1/2gs��ms�
2
,

�6.57�

with arbitrary integers m̃c and ms. Hence, the scaling dimen-
sions of boundary operators for the lowest order perturba-
tions can be read off as

gc

2
,

1

2gs
. �6.58�

This is in agreement with the previous results from the
DEBC method in Sec. IV. The ground state degeneracy is
given by �gs /gc�1/4.

In summary, we have computed explicitly in this subsec-
tion the spectrum of boundary operators and the ground state
degeneracy for a junction of two quantum wires. The use
from the onset of the Uc�1��Us�1� symmetry, corresponding
to the total charge and spin conservation, leads to the re-
duced boundary states and reduced gluing conditions; these
reduced relations largely simplify the computations. It is
worthwhile to emphasize that this simplified scheme can be
applied only to a system with the conservation of total charge
and spin and without resonant tunneling.

VII. JUNCTION OF THREE QUANTUM WIRES FOR
SPIN-1

2 ELECTRONS: BOUNDARY CONFORMAL
FIELD THEORY

In this section, we will apply the technique developed in
the previous section to the case of a junction of three quan-
tum wires for spin-1

2 electrons. We shall first derive the glu-
ing conditions for a convenient basis and project out the
center of mass modes of the charge and spin degrees of free-
dom. Then, the reduced partition functions for given bound-
ary conditions and the scaling dimensions of boundary op-

erators will be computed and used to determine the stability
of the fixed points.

A. Reduced gluing conditions

Here, we start from the mode expansion of the bosons for
a single quantum wire �Eqs. �6.12a� and �6.12b� with the
gluing conditions in Eq. �6.10�� and generalize the mode
expansions and gluing conditions to another orthogonal ba-
sis,

�c�s�
0 =

1
�3

��c�s�
1 + �c�s�

2 + �c�s�
3 � ,

�c�s�
1 =

1
�2

��c�s�
1 − �c�s�

2 � ,

�c�s�
2 =

1
�6

��c�s�
1 + �c�s�

2 − 2�c�s�
3 � , �7.1�

and a corresponding set for � fields.
The momentum quantum numbers of the total charge and

spin modes follows the relations

Qc�s�
0 = Qc�s�

1 + Qc�s�
2 + Qc�s�

3 , �7.2a�

Q̃c�s�
0 = Q̃c�s�

1 + Q̃c�s�
2 + Q̃c�s�

3 . �7.2b�

Again, due to the conservation of total charge and spin, the N
boundary condition should be imposed on the �c�s�

0 field. The
corresponding boundary state always has the quantum num-
ber Qc�s�

0 =0. Hence, it is convenient to parametrize the vector
of integers, Qc�s�

i , as

�Qc�s�
1 ,Qc�s�

2 ,Qc�s�
3 � � mc�s�

1 �0,1,− 1� + mc�s�
2 �− 1,0,1� ,

�7.3�

where mc�s�
1�2��Z. Consequently, mc�s�

1 =Qc�s�
2 and mc�s�

2

=−Qc�s�
1 . On the other hand, Q̃c�s�

0 can be nonzero. So, it is

convenient to parametrize Q̃c�s�
i as

�Q̃c�s�
1 ,Q̃c�s�

2 ,Q̃c�s�
3 � � nc�s�

0 �1,1,1� − nc�s�
1 �0,1,1� − nc�s�

2 �1,0,1� .

�7.4�

Therefore, nc�s�
i can be expressed in terms of Q̃c�s�

i as

�nc�s�
0 ,nc�s�

1 ,nc�s�
2 �

= �Q̃c�s�
1 + Q̃c�s�

2 − Q̃c�s�
3 ,− Q̃c�s�

3 + Q̃c�s�
1 ,− Q̃c�s�

3 + Q̃c�s�
2 � .

�7.5�

Hence, nc�s�
i provide a representation of quantum numbers in

an alternative basis.
Now, let us investigate the corresponding gluing condi-

tions of the new variables mc�s�
i and nc�s�

i . From the gluing

conditions in Eq. �6.10� and the definition of Qc�s�
0 and Q̃c�s�

0 ,
one concludes following gluing condition:

Qc
0 = Qs

0 = Q̃c
0 = Q̃s

0�mod 2� , �7.6a�
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Q̃c
0 + Q̃s

0 + Qc
0 + Qs

0 = 0�mod 4� . �7.6b�

Because Qc�s�
0 =0, the following gluing conditions hold:

Q̃c
0 = Q̃s

0 = 0�mod 2� , �7.6c�

Q̃c
0 + Q̃s

0 = 0�mod 4� . �7.6d�

In terms of nc�s�
i , the first condition �Eq. �7.6c�� becomes

Q̃c�s�
0 = 3nc�s�

0 − 2�nc�s�
1 + nc�s�

2 � = 0�mod 2� . �7.7�

This implies that nc�s�
0 =2pc�s�

0 are even integers, where pc�s�
0

are arbitrary integers. By using the gluing conditions for
each of the quantum wires �Eq. �6.10�� and the fact that nc�s�

0

are even, one can prove the following gluing condition:

nc
i = ns

i = mc
i = ms

i�mod 2� , �7.8�

from the relations between mc�s�
i �nc�s�

i � and Qc�s�
j �Q̃c�s�

j �. Com-
bining the gluing conditions �Eqs. �7.6d� and �7.8��, a new
gluing condition emerges,

pc
0 + ps

0 = 0�mod 2� . �7.9�

Finally, two nontrivial gluing conditions for mc�s�
i and nc�s�

i

arise,

Q̃c
1�2� + Q̃s

1�2� + Qc
1�2� + Qs

1�2� = 0�mod 4� ⇒ − mc
2�1� + nc

0 − nc
2�1� − ms

2�1� + ns
0 − ns

2�1� = 0�mod 4� , �7.10a�

⇒mc
2�1� + nc

2�1� + ms
2�1� + ns

2�1� = 0�mod 4� , �7.10b�

where the third equality holds because nc
0+ns

0=2�pc
0+ ps

0�
=0�mod 4�.

In summary, we found the following gluing conditions for
the nc�s�

i and mc�s�
i :

nc�s�
0 = 2pc�s�

0 , pc
0 + ps

0 = 0�mod 2� ,

nc
j = ns

j = mc
j = ms

j�mod 2� ,

ms
1 + mc

1 + ns
1 + nc

1 = 0�mod 4� ,

ms
2 + mc

2 + ns
2 + nc

2 = 0�mod 4� . �7.11�

In particular, nc�s�
0 ’s disentangle from the rest of quantum

numbers and do not have nontrivial gluing condition.

B. Mode expansions and center of mass mode projection

We first define a vector field and a conjugate vector field,
representing the dynamical boson fields

�� c�s� = ��c�s�
1 ,�c�s�

2 �, �� c�s� = ��c�s�
1 ,�c�s�

2 � , �7.12�

where �c�s�
1�2� are defined in Eq. �7.1�. Using the definition of

the dynamical field in Eq. �7.1�, the periodicity along the
spatial direction follows

��� c�s� = �� c�s���,t� − �� c�s��0,t� = �2��nc�s�
1 R� 1

2
+ nc�s�

2 R� 2

2
� ,

�7.13a�

��� c�s� = �� c�s���,t� − �� c�s��0,t� = �2��mc�s�
1 K� 1 + mc�s�

2 K� 2� ,

�7.13b�

where nc�s�
i and mc�s�

i are defined in the previous subsection
and K1�2� and R1�2� are defined as

K� 1 = �−
1

2
, +

�3

2
�, R� 1 =

2
�3

�K� 1 � ẑ� = �+ 1, +
�3

3
� ,

�7.14�

K� 2 = �−
1

2
,−

�3

2
�, R� 2 =

2
�3

�K� 2 � ẑ� = �− 1, +
�3

3
� .

�7.15�

Hence, the mode expansion of the two-component boson
field becomes

�� c�s� = �̂
�

0,c�s� +
2�

�
� 1

�2gc�s�
� �

j=1,2
mc�s�

j K� j�t

+
1
�2
� �

j=1,2
nc�s�

j R� j

2
�x�

+
1

�2gc�s�
�
n=1

�
1
�n

�a�n,c�s�
R e−i�2�n/��x−

+ a�n,c�s�
L e−i�2�n/��x+ + H.c.� , �7.16�

where the integers nc�s�
i and mc�s�

i are restricted by the gluing
conditions. The corresponding energy is
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H�
P =

2�

�
� 1

4gc
��

i

mc
i K� i�2

+
gc

4
��

i

nc
i R� i

2
�2

+
1

4gs
��

i

ms
iK� i�2

+
gs

4
��

i

ns
i R� i

2
�2

+ ¯ � ,

�7.17�

where ¯ represents the energy of the oscillator modes.
Recalling the discussion of the last section for the case of

the two quantum wires, the center of mass modes will only
contribute a constant and can be projected out with a corre-

sponding reduced gluing condition. Observe that Q̃c�s�
0

=2�3pc�s�
0 −nc�s�

1 −nc�s�
2 � implies that there are three classes of

quantum numbers categorized by Q̃c�s�
0 /2=−�nc�s�

1

+nc�s�
2 ��mod 3�, we shall introduce auxiliary quantum num-

bers kc�s�=nc�s�
1 +nc�s�

2 . Thus, a general boundary state which is
N with respect to �0, i.e., Qc�s�

0 =0, takes the form

�B� = �
kc�s�=−1,0,1

�
��Nkc

0 � � �Nks

0 ��

� �
nc�s�

1 +nc�s�
2 =−kc�s��mod 3�

�
����nc

1,nc
2,mc

1,mc
2��

� ���ns
1,ns

2,ms
1,ms

2��� , �7.18�

where the prime over the summation indicates the gluing
conditions. With the gluing condition, the boundary states
corresponding to the �0 fields are given by

�Nkc

0 � � �Nks

0 � = �9gcgs�1/4 �
pc

0+ps
0=0�mod 2�

�2�3pc
0 + kc�,0�

� �2�3ps
0 + ks�,0� . �7.19�

Hence, the corresponding “partial Neumann” partition func-
tions are readily calculated as

ZNkc

0 Nks

0 =
3�gcgs

��q̃�2 �
pc

0+ps
0=0�mod 2�

q̃�gc�3pc + kc�2/12+gs�3ps + ks�
2/12�,

�7.20�

=
1

��q�2 �
Qc

0�s�

� exp�− i
�

3
�kcQc

0 + ksQs
0��

�q�Qc
0�2/12gc+�Qs

0�2/12gs, �7.21�

with the constraint Qc
0+Qs

0=0�mod 2�. As in the case of two
quantum wires, this part of the partition function corresponds
to boundary operators changing the total charge and spin of
the system. Hence, ZNkc

0 Nks

0 can be projected out and replaced

by unity. Now, the dimensions of all primary boundary op-
erators involving only the dynamical fields can be obtained
by using a reduced boundary state, which lives in the re-
duced Hilbert space of the two-component boson fields,

�� c�s�. Thus, the reduced boundary state becomes

�B� → ������nc
1,nc

2,mc
1,mc

2�� � ���ns
1,ns

2,ms
1,ms

2��� ,

�7.22�

with the constraints given in Eq. �7.11�. Note that there is no
gluing conditions between pc�s�

0 and the rest of quantum num-
bers; hence, we can simply ignore pc�s�

0 and take the rest of
gluing conditions as the constraint for the reduced boundary
state.

C. Reduced partition functions and the dimensions of
boundary operators

We first recall the reduced gluing conditions for the quan-
tum numbers nc�s�

j and mc�s�
j

nc
j = ns

j = mc
j = ms

j�mod 2� �condition a� ,

ms
j + mc

j + ns
j + nc

j = 0�mod 4� �condition b� , �7.23�

where j=1,2. In obtaining the reduced partition functions,
these RGCs play crucial roles and lead to the nontrivial scal-
ing dimensions of the operators. We shall investigate below
the scaling dimensions of boundary operators for given
boundary conditions.

1. NN boundary condition

As discussed in the last section, the corresponding bound-
ary state of N BC has quantum numbers Qc�s�

1�2�=0. This im-
plies mc�s�

1�2�=0 and the NN boundary state is given by

�NN� = gNN exp��
n=1

�

a�n,c
L† a�n,c

R† + �
n=1

�

a�n,s
L†a�n,s

R†��
�

��nc
1,nc

2,0,0��

� ��ns
1,ns

2,0,0�� , �7.24�

where the prime over the summation indicates the gluing
conditions and gNN is the ground state degeneracy. The cor-
responding partition function is calculated as

ZNN = �NN�e−lH�
P
�NN�

=
gNN

2

��q̃�4�� exp�−
�l

8��gc��
j

nc
jR� j�2

+ gs��
j

ns
jR� j�2�� .

�7.25�

Because mc�s�
1�2�=0, nc�s�

1�2�’s are even using condition a of Eq.
�7.23�; hence, we conclude that nc�s�

1�2�=2hc�s�
1�2� with arbitrary

integers for hc�s�
1�2�. Rewriting condition b of RGC in terms of

hc�s�
1�2�, one obtains

hs
j + hc

j = 0�mod 2� for j = 1,2. �7.26�

It is evident that hs
j and hc

j have the same parity. Hence, there
are four plausible combinations of �hc

1 ,hs
1 ,hc

2 ,hs
2� categorized

by even or odd integers and listed below
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�hc
1,hs

1,hc
2,hs

2� = �
�e,e,e,e� �case I�
�o,o,o,o� �case II�
�e,e,o,o� �case III�
�o,o,e,e� �case IV� ,

� �7.27�

where e stands for even, while o stands for odd. The total
partition function is the sum of the partition functions corre-
sponding to each combination above.

In case I, we can introduce new integer quantum numbers

hc�s�
j =2l̃c�s�

j and compute the corresponding partition function

ZNN
I =

gNN
2

��q̃�4�� exp�−
2�l

� �gc��
j

l̃c
jR� j�2

+ gs��
j

l̃s
jR� j�2��

=
3

4gcgs

gNN
2

��q�4 �
tc�s�
j

q�1/2gc��jtc
jK� j�

2+1/2gs��jts
jK� j�

2�, �7.28�

where the second equality is obtained by multidimensional
modular transformation �Appendix B� and tc�s�

j are arbitrary
integers. Similarly, one can execute the calculation for case

II by introducing hc�s�
j =2l̃c�s�

j +1. Upon the modular transfor-
mation, the partition function is given by

ZNN
II =

3

4gcgs

gNN
2

��q�4 �
tc�s�
j

q�1/2gc��jtc
jK� j�

2+1/2gs��jts
jK� j�

2�e−i��tc
1+ts

1+tc
2+ts

2�,

�7.29�

with arbitrary integers tc�s�
j . For cases III and IV, the similar

parametrization of hc�s�
j leads to the following portions of

partition function:

ZNN
III =

3

4gcgs

gNN
2

��q�4 �
tc�s�
j

q�1/2gc��jtc
jK� j�

2+1/2gs��jts
jK� j�

2�e−i��tc
1+ts

1�,

�7.30�

ZNN
IV =

3

4gcgs

gNN
2

��q�4 �
tc�s�
j

q�1/2gc��jtc
jK� j�

2+1/2gs��jts
jK� j�

2�e−i��tc
2+ts

2�.

�7.31�

By adding contributions from each part, the full partition
function is given by

ZNN =
3gNN

2

gcgs��q�4��q���jtc
jK� j�

2/2gc+��jts
jK� j�

2/2gs�. �7.32�

Observe that the unit vectors K� j form a triangular lattice. In
general, the scaling dimensions can be calculated by finding

the length square of linear combinations of K� j with the con-
straints tc

j + ts
j =0�mod 2� for both j=1,2. The dimensions of

the boundary operators corresponding to the leading order
perturbation is given by

�NN:
1

2gc
+

1

2gs
,

2

gc
,

2

gs
, �7.33�

which are the same as that for the junction of two quantum
wires with NN BC and agree with the results from the DEBC

method. Moreover, the ground state degeneracy is gNN

=�gcgs /3.

2. DD boundary condition

The corresponding boundary state with DD BC takes the
form with nc�s�

1�2�=0,

�DD� = gDD exp�− ��
n=1

�

a�n,c
L† a�n,c

R† + �
n=1

�

a�n,s
L†a�n,s

R†��
��

�
��0,0,mc

1,mc
2�� � ��0,0,ms

1,ms
2�� , �7.34�

with the proper gluing conditions indicated by the prime over
the summation. The diagonal partition function is

ZDD = �DD�e−lH�
P
�DD�

=
gDD

2

��q̃�4�� exp�−
2�l

4� � 1

gc
��

i

mc
i K� i�2

+
1

gs
��

i

ms
iK� i�2�� . �7.35�

Let us investigate the reduced gluing conditions here.
Again, condition a of Eq. �7.23� and nc�s�

1�2�=0 lead to even
mc�s�

j ; hence, mc�s�
j =2�c�s�

j for arbitrary integers �c�s�
j . Then,

condition b of RGC can be written in terms of �c�s�
j as

�c
j + �s

j = 0�mod 2� for j = 1,2. �7.36�

Similarly to the case of the NN BC, there are four possible
combinations of ��c

1 ,�s
1 ,�c

2 ,�s
2� categorized by even or odd

integers and listed below,

��c
1,�s

1,�c
2,�s

2� = �
�e,e,e,e� �case I�
�o,o,o,o� �case II�
�e,e,o,o� �case III�
�o,o,e,e� �case IV� .

� �7.37�

Again, we will investigate the contributions to the parti-
tion functions of each combination. In case I, we can intro-
duce new integer quantum numbers �c�s�

j =2lc�s�
j and compute

the corresponding part of the partition function

ZDD
I =

gDD
2

��q̃�4�� exp�−
8�l

� � 1

gc
��

j

lc
jK� j�2

+
1

gs
��

j

ls
jK� j�2��

=
gcgs

12

gDD
2

��q�4 �
t̃c�s�
j

q�gc/8��jt̃c
jR� j�

2+gs/8��jt̃s
jR� j�

2�, �7.38�

for arbitrary integers t̃c�s�
j . Since R� i forms a triangular lattice

with the lattice spacing �R� i�=
2
�3

, it is convenient to introduce

scaled vectors R�� i=
�3
2 R� i with unit length �R�� i�=1. Hence, the

partition functions in terms of these unit vectors are given by
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ZDD
I =

gcgs

12

gDD
2

��q�4 �
t̃c�s�
j

q�gc/6��jt̃c
jR��j�

2+gs/6��jt̃s
jR��j�

2�. �7.39�

For other cases, we can introduce new quantum numbers lc�s�
j

such that �c�s�
j =2lc�s�

j +1 for odd integers and �c�s�
j =2lc�s�

j for
even integers. Hence, the partition functions for each case
are given by

ZDD
II =

gcgs

12

gDD
2

��q�4 �
t̃c�s�
j

q�gc/6��jt̃c
jR��j�

2+gs/6��jt̃s
jR��j�

2�e−i��t̃c
1+t̃s

1+t̃c
2+t̃s

2�,

�7.40a�

ZDD
III =

gcgs

12

gDD
2

��q�4 �
t̃c�s�
j

q�gc/6��jt̃c
jR��j�

2+gs/6��jt̃s
jR��j�

2�e−i��t̃c
1+t̃s

1�,

�7.40b�

ZDD
IV =

gcgs

12

gDD
2

��q�4 �
t̃c�s�
j

q�gc/6��jt̃c
jR��j�

2+gs/6��jt̃s
jR��j�

2�e−i��t̃c
2+t̃s

2�.

�7.40c�

Now, let us add all contributions and obtain the full par-
tition function

ZDD =
gcgsgDD

2

3��q�4 ��q�gc��jt̃c
jR��j�

2/6+gs��jt̃s
jR��j�

2/6�, �7.41�

with the constraints t̃c
j + t̃s

j =0�mod 2� for j=1,2. The scaling
dimensions of boundary operators for leading order pertur-
bations can be read off directly from the partition function

�DD:
gc

6
+

gs

6
,

2gc

3
,

2gs

3
. �7.42�

Again, the results agree with that obtained by the DEBC
method. Finally, the ground state degeneracy of the DD
boundary state reads gDD=�3 /gcgs.

3. ND and DN boundary conditions

We will focus on the ND BC first. �The scaling dimen-
sions and partition function corresponding to the DN BC can
be calculated by exchanging the charge and spin sectors of
the ND case.� The boundary state corresponding to the ND
BC can be constructed with mc

1�2�=0 and ns
1�2�=0,

�ND� = gND exp�+ �
n=1

�

a�n,c
L† a�n,c

R† − �
n=1

�

a�n,s
L†a�n,s

R†�����nc
1,nc

2,0,0��

� ��0,0,ms
1,ms

2�� , �7.43�

with proper constraints and ground state degeneracy gND.
Since the gluing condition a in Eq. �7.23� implies that nc

1�2�

and ms
1�2� are even when mc

1�2�=ns
1�2�=0, we shall parametrize

nc
1�2�=2hc

1�2� and ms
1�2�=2�s

1�2�. The partition function thus
can be computed as

ZND = �ND�e−lH�
P
�ND� =

gND
2

��q̃�4�� exp�−
2�l

� �gc

4 ��i

hc
i R� i�2

+
1

gs
��

i

�s
iK� i�2�� , �7.44�

with the gluing conditions hc
j +�s

j =0�mod 2� for j=1,2.
After some algebra, similar to the case of the DD and NN

boundary conditions, one obtains the full partition function

ZND =
gsgND

2

gc��q�4��q���jtc
jK� j�

2/2gc+gs��jt̃s
jR��j�

2/6�, �7.45�

with the constraints tc
j + t̃s

j =0�mod 2� for j=1,2. Then, the
leading order boundary operators have the scaling dimen-
sions

�ND:
1

2gc
+

gs

6
,

2

gc
,

2gs

3
, �7.46�

which match the results from the DEBC scheme. Moreover,
the ground state degeneracy reads gND=�gc /gs.

Due to the symmetric structure between the charge and
spin parts of the boundary states, one can exchange c↔s in
Eq. �7.45� and the corresponding constraints to obtain the
partition function given the DN BC. Then, the dimensions of
boundary operators of leading order perturbations with the
DN BC are given by

�DN:
1

2gs
+

gc

6
,

2

gs
,

2gc

3
. �7.47�

The results agree with that of the DEBC scheme. Further, the
ground state degeneracy reads gDN=�gs /gc.

4. �±�± and �±�Â boundary conditions

We will first study the case of 
+
+ boundary condition.
The 
−
− boundary condition can be calculated in the same
manner. Indeed, one can show that the relevant scaling di-
mensions exactly have the same structure for both 





boundary conditions. Then, we will comment on the case of



�.

Generically, a conformally invariant boundary condition
can be expressed as

�� R = R���
L with R� = �cos � − sin �

sin � cos �
� . �7.48�

Since the winding along the boundary can be written as

��� c�s�
L =

1

2
��gc�s���� c�s� +

��� c�s�

�gc�s�
� , �7.49a�

��� c�s�
R =

1

2
��gc�s���� c�s� −

��� c�s�

�gc�s�
� , �7.49b�

arbitrary conformal boundary conditions satisfy
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�gc�s���� c�s� −
��� c�s�

�gc�s�
= R���gc�s���� c�s� +

��� c�s�

�gc�s�
� .

Observe that ��� c�s�=0 for the NN BC leads to �=0 and

��� c�s�=0 for the DD BC leads to �=�. For ��0,�, it is

clear that we need both ��� c�s� and ��� c�s� nonvanishing.
Moreover, R� is a rotation matrix which preserves the length

of the vector; hence, ��� c�s� and ��� c�s� have to be mutually
orthogonal. For satisfying this constraint, the general oscilla-
tor vacua can be constructed from

���c�c
1,�c�c

2,�c�c
1,�c�c

2�� � ���s�s
1,�s�s

2,�s�s
1,�s�s

2�� ,

for arbitrary integers �c�s�
1�2� with proper gluing conditions on

� and �. For instance, condition a in Eq. �7.23� leads to
�c�s�=�c�s��mod 2�. Moreover, the chiral rotation angle is
fixed by ��c�s� ,�c�s�� as

tan
�c�s�

2
=

�c�s�

�c�s�

�3

gc�s�
. �7.50�

Notice that the chiral rotation angle is “quantized.”
As shown in Ref. 7, the 
+ fixed point corresponds to the

choice of �c�s�=�c�s�=1, while the 
− fixed point corresponds
to the choice of �c�s�=−�c�s�=1. Hence, the boundary state
corresponding to the 
+
+ boundary condition can be con-
structed as

�
+
+� = g
+
+
exp��

n=1

�

a�n,c
R† · R�c

a�n,c
L† + �

n=1

�

a�n,s
R† · R�s

a�n,s
L†�

��
�

���c
1,�c

2,�c
1,�c

2�� � ���s
1,�s

2,�s
1,�s

2�� , �7.51�

where the prime over the summation indicates the gluing
conditions. The diagonal partition function is given by

Z
+
+
=

g
+
+

2

��q̃�4�� exp�−
2�l

�
�gc

4
��

i

�c
i R� i

2
�2

+
1

4gc
��

i

�c
i K� i�2��exp�−

2�l

�
�gs

4
��

i

�s
i R� i

2
�2

+
1

4gs
��

i

�s
iK� i�2��

=
g
+
+

2

��q̃�4�� exp�−
�l

�
��c

1A� c
1 + �c

2A� c
2�2�exp�−

�l

�
��s

1A� s
1 + �s

2A� s
2�2� , �7.52�

where the second equality holds because K� i ·R� j =�ij and the
new vectors are defined as

A� c�s�
j = �gc�s�

R� j

2�2
+

K� j

�2gc�s�
. �7.53�

These new vectors form a triangular lattice with lattice spac-
ing

�A� c�s�
j � =�gc�s�

6
+

1

2gc�s�
. �7.54�

Using Eq. �7.23�, there is only one constraint,

�c
j = �s

j�mod 2� for j = 1,2. �7.55�

Therefore, there are four possible combinations of the wind-
ing numbers classified by even or odd integers, which are
listed below

��c
1,�s

1,�c
2,�s

2� = �
�e,e,e,e� �case I�
�o,o,o,o� �case II�
�e,e,o,o� �case III�
�o,o,e,e� �case IV� .

� �7.56�

Again, parametrizing the even and odd variables as
�=2l and �=2l+1, respectively, we are able to compute the
diagonal partition function corresponding to each set. Upon a
modular transformation, the partial partition function for
each case is given by

Z
+
+

I =
12gcgs

�3 + gc
2��3 + gs

2�

g
+
+

2

��q�4 �
tc�s�
j �Z

q��jtc
jW� c

j �2+��jts
jW� s

j�2,

�7.57a�

Z
+
+

II =
12gcgs

�3 + gc
2��3 + gs

2�

g
+
+

2

��q�4

� �
tc�s�
j �Z

q��jtc
jW� c

j �2+��jts
jW� s

j�2e−i��tc
1+ts

1+tc
2+ts

2�,

�7.57b�

Z
+
+

III =
12gcgs

�3 + gc
2��3 + gs

2�

g
+
+

2

��q�4 �
tc�s�
j �Z

q��jtc
jW� c

j �2+��jts
jW� s

j�2e−i��tc
2+ts

2�,

�7.57c�
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Z
+
+

IV =
12gcgs

�3 + gc
2��3 + gs

2�

g
+
+

2

��q�4 �
tc�s�
j �Z

q��jtc
jW� c

j �2+��jts
jW� s

j�2e−i��tc
1+ts

1�,

�7.57d�

where W� c
j and W� s

j are the dual vectors of A� c
j and A� s

j, respec-
tively, and form two sets of dual triangular lattices with dif-

ferent lattice spacings, � 2gc

gc
2+3

and � 2gs

gs
2+3

, respectively. With
the identification of the ground state degeneracy as g
+
+

=
�3+gc

2��3+gs
2�

48gcgs
, the full partition function is

Z
+
+
=

1

��q�4��q��jtc
jW� c

j �2+��jts
jW� s

j�2, �7.58�

with the constraints tc
j + ts

j =0�mod 2� for j=1,2. Hence the
dimensions of the boundary operators can be directly read
off and the leading order perturbations have the dimension

�
+
+
:

2gc

gc
2 + 3

+
2gs

gs
2 + 3

. �7.59�

The only difference of the boundary state of the 
−
−
boundary condition comes from the parametrization of �c�s�
=−�c�s�=0. Consequently, the partition function is similar to
the case of the 
+
+ BC with a minor variation,

A� c�s�
j → A� c�s��j = �gc�s�

R� j

2�2
−

K� j

�2gc�s�
, �7.60�

in Eq. �7.52�. Also, the A� c�s��j ’s form a triangular lattice with

lattice spacing equal to �A� c�s�
j �. Moreover, the constraint,

�c
j +�s

j =0�mod 2�, still holds. Hence, we can conclude that
the partition function upon the modular transformation has a
similar structure to the 
+
+ case. Hence, the leading order
perturbations have the same scaling dimension.

Since the scaling dimensions of the boundary operators
are the same for the cases of 



 BCs, one may wonder if
the 


� boundary conditions will have similar behaviors.
However, one can see from the argument below that the scal-
ing dimensions of the boundary operators are rather differ-
ent. We have learned that the nontrivial scaling dimensions
come from the gluing conditions. Even in the case of the

same dual lattice structure and spacing, the gluing conditions
may provide nontrivial constraints. In the case of the 


�

BCs, the only gluing condition �c�s�
j =0�mod 4� will not lead

to any constraint on the integer tc�s�
j . As a result, the leading

order perturbations have scaling dimensions

�


�
:

2gc

gc
2 + 3

,
2gs

gs
2 + 3

, �7.61�

which are always smaller than 1 for any gc�s� and lead to an
instability of the fixed point. So, we conclude that the 


�

fixed points are not stable.

5. DADA boundary condition

From the results of the DEBC approach, the asymmetric
boundary conditions could be stable in some regions of the
interaction parameter space. Hence, it becomes important to
construct the corresponding boundary state for checking the
instability of the DADA boundary condition. Without loss of
generality, we choose to impose the Dirichlet boundary con-
dition on the dynamical field, �c�s�

1 = ��c�s�
1 −�c�s�

2 � /�2, be-
tween the first and second wires and the Neumann boundary
condition at the third wire. Indeed, this set of boundary con-
ditions is equivalent to having D BC on �c�s�

1 and N BC on
�c�s�

2 . Using the parameters defined in this section, the D BC
of the dynamical field leads to nc�s�

1 =nc�s�
2 �nc�s�, while the N

BC of the �c�s�
3 leads to mc�s�

1 =mc�s�
2 �mc�s�. Hence, the re-

duced boundary state can be constructed as

�DADA� = gDADA
exp��

n=1

�

a�n,c
R† · RAa�n,c

L† + �
n=1

�

a�n,s
R† · RAa�n,s

R†�
�����nc,nc,mc,mc�� � ��ns,ns,ms,ms�� , �7.62�

with the rotation matrix and the appropriate gluing condi-
tions written as

RA = �− 1 0

0 1
�,

nc = ns = mc = ms�mod 2� ,

nc + ns + mc + ms = 0�mod 4� .

�7.63�

The partition function is given by

ZDA,DA
= �DADA�e−lH�

P
�DADA�

=
gDADA

2

��q̃�4 �
�

exp�−
2�l

� � 1

4gc
�mc�

i

K� i�2
+

gc

4 � nc

2 �
i

R� i�2��exp�−
2�l

� � 1

4gs
�ms�

i

K� i�2
+

gs

4 � ns

2 �
i

R� i�2��
=

gDADA

2

��q̃�4 �
�

exp�−
2�l

�
� mc

2

4gc
+

gcnc
2

12
��exp�−

2�l

�
� ms

2

4gs
+

gsns
2

12
�� , �7.64�
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where we use ��iK� i�2=1 and ��iR� i /2�2=1 /3 for the second
equality and the prime over the summation indicates the con-
straints of the integers.

Now, we can separate nc�s� and mc�s� into two independent
sets, all even or all odd,

nc�s� = 2hc�s�, mc�s� = 2�c�s� �set a� ,

nc�s� = 2hc�s� + 1, mc�s� = 2�c�s� + 1 �set b� , �7.65�

with a constraint

hc + �c + hs + �s = 0�mod 2� . �7.66�

Hence, the partition function can be decomposed in terms of
new variables as

ZDA,DA
=

gDADA

2

��q̃�4

�� q̃�c

2/2gc+gchc
2/6+�s

2/2gs+gshs
2/6

+ q̃�2�c + 1�2/8gc+gc�2hc + 1�2/24+�2�s + 1�2/8gs+gs�2hs + 1�2/24
 .

�7.67�

Upon the modular transformation, one obtains

ZDA,DA
=

3gDADA

2

��q�4 ��q�gc�t̃c�2/8+3�tc�2/8gc+gs�t̃s�
2/8+3�ts�

2/8gs�,

�7.68�

with the constraint

tc = ts = t̃c = t̃s�mod 2� ,

tc + ts + t̃c + t̃s = 0�mod 4� . �7.69�

Then, the scaling dimensions of the boundary operators cor-
responding to the leading order perturbations can be read off,

�DADA
:

gc
2 + 3

8gc
+

gs
2 + 3

8gs
,

gs

2
+

gs

2
,

3

2
�gc

−1 + gs
−1� ,

gc

2
+

3

2gs
,

gs

2
+

3

2gc
, 2gc, 2gs. �7.70�

These results agree with the conclusions from the DEBC
method. Moreover, the ground state degeneracy is gDADA
=1 /�3.

We conclude this section with the discussion about how to
determine the instability of the phases by using the ground
state degeneracy of the boundary states. Recall the ground
state degeneracy of the different boundary states,

gNN =�gcgs

3
, gDD =� 3

gcgs
,

gND =�gc

gs
, gDN =�gs

gc
,

g
+
+
=

�3 + gc
2��3 + gs

2�
48gcgs

, gDADA
= 1/�3. �7.71�

The universal noninteger ground state degeneracy gBcBs
al-

ways decreases under the renormalization from a less stable
to a more stable fixed point in the same bulk universality
class33 �g theorem�. If there are two stable phases for a given
value of interaction parameters �gc ,gs�, then an unstable
fixed point must lie in between these two stable points �with
a value of gBcBs

that is larger than those at the two stable
fixed points�. While one cannot resolve to which fixed point
one flows in these overlapping regions of stability �it de-
pends on the strengths of the bare couplings�, it is instructive
to look at the phase boundaries, as determined from the con-
dition of minimal boundary entropy. The phases with mini-
mum ground state degeneracy gBcBs

�computed from Eq.
�7.71�� for a given �gc ,gs� are shown in Fig. 9. Comparing to
the phase diagram proposed based on the scaling dimensions
of the leading order perturbations in Fig. 7, the borderlines in
Fig. 9 are located where there is overlap between two or
more phases.

VIII. CONCLUSION

In this paper, we studied the problem of a junction of
three quantum wires for spin-1

2 electrons connected by a ring,
through which a magnetic flux can be applied. The bulk of
the wires was formulated as Tomonaga–Luttinger liquids
with interaction parameters gc and gs �for charge and spin
sectors, respectively�. The problem was studied by using two
different methods: delayed evaluation of boundary condi-
tions and boundary conformal field theory. These methods
bypass the difficulty that normally occurs with the inclusion
of Klein factors to ensure the proper fermionic statistics for
different species of fermions. We reached consistent results

FIG. 9. �Color online� The areas with red, green, blue, orange,
purple, and white indicate the regions in parameter space where the
ground state degeneracy corresponding to the NN, DD, ND, DN,




, and DADA boundary conditions, respectively, is the mini-
mum. The borders with black lines are determined by the condition
that the ground state degeneracies for adjacent regions correspond-
ing to two different boundary conditions are equal.
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for the stability of the phases obtained from the two different
methods.

We computed the low energy and low temperature charge
and spin conductance tensors corresponding to the fixed
points for the junction as a function of the interaction param-
eters gc�s�. These conductance tensors, G�gc ,gs�, which are
presented in Sec. V �and summarized in Sec. II�, characterize
the response of the junction to the externally applied volt-
ages. We have presented a simple one-to-one relation be-
tween the conductance tensor and the rotation matrix R that
encodes the types of boundary conditions in the DEBC
method.

When the Y junctions are attached to Fermi liquid leads,
the fixed points are still controlled by gc and gs in the wires.
However, the conductance tensor is altered due to the contact
resistances at the lead-wire interfaces. Similarly to what was
found in Ref. 7, the conductance tensor in the presence of the
leads is the one determined by the appropriate BC �which is
controlled by the gc and gs� but evaluated at gc=gs=1 in-
stead. For instance, in the case when the chiral fixed point is
the stable one, one plugs gc=gs=1 into Eq. �2.13�. Interest-
ingly, for the chiral fixed point, the switching of the current
in the presence of the leads is then perfect, circulating the
current from one lead completely into one of the other two
leads. Indeed, this renormalization of the conductance tensor
is the three-wire analog of what was found in the experi-
ments of Tarucha et al. on Luttinger liquids coupled to
reservoirs34 and explained theoretically in Refs. 35 and 36.

The phase diagram, as a function of the interaction param-
eters gc�s�, is contained in Fig. 7. Among the possible phases,
we find one corresponding to a chiral fixed point similar to
the case of spinless electrons. In this phase, the flow of cur-
rent is sensitive to the flux through the ring, and we find that
the charge and spin degrees of freedom must circulate with
the same chirality.

We have also found that the inclusion of the spin degree
of freedom allows for the existence of a stable fixed point
where current only flows between two wires, while the third
remains uncoupled. Such fixed point was always unstable in
the case of spinless electrons. Thus, in more realistic models
that include the electron spin into account, it may be possible
that controlling small anisotropies in Y junctions of quantum
wires may lead to sensitive current switches.
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APPENDIX A: BOUNDARY CONDITIONS
AND CONDUCTANCE

We will show in this section how the conductance tensor
is extracted from the boundary conditions. Within the linear
response theory, we obtain the Kubo formula for the conduc-
tance tensor of multiple wires introduced in Eq. �2.1� as in7

Gjk,c�s� = lim
�→0+

e2

h��L
	

0

L

dx	
−�

�

d�ei���T�Jj,c�s��y,��

�Jk,c�s��x,0�� , �A1�

where the currents Jc�s��x ,��=−i�2���c�s��x ,��. The currents
can be separated into two chiral currents, Jj,c�s�

R =�2�� j,c�s�
���x− i���� j,c�s� /�2 and Jj,c�s�

L =�2�̄� j,c�s����x+ i���� j,c�s� /�2.
In terms of these chiral currents, Jj,c�s�=Jj,c�s�

R −Jj,c�s�
L and the

Kubo formula �Eq. �A1�� becomes

Gjk,c�s� = lim
�→0+

e2

h��L
	

−�

�

d�ei��

�	
0

L

dx��T�Jj,c�s�
R �y,��Jk,c�s�

R �x,0��

+ �T�Jj,c�s�
L �y,��Jk,c�s�

L �x,0��

− �T�Jj,c�s�
R �y,��Jk,c�s�

L �x,0��

− �T�Jj,c�s�
L �y,��Jk,c�s�

R �x,0��� . �A2�

We will use the rotation matrix R corresponding to the
boundary conditions in the DEBC method to evaluate the
correlation functions.

1. Boundary conditions and correlation functions

We first consider the correlation functions of the chiral
currents in an infinite quantum wire. The off-diagonal com-
ponents �Jj,c�s�

R Jj,c�s�
L � vanish and the diagonal components are

given by

�Jc�s�
R �y,��Jc�s�

R �x,0�� = − 2�2��c�s��z, z̄��c�s��0�� , �A3a�

�Jc�s�
L �y,��Jc�s�

L �x,0�� = − 2�̄2��c�s��z, z̄��c�s��0�� , �A3b�

where z= i�+ �y−x�. Since the �-correlation function is

��c�s��z, z̄��c�s��0�� = −
g

2
ln�z�2, �A4�

we obtain

�Jc�s�
R �y,��Jc�s�

R �x,0�� =
gc�s�

z2 , �A5a�

�Jc�s�
L �y,��Jc�s�

L �x,0�� =
gc�s�

z̄2 . �A5b�

Let us recall how the boundary conditions can be written
in terms of the rotation matrix R,

�� R�x� = �RT�� L�x��x=0, �A6�

where �� R and �� L are defined as
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�� c�s�
R = ��1,c�s�

R

]

�N,c�s�
R � and �� c�s�

L = ��1,c�s�
L

]

�N,c�s�
L � , �A7�

for N quantum wires. Because �c�s�=�gc�s���c�s�
L −�c�s�

R �, the
boundary conditions can be translated to

J�c�s�
L �0� = RJ�c�s�

R �0� . �A8�

A convenient trick to respect boundary conditions is to ana-
lytically continue the right mover currents to x�0 and iden-
tify

Ji,c�s�
L �x,�� = RijJj,c�s�

R �− x,�� , �A9�

for x�0. With this identification, the chiral current correla-
tion functions between different wires can be evaluated in
terms of the matrix elements

�Ji,c�s�
R �y,��Jj,c�s�

R �x,0�� =
gc�s�

z2 �ij , �A10a�

�Ji,c�s�
L �y,��Jj,c�s�

L �x,0�� =
gc�s�

z̄2 �ij , �A10b�

for the diagonal correlation functions �RR� and �LL�, while

�Ji,c�s�
R �y,��Jj,c�s�

L �x,0�� =
R jigc�s�

�i� + �x + y��2 , �A10c�

�Ji,c�s�
L �y,��Jj,c�s�

R �x,0�� =
Rijgc�s�

�i� − �x + y��2 �A10d�

for the off-diagonal correlation functions �RL� and �LR�.

2. Conductance tensor

Now, we can insert the correlation functions �Eqs.
�A10a�–�A10d�� into the Kubo formula �Eq. �A2�� to evalu-
ate the conductance tensor. With the aid of the integral for-
mula

	
−�

�

d�ei�� 1

�i� + u�2 = 2����u�e−�u, �A11�

where ��u� is the Heaviside step function, the Kubo formula
reads

Gij,c�s� =
2gc�s�e

2

hL
	

0

L

dx��ij���x − y� + ��y − x��

− R ji��x + y� − Rij��− x − y�� . �A12�

The integration of the combined first and second � functions
gives a constant L. In addition, since both x ,y�0, the inte-
gration over the third � function gives a constant L, while
that over the fourth one vanishes. The conductance tensor
evaluated from the Kubo formula is therefore given by

Gij,c�s� = 2gc�s�
e2

h
��ij − R ji� . �A13�

As an example of this generic formula for junctions of
multiple quantum wires, let us compute the conductance for
a junction of two wires. First, the N BC is governed by the
rotation matrix RN,ij =�ij. Hence, all elements of the conduc-
tance GN vanish, indicating a total decoupled junction. Sec-
ond, the D BC is governed by the rotation matrix

RD = �0 1

1 0
� . �A14�

Inserting this into Eq. �A13�, one obtains

GD = 2gc�s�
e2

h
� 1 − 1

− 1 1
� �A15�

and

I1 = − I2 = 2g
e2

h
�V1 − V2� , �A16�

from the definition Ii=GijVj. This is, as one would expect,
the conductance for perfect transmission in a 1D quantum
wire.

APPENDIX B: MULTIDIMENSIONAL MODULAR
TRANSFORMATION

Since modular transformations are useful in calculations
using BCFT, we will in this appendix define and provide the
general formulation of the multidimensional modular trans-
formation.

Generically, a d-dimensional partition function Zq̃ is pro-
portional to

Z =
1

��q̃�d �
u�� 

q̃�1/4�u�2
=

1

��q̃�d �
u�� 

e−�l�/���u� �2, �B1�

where q̃�e−4�l/� and  indicates the lattice points. In order
to check the finite-size spectrum with a given boundary con-
dition, we have to rewrite the partition function in terms of
q�e−��/l, i.e., perform a modular transformation. First, the
modular transformation of the Dedekind � function reads

��q̃� =��

2l
��q� . �B2�

Then, the modular transformation of the summation in Eq.
�B1� can be achieved by using the Poisson summation for-
mula, which replaces the summation by an integration with
the periodic � function, �u�� �x��,

Z =
1

��q̃�d 	 ddx�u�� �x��e−�l�/���x��2. �B3�

The � function can be further written as the sum of  �,
reciprocal lattice of  ,

�u��x�� =
1

V0� � �
u��� �

exp�i2��u�� · x��� , �B4�

where V0� � is the volume of the unit cell. The partition
function becomes
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Z =
1

V0� ���q̃�d �
u��� �

	 ddxei2��u��·x��e−�l�/���x��2, �B5�

cast using a standard Gaussian integral.
To proceed, we shall use the following identity:

	 ddx exp�−
1

2 �
i,j=1

d

xiAijxj + b� · x�� =
�2��d/2

�det A
exp�W�b��� ,

�B6�

where Aij is a d�d matrix and W�b��= 1
2�i,j=1

d bi�A−1�ijbj. In

our case �Eq. �B5��, one can identify that Aij =
2�l
� �ij and b�

= i2�u�� and obtain

�det A�−1/2 = �2�l

�
�−d/2

= � �

2�l
�d/2

, �B7�

W�b�� = −
�2��2

2

�

2�l
�u���2 = −

��

l
�u���2. �B8�

Inserting these results into Eq. �B5�, the partition function
becomes

Z =
�2��d/2

V0� ���q̃�d� �

2�l
�d/2

�
u��� �

e−���/l��u���2

=
�2�d/2

V0� ���q�d �
u��� �

q�u���2, �B9�

where the identity in Eq. �B2� is used for second equality.
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