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We investigate transport properties of a superconducting junction of many �N�2� one-dimensional quantum
wires. We include the effect of electron-electron interaction within the one-dimensional quantum wire using a
weak interaction renormalization group procedure. Due to the proximity effect, transport across the junction
occurs via direct tunneling as well as via the crossed Andreev channel. We find that the fixed point structure of
this system is far more rich than the fixed point structure of a normal metal–superconductor junction �N=1�,
where we only have two fixed points—the fully insulating fixed point or the Andreev fixed point. Even a
two-wire �N=2� system with a superconducting junction, i.e., a normal metal–superconductor–normal metal
structure, has nontrivial fixed points with intermediate transmissions and reflections. We also include electron-
electron interaction induced backscattering in the quantum wires in our study and hence obtain non-Luttinger
liquid behavior. It is interesting to note that �a� effects due to inclusion of electron-electron interaction induced
backscattering in the wire, and �b� competition between the charge transport via the electron and hole channels
across the junction give rise to a nonmonotonic behavior of conductance as a function of temperature. We also
find that transport across the junction depends on two independent interaction parameters. The first one is due
to the usual correlations coming from Friedel oscillations for spin-full electrons giving rise to the well-known
interaction parameter ��= �g2−2g1� /2��vF�. The second one arises due to the scattering induced by the
proximity of the superconductor and is given by ���= �g2+g1� /2��vF�. The nonmonotonic conductance and
the identification of this new interaction parameter are two of our main results. In both the expressions g1

=V�2kF� and g2=V�0�, where V�k� is the interelectron interaction potential.
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I. INTRODUCTION

Effects due to the proximity of a superconductor have
motivated a lot of work1–3 in the past several decades. A
direct manifestation of proximity effect is the phenomenon
of Andreev reflection �AR� in which an electronlike quasi-
particle incident on normal–superconductor �NS� junction is
reflected back as a hole along with the transfer of two elec-
trons into the superconductor as a Cooper pair. An even more
intriguing example where the proximity effect manifests
itself is the phenomenon of crossed Andreev reflection
�CAR� which can only take place in a normal metal–
superconductor–normal metal �NSN� junction provided the
distance between the two normal metals is less than or equal
to the phase coherence length of the superconductor. This is
a nonlocal process where an incident electron from one of
the normal leads pairs up with an electron from the other
lead to form a Cooper pair4–8 and joins the superconductor.
Its relevance in the manipulation of spin currents9 �SCs� and
questions regarding production of entangled electron pairs in
nanodevices for quantum computation has attracted a lot of
attention in recent times.10–18 Further extensions such as in-
clusion of effects due to electron-electron interactions on AR
processes in case of NS junctions in the context of one-
dimensional �1D� wires have also been considered
recently.19–24

In this paper, we shall first develop a general formulation
for studying the transport properties of a multiple quantum

wire �QW� junction in the spirit of the “Landauer–Buttiker”
approach,25 where the junction itself is superconducting. We
shall use this formulation to study the influence of the prox-
imity effect on the transport properties of a superconducting
junction specifically for the case of two and three 1D inter-
acting quantum wires and show how the simple case of junc-
tion of a single 1D QW with a superconductor �NS junction�
is different from the multiple wire junction counterpart. Be-
cause of the existence of the AR process, both electron and
hole channels take part in transport. The power law depen-
dence of the Andreev conductance for the NS junction case
was first obtained using weak interaction renormalization
group �WIRG� approach by Takane and Koyama in Ref. 19.
This was in agreement with earlier results from
bosonization,20 which, however, could only handle perturba-
tive analyses around the strong backscattering �SBS� and
weak backscattering �WBS� limits. The WIRG approach, on
the other hand, can study the full crossover from WBS limit
to SBS limit. Hence, the WIRG approach is very well suited
for studying problems where the aim is to look for nontrivial
fixed points with intermediate transmissions and reflections.
This would be difficult using a bosonization approach.

For the NS junction case, it was shown that the power law
exponent for the temperature dependence of conductance
was twice as large as the exponent for a single barrier in a
QW. This happens because of the introduction of the extra
hole channel due to AR. The WIRG approach takes into ac-
count both �a� electron-electron interaction induced forward
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scattering processes which gives standard Luttinger liquid
behavior, and �b� electron-electron interaction induced back-
scattering processes which give rise to non-Luttinger liquid
behavior �deviation from pure power law behavior� as ob-
tained by Glazman and co-workers in Refs. 26 and 27. The
most interesting point to be noticed here is the fact that both
bosonization and WIRG give the same Luttinger liquid
power law dependence for the conductance of NS junction
although the WIRG approach actually takes into account the
extra process of electron-electron backscattering which usu-
ally leads to non-Luttinger liquid behavior. This happens be-
cause there is a remarkable cancellation in perturbation
theory which nullifies any deviation from pure power law
behavior of conductance.

In this paper, we show that this kind of cancellation does
not happen for the NSN junction or for that matter, for any
junction comprising of more than two 1D quantum wires.
Hence, deviations from pure power law do exist. We show
that due to the interplay of the proximity and the interaction
effects, one gets a nonmonotonic behavior of conductance
for the case of NSN junction as a function of the tempera-
ture. Note that this is something which cannot be obtained in
a bosonization analysis which neglects the backscattering
part of the electron-electron interaction. We extend our re-
sults to junctions with a ferromagnetic wire on one side, i.e.,
ferromagnet–superconductor–normal �FSN� junctions and to
junctions with ferromagnets on both sides, i.e., ferromagnet–
superconductor–ferromagnet �FSF� junctions. Here, we as-
sume that the influence of the junction between the supercon-
ductor and the ferromagnetic wire has a very small effect on
the spectrum of the superconductor itself. Of course, this is
true only if the superconductor is large enough. We also
study transport through a superconductor at the junction of
three wires �and finally extend it to N wires�. This general-
izes the earlier work on junctions28,29 to also include prox-
imity effects.

In Sec. II, we review the applicability and strength of the
WIRG approach when applied to quantum impurity prob-
lems, such as a normal junction of multiple quantum wires,
or a junction with a spin impurity. Then we discuss how one
can apply the WIRG technique to the problem studied in this
paper. In Sec. III, we describe the setup for our system, i.e.,
a superconductor at the junction of N wires, in terms of a
scattering matrix and briefly discuss the symmetries of the
proposed model. We then perturbatively �in electron-electron
interaction strength� calculate the leading order logarithmic
corrections to both the normal reflection amplitude and the
AR amplitude which, in turn, give corrections to the conduc-
tance via the Landauer–Buttiker formula. In Sec. IV, we ob-
tain the RG equation for the NS junction and reproduce the
known fixed points using our approach. Then we derive the
RG equation for the symmetric NSN junction and obtain the
RG flow between various fixed points and analyze the results
of the study. Unlike the renormalization group flow of the
NS junction, which does not lead to any nonmonotonicity,
we show that the inclusion of the CAR and direct tunneling
through the superconductor gives rise to a nonmonotonic
conductance as a function of the temperature. In Sec. V, we
present our results for specific cases of NSN. In Sec. VI, we
study the three-wire superconducting junction and show the

existence of a fixed point which is analogous to Griffith’s
fixed point28,29 in the three-wire normal junction case. Fi-
nally in Sec. VII, we present our summary and discussions.

II. WEAK INTERACTION RENORMALIZATION GROUP
VIS-A-VIS BOSONIZATION

Transport through a quantum scatterer �for instance, a
simple static barrier or a dynamical impurity such as Kondo
spin� in a 1D interacting electron gas is qualitatively differ-
ent from its higher dimensional counterpart.30 This is be-
cause, in one dimension, due to electron-electron interac-
tions, the Fermi-liquid ground state is destroyed and the
electrons form a non-Fermi-liquid ground state known as as
Luttinger liquid.31 The low energy dynamics of the 1D sys-
tem is governed mainly by coherent particle-hole excitations
around the left and the right Fermi points. It is natural to use
bosonic fields to describe these low lying excitations. This
can be done by reexpressing the original fermions using bo-
son coherent state representation32–34 which is referred to as
bosonization. However, this approach only allows for a per-
turbative analysis for transport around the limiting cases of
SBS and WBS for the quantum impurity problem. On the
other hand, if we start with a very weakly interacting elec-
tron gas, it is possible to do a perturbative analysis in the
electron-electron interaction around the free fermion Hamil-
tonian, but treating the strength of the quantum impurity ex-
actly. This allows us to study transport through the impurity
for any scattering strength. The strength of this approach lies
in the fact that even in the presence of electron-electron in-
teraction, one can use single particle notions such as the
transmission and reflection amplitudes in order to character-
ize the impurity. The idea is to calculate correction to trans-
mission and reflection amplitude perturbatively in the inter-
action strength. Of course, since we are working in one
dimension, the perturbative correction turns out to be loga-
rithmically divergent. To obtain a finite result, one has to
sum up all such divergent contributions to the transmission
and reflection amplitudes to all relevant orders at a given
energy scale. This was first done by Glazman and co-workers
in Refs. 26 and 27 in the context of a single �scalar� scatterer
for both spinless and spin-full electrons using the “poor
man’s scaling” approach.35 In the spinless case, it was shown
that the logarithmic correction to the bare transmission am-
plitude �to first order in interaction parameter parametrized
by �� was �T=2�T0�1−T0�ln�kd� and the explicit RG equa-
tion for transmission probability was dT /dl=−2�T�1−T�
where k was the momentum of the fermion measured from
kF, d was a short-distance cutoff and � was the interaction
parameter given by �=�1−�2 with �1=V�0� /2��vF and
�2=V�2kF� /2��vF. The RG equation upon integration gave
the transmission probability as

T�L� =
T0e−2�l

�1 − T0 + T0e−2�l�
=

T0� d

L
�2�

�1 − T0 + T0� d

L
�2�� . �1�

Here, l=−ln�kd�=ln�L /d� where L is the length scale. l can
also be measured as a function of the temperature by intro-
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ducing the thermal length, LT= ��vF� / �kBT�. T0 is the bare
transmission at the short-distance cutoff, d. It is easy to see
from Eq. �1� that for very small values of T0, T0 can be
neglected in the denominator of the expression for T�L� lead-
ing to a pure power law scaling consistent with the power
law known from bosonization in the WBS limit. Similarly,
for the spin-full electrons, it was shown that the parameter �
in the power law gets replaced by a new parameter, � given
by �= �g2−2g1� /��vF where g2=g2�k� and g1=g1�k� are
momentum dependent functions or “running coupling con-
stants.” The momentum dependence of � here is in sharp
contrast to the momentum independent � in the spinless
case. At high momentum �or equivalently, at the short-
distance cutoff scale�, g1�d�=V�2kF� and g2�d�=V�0�. Be-
cause of the extra logarithmic dependence coming from scal-
ing of the interaction parameter itself �see Eqs. �3� and �4�
below�, the expression for transmission26,27 no longer shows
a pure power law scaling even for small values of T0. In-
stead, T�L� is now given by

T�L� =
	T0�1 + �1 ln�L

d
��3/2� d

L
��2�2−�1�


	1 − T0 + T0�1 + 2�1 ln�L

d
��3/2� d

L
��2�2−�1�


�2�

using the length scale dependence of g1�L� and g2�L� given
by34

g1�L� =
V�2kF�

�1 +
V�2kF�

�vF
ln�L

d
�� , �3�

g2�L� = V�0� −
1

2
V�2kF� +

1

2

V�2kF�

�1 +
V�2kF�

�vF
ln�L

d
�� . �4�

Note that in the absence of electron-electron interaction
induced backscattering �i.e., when V�2kF�=0�, there is no
correction to the power law behavior. Hence, bosonization,
which ignores electron-electron backscattering, always re-
sults in power law behavior. However, when electron-
electron interaction induced backscattering is included, the
sign of g2−2g1 can change under RG flow, and hence, there
can be a qualitative change in the behavior of the conduc-
tance. The conductance actually develops a nonmonotonic
dependence on the temperature; it first grows and then drops
to zero. However, except for this nonmonotonic behavior of
conductance for the spin-full case, there is no new physics
which is found by studying the full crossover from WBS to
SBS. In conclusion, both bosonization and WIRG methods
predict that for the single scatterer problem there are only
two fixed points: �a� the perfectly backscattering �no trans-
mission� case is the stable fixed point and �b� the no back-
scattering �perfect transmission� case is the unstable fixed
point. There are no fixed points with intermediate transmis-
sion.

It was first shown by Lal et al. in Ref. 28, using the
WIRG approach that even though there are only two fixed
points for the two-wire junction, surprisingly enough, the
three-wire junction has a host of fixed points, some of which
are isolated fixed points while others are one parameter or
multiparameter families of fixed points. It was also shown to
be true for more than three wires. From this point of view,
the physics of a two-wire junction is different from its three-
wire counterpart. The three-wire junction was also studied
using bosonization and conformal field theory methods,36–39

which confirmed some of the fixed points found using
WIRG. It also gave some extra fixed points which were re-
lated to charge fractionalization at the junction, and which
could not be seen within the WIRG approach. The WIRG
method was further extended to complicated systems made
out of junctions of QW which can host resonances and anti-
resonances in Ref. 29. The scalings of the resonances and
antiresonances were studied for various geometries which
included the ring and the stub geometry. In particular, it was
shown that for a multiple-wire junction, the RG equations for
the full S matrix characterizing the junction take a very con-
venient matrix form

dS

dl
= − �SF†S − F� , �5�

where S is the scattering matrix at the junction and F is a
diagonal matrix that depends on the interaction strengths and
the reflection amplitude in each wire. The advantage of writ-
ing the RG equation this way is that it immediately facilitates
the hunt for various fixed points. All one needs to do is to set
the matrix on the left-hand side of Eq. �5� to zero. This will
formally provide us with all the fixed points associated with
a given S matrix. This approach was further extended in
Refs. 40 and 41 to study the multiple-wire junction with a
dynamical scatterer, i.e., a �Kondo� spin degree of freedom.
The coupled RG equations involving the Kondo couplings Jij
as well as the S matrices were solved. For different starting
scalar S matrices, the RG flows of the Kondo couplings were
studied. The temperature dependence of the conductances
was shown to have an interesting interplay of the Kondo
power laws as well as the interaction dependent power laws.
Finally, the WIRG method was also extended to the case of
NS junction.19,20 In the vicinity of the superconductor, it is
well known that the system is described by holes as well as
electrons.42 Hence, the S matrix characterizing the junction
not only includes the electron channel but also the hole chan-
nel. Naively, one might expect that in the presence of
particle-hole symmetry, the only effect of including the hole
channel would be to multiply the conductance by a factor of
2 �in analogy with inclusion of spin and imposing spin up–
spin down symmetry�. However, it was shown19,20 that in the
vicinity of a superconductor, the proximity-induced scatter-
ing potential that exists between electron and holes also gets
renormalized by electron-electron interactions. When this
scattering is also taken into account, the correction to the
scattering amplitude to first order in the interaction param-
eter depends on �2g2−g1� instead of �g2−2g1�. It is worth
stressing that this particular linear combination of the inter-
action parameters �gi’s� is independent of the scaling as the
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logarithmic factors �l=ln�kd�� in Eqs. �3� and �4� cancel each
other. Hence, there is no nonmonotonic behavior of the con-
ductance in this case. The WIRG predicted only two fixed
points, the Andreev fixed point �perfect AR� which turns out
to be an unstable one and the perfectly reflecting fixed point
which is the stable fixed point. The NS junction has also
been studied using bosonization.43 It is easy to check that the
power laws resulting from bosonization agree with those ob-
tained from the WIRG, when the electron-electron interac-
tion induced backscattering �which is dropped in the
bosonization method� is ignored.

In this paper, we apply the WIRG method to the super-
conducting junction of multiple quantum wires. We note that
we now have two complications: �a� multiple wires are con-
nected to the junction and �b� we have both electron and hole
channels connected to the junction. So in this case, even for
the NS junction, we have two spin channels as well as the
electron and hole channels, so the scattering matrix is four
component. For N wires, the scattering matrix is 4N	4N
dimensional. Although, we expect our method to work well
even in this case, there is one caveat we must keep in mind.
We have incorporated the effect of the superconductor as a
boundary condition on the QW and neglected any internal
dynamics of the superconductor itself. This should work rea-
sonably well as long as we are studying transport at energies
much below the superconducting gap. Our main result here
is that the conductance across the junction depends on both
g1 and g2 and not on a a special combination 2g2−g1 �as in
NS case� which does not get renormalized under RG flow.
Hence, the cancellation of the logarithmic terms in the effec-
tive interaction parameter is specific to the NS case and is
not true in general. For N�2 wires attached to a supercon-
ductor, we expect a nonmonotonic form of the conductance.
We also expect to get a host of fixed points with intermediate
transmission and reflection, knowledge of which can be of
direct relevance for application to device fabrication of such
geometries.

III. SUPERCONDUCTING JUNCTION WITH N
QUANTUM WIRES

Let us consider multiple �N� quantum wires meeting at a
junction on which a superconducting material is deposited as
depicted in Fig. 1. The wires are parametrized by coordinates
xi, with the superconducting junction assumed to be at xi
=0. We consider a situation where the effective width a of
the superconductor between two consecutive wires is of the
order of the phase coherence length of the superconductor
�size of the Cooper pair�. For our purpose, it is safe to ignore
the finiteness of a and effectively treat the junction of QW as
a single point in space with an appropriate boundary condi-
tion. We parametrize the junction by the following quantum
mechanical amplitudes. There are two kinds of reflection am-
plitudes: the normal reflection amplitude �riisisi

� and the AR
amplitude �rAiisisi

� on each wire. In addition, there are two
kinds of transmission amplitudes between different wires:
the cotunneling �CT� amplitude �tijsisj

� and the CAR ampli-
tude �tAijsisj

�. The indices si ,sj refer to the spin of incoming
and outgoing particles. As we consider a singlet supercon-

ductor at the junction, spin remains conserved in all the pro-
cesses mentioned above. Thus, the boundary conditions are
parametrized by a 4N	4N scattering matrix for N quantum
wires connected to a superconducting junction.

Let us now consider the various symmetries that can be
imposed to simplify the 4N	4N matrix. We impose particle-
hole symmetry, i.e., we assume that the reflection and trans-
missions are the same for particles �electrons� and holes.
Furthermore, in the absence of a magnetic field, spin sym-
metry is conserved which implies that the various transmis-
sion and reflection amplitudes for spin up–spindown elec-
trons and holes are equal. �This symmetry breaks down in
the presence of magnetic fields, or in the case of ferromag-
netic wires.� Also, since we assume that all the wires, con-
nected to the superconductor, are indistinguishable, we can
impose a wire index symmetry. �This symmetry again can be
broken if we take some ferromagnetic and some normal
wires attached to the superconductor.� On imposing these
symmetries, the S matrix for a two-wire system is given by

S = �S↑ 0

0 S↓
�

with

S↑ = S↓ = �
r t rA tA

t r tA rA

rA tA r t

tA rA t r
� . �6�

Here, r stands for normal reflection of electron or hole in
each wire, and rA represents AR from electron to hole or vice
versa in each wire. t represents the elastic CT amplitude �t
= t12= t21� while tA represents the CAR amplitude �tA= tA12
= tA21�. For the spin symmetric case, there are two such ma-
trices, one for spin up electrons and holes and one for spin
down electrons and holes. Note that this is the relevant
S-matrix at energy scales �temperature and applied voltage
on the wires� kBT ,eVi
�, where � is the superconducting
gap energy. The competition between CT and CAR has been
analyzed before7,8 and also different ways of separating the
contributions experimentally have been considered.15 How-
ever, the effect of electron-electron interactions within the

FIG. 1. �Color online� Multiple wires connected to a supercon-
ducting junction. The dashed lines represent the fact that the model
can be trivially extended to more than two wires. a is the effective
length of the superconductor.
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wires has not been considered for the NSN case. It is worth
emphasizing here that if such NSN junctions are made out of
1D systems such as carbon nanotubes, then the effect of
electron-electron interactions can influence the low energy
dynamics significantly.

The Landauer–Buttiker conductance matrix for the NSN
case can be written, in the regime where kBT ,eVi
�, as7

�I1

I2
� = �GA + GCA + GCT GCA − GCT

GCA − GCT GA + GCA + GCT
��V1

V2
� . �7�

The conductances here are related to the elements of the S
matrix: GA� rA2, GCT� t2 and GCA� tA2. GA is the conduc-
tance due to the AR that occurs at a single NS junction,
whereas GCT and GCA are the conductance due to the elastic
CT and CAR processes, respectively, both of which involve
transmissions between two wires and give contributions with
opposite signs to the subgap conductance between the two
wires, GCA−GCT. The generalization of this to N2 is
straightforward, and some details are presented in Sec. VI.

IV. WEAK INTERACTION RENORMALIZATION GROUP
STUDY OF JUNCTIONS

We study the effects of interelectron interactions on the S
matrix using the RG method introduced in Ref. 27, and the
generalizations to multiple wires in Refs. 28 and 29. The
basic idea of the method is as follows. The presence of back-
scattering �reflection� induces Friedel oscillations in the den-
sity of noninteracting electrons. Within a mean field picture
for the weakly interacting electron gas, the electron not only
scatters off the potential barrier but also scatters off these
density oscillations with an amplitude proportional to the
interaction strength. Hence, by calculating the total reflection
amplitude due to scattering from the scalar scatterer and
from the Friedel oscillations created by the scatterer, we can
include the effect of electron-electron interaction in calculat-
ing transport. This can now be generalized to the case where
there is, besides nonzero reflection, also nonzero AR.

To derive the RG equations in the presence of Andreev
processes, we will follow a similar procedure to the one fol-
lowed in Ref. 28. The fermion fields on each wire can be
written as

�is�x� = �Iis�x�eikFx + �Ois�x�e−ikFx, �8�

where i is the wire index, s is the spin index which can be ↑,↓
and I, O stands for outgoing or incoming fields. Note that
�I�x���O�x�� are slowly varying fields on the scale of kF

−1

and contain the annihilation operators as well as the slowly
varying wave functions. For a momentum in the vicinity of
kF, the incoming and outgoing fields �with the incoming field
on the ith wire� can be Fourier expanded in a complete set of
states and the electron field can be written as

�is�x� =� dk�bkse
i�k+kF�x + dks

† ei�−k+kF�x + rbkse
−i�k+kF�x

+ r�dks
† e−i�−k+kF�x + rAdkse

−i�−k+kF�x + rA
�bks

† e−i�k+kF�x� ,

��j�i�s�x� =� dk�tbkse
i�k+kF�x + tdks

† ei�−k+kF�x + tAdkse
−i�−k+kF�x

+ tA
�bks

† e−i�k+kF�x� , �9�

where bks is the electron destruction operator and dks is the
hole destruction operator. Note that we have chosen to quan-
tize the fermions in the basis of the space of solutions of the
Dirac equation, in the presence of a potential which allows
for normal as well as Andreev scattering. We have also al-
lowed for both incident electrons and holes. We find that
�dropping a constant background density�

��is�x�� = ��is
† �is� =

i

4�x
��r�e2ikFx − re−2ikFx�

+ �re2ikFx − r�e−2ikFx�� , �10�

where the two terms correspond to the density for electrons
and holes, respectively. Here we have also used the fact that
due to the proximity of the superconductor, the amplitude to
create �destroy� a spin s electron and destroy �create� a spin
s hole is nonzero—i.e., the Boguliobov amplitudes
�dk−s

† bks
† �=1= �bksdk−s�, besides the normal amplitudes

�dks
† dks�= �bksbks

† �=1. �This is of course true only close to the
superconductor. We have checked that this gives the same
result as solving the Boguliobov—de Gennes equation as
done in Ref. 20.� Hence, besides the density, the expectation
values for the pair amplitudes ��is

† �is
† � and its complex con-

jugate ��is�is� are also nonzero and are given by �dropping
the wire index�

��O↑
† �I↓

† � = − ��O↓
† �I↑

† � =
− irA

4�x

and

��O↑�I↓� = − ��O↓�I↑� =
− irA

�

4�x
. �11�

So, we see that the Boguliobov amplitudes fall off as 1 /x just
like the normal density amplitudes.

We now allow for short-range density-density interactions
between the fermions

Hint =
1

2
� dxdy� �

s=↑,↓
�s�V�x − y�� �

s=↑,↓
�s� �12�

to obtain the standard four-fermion interaction Hamiltonian
for spin-full fermions as

Hint =� dx�g1��I↑
† �O↑

† �I↑�O↑ + �I↓
† �O↓

† �I↓�O↓

+ �I↑
† �O↓

† �I↓�O↑ + �I↓
† �O↑

† �I↑�O↓�

+ g2��I↑
† �O↑

† �O↑�I↑ + �I↓
† �O↓

† �O↓�I↓

+ �I↑
† �O↓

† �O↓�I↑ + �I↓
† �O↑

† �O↑�I↓�� , �13�

where g1 and g2 are the running coupling constants defined
in Sec. II �Eqs. �3� and �4��.
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Using the expectation values for the fermion operators,
the effective Hamiltonian can be derived using a Hartree–
Fock �HF� decomposition of the interaction. The charge con-
serving HF decomposition can be derived using the expecta-
tion values in Eq. �10� and leads to the interaction
Hamiltonian �normal� of the following form on each half
wire:

Hint
N =

− i�g2 − 2g1�
4�

�
0

� dx

x
�r���I↑

† �O↑ + �I↓
† �O↓�

− r��O↑
† �I↑ + �O↓

† �I↓�� . �14�

�We have assumed spin symmetry, i.e., r↑=r↓=r.� This has
been derived earlier.28 Using the same method, but now also
allowing for a charge nonconserving HF decomposition with
the expectation values in Eq. �11�, we get the �Andreev�
Hamiltonian

Hint
A =

− i�g1 + g2�
4�

�
0

� dx

x
�− rA

���I↑
† �O↓

† + �O↑
† �I↓

† �

+ rA��O↓�I↑ + �I↓�O↑�� . �15�

Note that although this appears to be charge nonconserving,
charge conservation is taken care of by the 2e charge that
flows into the superconductor every time there is an Andreev
process taking place.

The amplitude to go from an incoming electron wave to

an outgoing electron wave under e−iHint
N t �for electrons with

spin� was derived in Ref. 28 and is given by

− �rs

2
ln�kd� , �16�

where �= �g2−2g1� /2��vF and d was a short-distance cut-
off. Analogously, the amplitude to go from an incoming elec-

tron ein wave to an outgoing hole hout wave under e−iHint
A t is

given by

e−iHint
A tein,s,k� = − i� dk�

2�
�hout,s�,k��

	�hout,s�,k�Hint
A ein,s,k��

=
− i�g1 + g2�rA

4��vF
� dx

x
e−2ikxhout,s�,k�� ,

�17�

where s�s�. Hence, the amplitude for an incoming electron
to be scattered to an outgoing hole is given by

��rA

2
ln�kd� , �18�

where ��= �g1+g2� /2��vF. Note also that � and �� are
themselves momentum dependent, since the gi’s are momen-
tum dependent. The amplitude for an incoming electron to go
to an outgoing electron on the same wire is governed by the
interaction parameter �= �g2−2g1� /2��vF which has the

possibility of chaging sign under RG evolution, because of
the relative sign between g1 and g2. On the other hand, ��
= �g2+g1� /2��vF can never change its sign.

A. Normal–superconductor junction

The amplitudes in Eqs. �16� and �18� are corrections to
the reflections of electrons from Friedel oscillations and from
the pair potential, respectively. We can combine them with
the S matrix at the junction to find the corrections to the
amplitudes of the S matrix. For an NS junction, there is only
one wire coupled to the superconductor and the S matrix is
just 2	2 for each value of the spin and is given by

S = � r rA

rA r
� . �19�

Here, r is the normal refelction amplitude and rA is the An-
dreev reflection amplitude. So, we only need to compute the
corrections to r and rA in this case.

We find that there are five processes which contribute to
the amplitude rA to first order in the interaction parameter.
These are illustrated in Fig. 2.

Adding all the contributions, we obtain the change in the
AR amplitude rA that takes an incoming electron to an out-
going hole given by

�rA =
��

2
�rA − rA

��r2 + rA
2��ln�kd� + �r2rA ln�kd� , �20�

in agreement with Ref. 43. For an incoming electron re-
flected back as an electron, we find the small correction in
the amplitude �r given by27,28
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FIG. 2. �Color online� The processes that contribute to the am-
plitude for an incoming electron to transform to an outgoing hole.
Note that all the processes shown here are to first order in the
interaction parameters since they only involve a single scattering
from a Friedel oscillation or the pair potential. Process �c� involves
scattering from a pair potential before the electron reaches the junc-
tion. The remaining processes involve two reflections from the
junction and a scattering from the Friedel oscillation or the pair
potential. In the diagrams, �= 1

2�r� ln�kd�, �=− 1
2��rA

� ln�kd�, and
��= 1

2��rA ln�kd�.
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�r = − ��rA2r ln�kd� +
�

2
�rA

2r� − r�1 − r2��ln�kd� .

�21�

We replace −ln�kd� by dl using the poor man’s scaling
approach35 to obtain the RG equation for rA as

drA

dl
= −

��

2
�rA − rA

��r2 + rA
2�� − �r2rA. �22�

Using the unitarity of the S matrix �rA2+ r2=1 and rA
�r

+rAr�=0�, we can simplify the right-hand side �RHS� of the
above equation to obtain

drA

dl
= − �� + ���rA�1 − rA2� . �23�

Note that the combination �+��= �2g2−g1� /2��vF, which
appears in the RG equation, does not flow under RG. This
can be seen from Eqs. �3� and �4� which shows that �2g2
−g1� /2��vF= �2V�0�−V�2kF�� /2��vF. This means that r
and rA either monotonically increase or decrease as a power
law depending on the sign of �+��. From Eq. �23�, we also
observe that rA  =0 and rA  =1 correspond to the insulating
and the Andreev fixed points of the NS junction, respec-
tively. One can easily see from the RG equations that rA 
=0 is a stable fixed point and rA  =1 is an unstable fixed
point.

B. Normal metal–superconductor–normal metal junction

In this subsection, we shall consider an NSN junction.
Here, in addition to the two reflection channels, we also have
two channels for transmission; the direct transmission of an
electron to an electron through the CT process and the trans-
mission of an electron to a hole via CAR. These processes

are depicted in Fig. 3. The S matrix at the junction is 8	8 in
this case as given in Eq. �6�. The number of processes that
contribute in this case is 34, since we also need to include
terms that transmit electrons or holes through the junction.
For instance, for the renormalization of the AR term, besides
the terms corresponding to the NS junction, we also have to
include processes in which the electron is incident from wire
1, goes through the junction to wire 2, Andreev reflects from
the pair potential on wire 2, and then comes back through the
junction, as shown pictorially in Fig. 4�c�.

Collecting all the nine processes that contribute to first
order in � and �� to the reflection amplitude, we find that

dr

dl
= − 	�

2
��t2 + rA

2 + tA
2�r� − r�1 − r2�� − ���rrA2 + rA

�tAt�
 .

�24�

Similarly, adding up the contributions from the nine pro-
cesses that contribute to rA, we find that

drA

dl
= − 	��r2rA + ttAr�� +

��

2
�rA − �r2 + rA

2 + t2 + tA
2�rA

��
 .

�25�

Moreover, here besides the reflection parameters, we also
need to compute the renormalizations of the transmissions to
first order in � and ��. The RG equations for t and tA are also
obtained by considering all possible processes that ultimately
have one incoming electron and one outgoing electron �for t�
and one incoming electron and one outgoing hole �for tA� and
are either reflected once from the Friedel potential or the pair
potential. They are found to be

dt

dl
= − ���r2t + r�rAtA� − ���rA2t + rrA

�tA�� , �26�
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FIG. 3. �Color online� Electron CT with bare amplitude t is
shown in �a� and CAR with bare amplitude tA is shown in �b�.
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FIG. 4. �Color online� The extra processes that contribute to the
amplitude for an incoming electron to transform to an outgoing hole
on the same wire, due to the second wire. Processes �a� and �b� are
transmitted to the second wire and reflected by the Friedel oscilla-
tion, whereas �c� and �d� are transmitted to the second wire and
reflected by the pair potential.
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dtA

dl
= − ���r�rAt + r2tA� − ���rtrA

� + rA2tA�� . �27�

Just as was done for the normal junction �Eq. �5��, we can
express the RG equations for the superconducting junction in
a compact matrix form28

dS

dl
= F̃ − SF̃†S , �28�

where the matrix S is given in Eq. �5� and F̃ depends on the
interaction parameters �= �g2−2g1� /2��vF and ��= �g1

+g2� /2��vF. F̃ is a nondiagonal matrix �unlike the case in
Ref. 28� and is given by

F̃ = �
�r

2
0

− ��rA

2
0

0
�r

2
0

− ��rA

2

− ��rA

2
0

�r

2
0

0
− ��rA

2
0

�r

2

� . �29�

It is easy to check that all the RG equations are reproduced
from the matrix equation. The matrix form also makes the
generalization to N wire case notationally simple and makes
the search for various fixed point much easier. This will be
discussed in the last section. However, note that these equa-
tions have to be augmented by Eqs. �3� and �4� to get the full
set of RG equations.

Let us now look at some of the fixed points of the S
matrix. Clearly, the fixed points occur when F−SF†S=0 or
when FS† is hermitian. There are several possibilities and we
list below some of them.

Case I. Any one of the four parameters is nonzero.
�a� t=1, r=rA= tA=0, fully transmitting fixed point �TFP�.
�b� r=1, rA= tA= t=0 fully reflecting fixed point �RFP�.
�c� rA=1, r= t= tA=0, fully Andreev reflecting fixed point

�AFP�.
�d� tA=1, r= t=rA=0, fully crossed Andreev reflecting

fixed point. �CAFP�.
Case II. Any two are nonzero.
When both r and rA are zero, the RHS of the RG equa-

tions identically vanishes as both the Friedel oscillation am-
plitude as well as the pair potential amplitude in the wire
become zero. Hence, any value of t and tA remains unrenor-
malized under RG.

Case III. Any three of them are nonzero.
We did not find any fixed point of this type.
Case IV. All four of them are nonzero.
Here, we get a fixed point when r1=r2= t= tA=1 /2 and

rA1=rA2=−1 /2. This is the most symmetric S matrix possible
for the NSN case. Since it is a symmetry-dictated fixed point
with intermediate transmission and reflection, we shall refer
to it as symmetric fixed point �SFP�.

We will study the RG flows near some of these fixed
points in the next section.

C. Ferromagnet–superconductor,
ferromagnet–superconductor–ferromagnet, and
ferromagnet–superconductor–normal junctions

We can also consider junctions where one or more of the
wires are spin polarized, with Fermi distributions for the spin
up and spin down electrons being different. As long as at
least one of the wires is ferromagnetic, the spin up–spin
down symmetry of the system is broken. This means that we
can no longer impose S↑=S↓ on the S matrix parametrizing
the scattering as we had in Eq. �7�. We now need to choose
an S matrix with indices ↑ and ↓ denoting the spin. For the
FSN case �and the FSF case where the ferromagnets on the
two sides are not identically polarized�, the wire index sym-
metry is also broken. Hence, the S matrix chosen must also
break the wire-index symmetry. Note that for the ferromag-
netic wire, the amplitude to destroy a spin s electron and
create a spin s hole cannot be nonzero, even in the proximity
of the superconductor. The Boguliobov amplitudes �dik−s

† biks
† �

and �biksdik−s� decay exponentially fast �with a length scale
set by the ferro-antiferro gap� in the ferromagnetic wire. So,
in our S matrix, rA is zero and there is no pair potential due
to the proximity effect in ferromagnetic wire. Also, as men-
tioned earlier, we must keep in mind that the influence of the
ferromagnet on the spectrum of the superconductor has to be
negligibly small. This will be true only if the superconductor
is large enough. Hence, for such junctions, the renormaliza-
tion of the S matrix is only due to the Friedel oscillations.
Also, note that in these wires, since the bulk does not have
both the spin species, g1 and g2 do not get renormalized. All
the cases mentioned above will therefore involve the full
4N	4N S matrix since there is no reduction in the number
of independent elements of the S matrix which can occur
when symmetries are imposed.

D. Three-wire junction: A beam splitter

In this subsection, we consider the standard beam splitter
geometry comprising of a superconductor at the junction of
three quantum wires. In this case, we show that there is a
fixed point that is analogous to the Andreev fixed point of the
NS junction. The S matrix representing this fixed point is
symmetric under all possible permutations of the three wires
and allows for the maximum Andreev transmission �in all
channels simultaneously within unitarity constraints�. The S
matrix is given by rA=−1 /3 and tA= tA� =2 /3 with r= t= t�
=0. We refer to this fixed point as the Andreev–Griffith’s
fixed point �AGFP�47 �see Fig. 5�.

For an analytic treatment of this case, we will consider a
simplified situation where there is a complete symmetry be-
tween two of the wires, say 1 and 2, and the S matrix is real.
In addition, the elements of the S matrix corresponding to
transmission or reflection of an incident electron �hole� to a
reflected or transmitted electron �hole� are set to zero so that
only Andreev processes participate in transport. Then the S
matrix is given by
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S = �
0 0 0 rA tA tA�

0 0 0 tA rA tA�

0 0 0 tA� tA� rA�

rA tA tA� 0 0 0

tA rA tA� 0 0 0

tA� tA� rA� 0 0 0

� . �30�

Here, rA and tA and tA� are real parameters which satisfy29

tA = 1 + rA,

rA� = − 1 − 2rA,

tA� = ��− 2rA��1 + rA� , �31�

and

− 1 � rA � 0

by unitarity. Using Eq. �31�, the simplified RG equation for
the single parameter rA is given by

drA

dl
= ���rA�1 + rA��1 + 3rA�� . �32�

So, within the real parametrization, we have two unstable
fixed points, given by rA=0 and rA=−1 and a stable fixed
point given by rA=−1 /3. The rA=0 fixed point corresponds
to a situation where there is perfect CAR between wires 1
and 2 and wire 3 gets cut off from the remaining two wires
�labeled by 1 and 2� and is in the perfect AR limit with the
superconductor. The rA=−1 fixed point corresponds to a situ-
ation where all the three wires are disconnected from each
other and are in perfect AR limit individually with the super-
conductor. The third fixed point given by rA=−1 /3 corre-
sponds to a perfect Andreev limit of the three-wire junction
where an incident electron is either Andreev reflected into
the same wire as a hole or is transmitted as a hole via CAR

into another wire. This is essentially the AGFP. It is very
interesting to note that the original Griffith’s fixed point was
a repulsive fixed point,28,29 whereas the AGFP is an attractive
fixed point. This can be understood as follows. Here, there is
no scattering from the Friedel oscillations as the junction is
assumed to be reflectionless, whereas there exists a
proximity-induced pair potential, which induces an effective
attractive interaction between the electrons. Hence, the phys-
ics is very similar to the well-known Luttinger liquid phys-
ics, which says that for attractive interaction between the
electrons, backscattering is an irrelevant operator. Hence, the
stable fixed point here will be the one which will have maxi-
mal transmission between the wires. So, it is not surprising
that the AGFP turns out to be a stable fixed point. Thus, for
a reflectionless junction, we have found a stable fixed point
with intermediate transmission and reflection.

V. RESULTS

In this section, we will consider various physical cases
and see what the RG flows mean for the conductances in
each case.

A. Normal–superconductor junction

First, we give the results for the NS junction, just to con-
trast with the results of the NSN junction. Here, we have
only two parameters, r and rA. The conductance occurs only
due to the AR amplitude, rA which obeys the RG equation
given by Eq. �20�. As mentioned already, there is no flow of
the particular linear combination of the interaction param-
eters 2g2−g1 that occurs in the equation and the RG flow of
the conductance is therefore monotonic. The conductance as
a function of the length scale for different interaction param-
eters V�0� and V�2kF� is plotted in Fig. 6. L here simply
denotes the length at which the RG is cut off. So, if we take
very long wires LW�LT, then the cutoff is set by the tem-
perature, and the plot shows the variation of the conductance
as a function of LT starting from the high temperature limit,
which here is the superconducting gap �. We observe that as
we lower the temperature, the Andreev conductance de-
creases monotonically. Also it was established in Ref. 20 that
the power law scalings of conductance �rA2� calculated
from WIRG and bosonization were found to be in agreement
with each other for the limiting cases of rA2�1 and rA2
�0 �which are the only limits where bosonization results are
valid� provided effects due to electron-electron induced
backscattering in the wires is neglected.

B. Ballistic normal metal–superconductor–normal metal
junction

In this subsection, we consider the case of a reflectionless
ballistic junction between the superconductor and the two
wires, i.e., r=0. This implies that the renormalization of the
S matrix due to the Friedel oscillations is absent. The only
renormalization is due to reflections from the proximity ef-
fect induced pair potential. Let us now consider various in-
teresting cases.

h
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h

e

r
A
= - 1

r
A
= - 1/3

r
A
= 0

FIG. 5. �Color online� Schematic representation of the situation
where a three-wire junction is hooked to the stable fixed point,
AGFP. An incident electron in one wire is either reflected back as a
hole in the same wire or is transmitted as a hole in another wire
along with the addition of the two electrons into the superconductor
forming a Cooper pair. The direction of RG flow from two unstable
fixed points to the stable fixed point �AGFP� is also depicted on the
bottom left side of the diagram.
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�a� r=0,rA=0, t�0, tA�0. In this case, since we have
both r=0 and rA=0, there is no RG flow of the transmission
and the conductance is frozen at the value that it had for the
bare S matrix. The most interesting situation in this case
arises when t= tA. For this case, the probability for an inci-
dent electron in one wire, to transmit in the other wire as an
electron due to t or as hole due to tA is equal, leading to
perfect cancellation of charge current.

�b� r=0, t=0,rA�0, tA�0. For this case, one can easily
check from the RG equations �Eqs. �24�–�27�� that if we start
our RG flow with the given parameters at high energies, then
the values of r , t remain stuck to the value zero under the RG
flow. Hence, in this case, the two parameter subspace rA
�0, tA�0 remains secluded under the RG flow. The RG
equation for tA is given by

dtA

dl
= ��tA�1 − tA2� . �33�

The above equation can be integrated to obtain an expression
for CAR probability �TA= tA2� as follows:

TA�L� =

TA
0	�1 + 2�1 ln�L

d
��3/2� d

L
�−�2�2−�1�


RA
0 + TA

0	�1 + 2�1 ln�L

d
��3/2� d

L
�−�2�2−�1�
 .

�34�

TA
0 and RA

0 are the CAR and AR probabilities at the short-
distance cutoff, L=d. We notice that the RG equation and its
solution are very similar to that for the single scatterer
problem26 apart from a sign difference on the RHS of the
equation and the dependence of the interaction parameter ��
on g1 and g2. This implies that even if we start with a small
crossed Andreev transmission across the junction, the RG

flow will take us toward the limit of perfect transmission.
This is in sharp contrast to the normal transmission across a
single scatterer. For the single barrier problem, the equation
for the RG flow of t was by

dt

dl
= − �t�1 − t2� . �35�

Hence, t=0 was the stable fixed point. However, if the
electron-electron interactions had been attractive, then the
sign on the RHS would have been positive and t=1 would
have been the stable fixed point. Thus, the RG flow of tA for
the case when rA�0, t=r=0, and repulsive interactions, is
very similar to the RG flow for t when r�0, tA=rA=0 but
with attractive interactions. In both cases, transmission is
relevant and t=1 and tA=1 are the stable fixed points. On the
other hand, the RG flow of tA for the case of rA�0, t=0, r
=0 and attractive electron-electron interaction �V�0� ,V�2kF�
�0� in the wire is very similar to the RG flow for t for the
case r�0, rA=0, tA=0 and repulsive electron-electron inter-
action �V�0� ,V�2kF�0�. In both cases, transmission is irrel-
evant and t=0 and tA=0 are the stable fixed points. At an
intuitive level, one can perhaps say that even if we start with
repulsive interelectron interactions, the proximity-induced
pair potential leads to a net attractive interaction between the
electrons, which is responsible for the counterintuitive RG
flow.

Also notice that while solving the above RG equation for
tA, we have to take into account the RG flow of the interac-
tion parameter ���� itself. This will lead to non-power-law
�non-Luttinger� behavior for the conductance close to tA
�0 or tA�1. It is worth pointing out that the non-power-
law part appearing in Eq. �34� is identical to Ref. 26, even
though the interaction parameter for their case was propor-
tional to g2−2g1 and for our case it is g2+g1. However, of
course, this will not lead to any nonmonotonic behavior as
�� cannot change sign under RG flow. So, the stable fixed
point for this case is the CAFP.

�c� r=0, tA=0, rA�0, t�0. This case is identical to case
�b� discussed above except for the fact that we have to re-
place tA in the previous case by t. In this case, also the two
parameter subspace rA�0, t�0 remains secluded under RG
flow. The RG equation for t is given by

dt

dl
= ��t�1 − t2� . �36�

Here also, t=1 remains the stable fixed point and t=0 is the
unstable fixed point.

�d� r=0, t�0, rA�0, tA�0. In this case, if we start from
a symmetric situation, i.e., t= tA, we can see from the RG
equations in Eqs. �27� and �28� that both t and tA have iden-
tical RG flows. So, the subgap conductance G=GCA−GCT
vanishes identically and remains zero throughout the RG
flow. Hence, this S matrix can facilitate production of pure
SC9 if we inject spin polarized electrons from one of the
leads as the charge current gets completely filtered out at the
junction.
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FIG. 6. �Color online� Conductance of the NS junction is plotted
in units of e2 /h as a function of the dimensionless parameter l
where l=ln�L /d� and L is either LT=�vF /kBT at zero bias or LV

=�vF /eV at zero temperature and d is the short-distance cutoff for
the RG flow. The three curves correspond to three different values
of V�0� and V�2kF�.
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C. Ballistic ferromagnet–superconductor–ferromagnet junction

Here, we consider the case where both the wires are spin
polarized. In this case, we have two interesting possibilities,
i.e., either both the wires have aligned spin polarization or
they have them antialigned. In either case, the Andreev re-
flection amplitude is zero on each wire due to reasons ex-
plained earlier.

�a� When the two wires have their spins aligned, t�0, but
tA=0 because for CAR to happen we need up�down� spin
polarization in one wire and down�up� spin polarization on
the other wire which is not possible in this case.

�b� When the two wires have their spins antialigned, t
=0, but tA�0 because the up�down� electron from one wire
cannot tunnel without flipping its spin into the other wire. As
there is no mechanism for flipping the spin of the electron at
the junction, such processes are not allowed.

Hence these two cases can help in separating out and
measuring amplitudes of the direct tunneling process and the
CAR process experimentally.15 Both these are examples of
case II, since they have both r=0 and rA=0. In this case,
neither t nor tA change under RG flow and hence conduc-
tance is not influenced by electron-electron interaction at all.

D. Nonballistic normal metal–superconductor–normal metal
junction

1. Without Andreev reflection on individual wires

Here, we consider an NSN junction with finite reflection
in each wire and no AR in the individual wires. So, the
renormalization of the S matrix is purely due to Friedel os-
cillations and there are no contributions coming from scat-
tering due to the pair potential. Below we discuss two cases.

�a� rA=0, t=0, r�0, tA�0. This is an example of case II
mentioned in Sec. IV B. The RG equations �Eqs. �25�–�27��
predict that rA , t will remain zero under the RG flow and r , tA
form a secluded subspace. The RG equation for this case is
given by

dtA

dl
= − �tA�1 − tA2� . �37�

Note the change in sign on the RHS with respect to the
RG equation for tA �Eq. �33�� for the ballistic case. This
change in sign represents the fact that the ballistic case ef-
fectively represents a situation corresponding to attractive
electron-electron interaction while this case corresponds to a
purely repulsive electron-electron interaction.

Figure 7 shows the behavior of conductance �GCA� for this
case. The conductance in the main graph shows a nonmono-
tonic behavior.

To contrast, we also show in the inset the behavior when
the renormalization of � is not taken into account. Thus, it is
apparent from the plot that the nonmonotonicity is coming
solely from the RG evolution of �. The inset and the main
graph both start from the same value of tA. Even though this
case is theoretically interesting to explore, its experimental
realization may not be viable. This is because of the follow-
ing reasons. Here we have rA=0 on both wires, which can
only happen if the wires are ferromagnetic. However, we

also know that if the wires are ferromagnetic, there is no
scaling of � parameter and hence there will be no interesting
nonmonotonic trend in the conductance. So, it is hard to find
a physical situation where rA=0 and at the same time, there
is renormalization of the interaction parameter �. Lastly,
note that the conductance GCA is negative. The process re-
sponsible for the conductance �i.e., CAR� converts an incom-
ing electron to an outgoing hole or vice versa, resulting in
the negative sign.

�b� rA=0, tA=0, r�0, t�0. This case is identical to the
previous case with the replacement of tA by t. Figure 8 shows
the the CT conductance GCT as a function of the length scale.
It shows a similar nonmonotonic behavior with positive val-
ues for the conductance. The inset shows the behavior of GCT
when the renormalization of � is not taken into account.

2. With Andreev reflection on individual wires

�a� rA�0, tA�0, r�0, t�0. This is the most interesting
case, where both r and rA are nonzero, and we get an inter-
play of the effects due to scattering from Friedel oscillations
and from proximity-induced pair potential. Here, all the four
parameters are nonzero and flow under RG, as do the inter-
action parameters � and ��. An example where the system
starts in the vicinity of the unstable fixed point SFP �as men-
tioned in case IV in Sec. IV B� is shown in Fig. 9. The NSN
conductance here is defined as GNSN=GCA−GCT. Here also
we observe a strong nonmonotonicity in the conductance
which comes about due to interplay of the electron and the
hole channels, which contribute to the conductance with op-
posite signs, coupled with the effects from the RG flow of
the interaction parameters.

E. Nonballistic ferromagnet–superconductor–normal junction

In this case, for the ferromagnetic wire rA=0, but for the
normal wire rA has a finite value. As explained earlier, the
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FIG. 7. �Color online� Conductance GCA of the NSN junction is
plotted �when the two leads have antiparallel spins� in units of e2 /h
as a function of the dimensionless parameter l where l=ln�L /d� and
L is either LT=�vF /kBT at zero bias or LV=�vF /eV at zero tem-
perature and d is the short-distance cutoff for the RG flow. The
three curves correspond to three different values of V�0� and
V�2kF�. The inset shows the behavior of the same conductance for
fixed values of �.
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interaction parameters � and �� on the ferromagnetic side do
not renormalize, whereas they do on the normal side. Hence,
even if we start from a situation where the interaction param-
eters � and �� are symmetric for the two wires, RG flow will
always give rise to an asymmetry in the interaction strength.
Therefore, it becomes a very interesting case to study theo-
retically. The S matrix for this case has neither spin up–spin
down symmetry, nor the wire index �left-right for two wires�
symmetry. Only the particle-hole symmetry can be retained
while parametrizing the S matrix. This case gets very com-
plicated to study theoretically because the minimum number
of independent complex-valued parameters that are required
to parametrize the S matrix is nine as opposed to four in the
NSN case. These are given by r↑↑

11, r↑↑
22, r↓↓

22, tA↑↑
12 , tA↓↓

21 , rA↑↑
22 ,

rA↓↓
22 , t↑↑

12, and t↑↑
21. Here, 1�2� is the wire index for the ferro-

magnetic �normal� wire, while ↑ and ↓ are the respective spin
polarization indices for the electron.

So, the minimal S matrix representing the FSN junction is
given by

S = �
r t 0 0 tA 0

t� r� 0 0 rA 0

0 0 r� tA� 0 rA�

0 0 tA r 0 t

tA� rA� 0 0 r� 0

0 0 rA t� 0 r�

� . �38�

The RG equations for the nine independent parameters are
given in Appendix A. We write down a representative S ma-
trix which satisfies all the constraints of the FSN junction
and unitarity, and study its RG flow numerically by solving
the nine coupled differential equations. The modulus of the

S-matrix elements are given by r↑↑
11  = r↑↑

22  = r↓↓
22  = tA↑↑

12 
= tA↓↓

21  = rA↑↑
22  = rA↓↓

22  = t↑↑
12  = t↑↑

21=1 /�3 and the correspond-
ing phases associated with each of these amplitudes are
� /3,� ,0 ,−� /3,0 ,� /3,0 ,� ,−� /3, respectively. Here also
we observe a nonmonotonic behavior of conductance, GFSN
as a function of l as shown in Fig. 9.

F. Nonballistic ferromagnet–superconductor–ferromagnet
junction

Here, we will consider the case where both the wires are
spin polarized. This case is similar to the ballistic case. Since
here r�0 and rA=0, we will have the usual Friedel oscilla-
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�when the two leads have parallel spins� in units of e2 /h as a func-
tion of the dimensionless parameter l where l=ln�L /d� and L is
either LT=�vF /kBT at zero bias or LV=�vF /eV at zero temperature
and d is the short-distance cutoff for the RG flow. The three curves
correspond to three different values of V�0� and V�2kF�. The inset
shows the behavior of the same conductance for fixed values of �.
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The three curves correspond to three different values of V�0� and
V�2kF�.
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tions and the conductance will go to zero as a power law.
Here again we have two instructive cases: �a� when the two
wires connected to the superconductor have their spin polar-
ization aligned, i.e., t�0, but tA=0 and �b� when the two
wires have their spin polarization antialigned, i.e., t=0 but
tA�0.

Both these are examples of case II of Sec. IV B. Either t
or tA need to be zero in the two cases mentioned above.
Hence, the parameters which are zero will remain zero under

RG, while the nonzero parameters will flow according to
Eqs. �26� and �27�, respectively. The conductances are the
same as in the NSN case except that the interaction param-
eters cannot flow now. This has already been plotted in the
insets in Figs. 7 and 8. Since the electrons are now effec-
tively spinless, � and �� do not flow, and we get a monotonic
falloff of the conductance in both cases.

The results of this section are summarized in the table
below.

t tA rA r Stability Intermediate fixed point Relevant physics

0 0 0 1 Stable 	 RFP
0 0 1 0 Unstable 	 AFP
0 1 0 0 Unstable 	 CAFP
1 0 0 0 Unstable 	 TFP
1 /2 1 /2 −1 /2 1 /2 Unstable � SFP, nonmonotonic charge current

ei�1 sin � ei�2 cos � 0 0 Marginal � Pure spin current when t= tA

VI. GENERALIZATION TO THE CASE OF THREE WIRES

In this section, we consider the case of three wires con-
nected to a superconductor. We assume that all the wires are
connected within the phase coherence length of the super-
conductor. Hence, CAR can occur by pairing the incident
electron with an electron from any of the other wires and
emitting a hole in that wire. The conductance matrix can
hence be extended for three wires as

�I1

I2

I3
� = �Gr11 Gt12 Gt13

Gt12 Gr22 Gt23

Gt13 Gt23 Gr33
��V1

V2

V3
� �39�

with Grij =GAii+� j�GCAij +GCTij� and Gtij =GCAij −GCTij and
the generalization to N wires is obvious. Note that the con-
ductances GCAij =GCAji and GCTij =GCTji. The relation of the
conductances to the reflections and transmissions is obvious,
e.g., GAii� rAii2 as before while GCTij � tij2 and GCAij
� tAij2. The RG equations for the three-wire case can be
written using the matrix equation as given in Eq. �6� except
that the S matrix is now 12	12 dimensional. For a system
with particle-hole, spin up–spin down, and wire-index sym-
metries, the S matrix is given by

S↑ = S↓ = �
r t t� rA tA tA�

t r t tA rA tA

t� t r tA� tA rA

rA tA tA� r t t�

tA rA tA t r t

tA� tA rA t� t r

� , �40�

where we have chosen six independent parameters, with
t12= t21= t23= t32= t and t13= t31= t� and similarly for the CAR
parameter tA. The F matrix now generalizes to

F =�
�r

2
0 0

− ��rA

2
0 0

0
�r

2
0 0

− ��rA

2
0

0 0
�r

2
0 0

− ��rA

2

− ��rA

2
0 0

�r

2
0 0

0
− ��rA

2
0 0

�r

2
0

0 0
− ��rA

2
0 0

�r

2

�
�41�

and the RG equations for the six independent parameters are
given in Appendix B. There exists possibility of many more
nontrivial fixed points in this case, for instance, the AGFP, as
mentioned in Sec. IV D. As discussed in Sec. IV D, for the
reflectionless case with symmetry between just two wires,
this complicated S matrix takes a very simple form, which
can be dealt with analytically. Within the subspace consid-
ered, we found that the AGFP was a stable fixed point. In
Fig. 10, we show the RG flow of tA2 from two different
unstable fixed points to the stable AGFP.
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The possibility of experimental detection of such a non-
trivial fixed point with intermediate transmission and reflec-
tion is quite interesting. From this point of view, the AGFP is
a very well-suited candidate as opposed to its counterpart,
Griffith’s fixed point.28,29 For a normal junction of three 1D
QWs, the S matrix corresponding to r=−1 /3, t=2 /3 is a
fixed point �Griffith’s fixed point�, where r and t are the
reflection and the transmission for a completely symmetric
three-wire junction. Even though it is an interesting fixed
point, it turns out to be a repulsive one and hence the possi-
bility of its experimental detection is very low. On the con-
trary, the AGFP, being an attractive fixed point, has a better
possibility of being experimentally measured. The main
point here is that even if we begin with an asymmetric junc-
tion, which is natural in a realistic experimental situation, the
effect of interaction correlations is such that as we go down
in temperature, the system will flow toward the symmetric
junction. This can be inferred from the results shown in
Fig. 10.

VII. SUMMARY AND DISCUSSIONS

To summarize, in this paper we have studied transport
through a superconducting junction of multiple 1D interact-
ing quantum wires in the spirit of the Landauer–Buttiker
formulation. Using the WIRG approach, we derived the RG
equations for the effective S matrix and obtained the various
fixed point S matrices representing the junction. In contrast
to earlier RG studies, here, we had to include both particle
and hole channels due to the proximity effect of the super-
conductor. Our study led to the finding of a fixed point with
intermediate Andreev transmission and reflection even in the
case of NSN junction �SFP�. However, it turns out to be an

unstable fixed point and hence experimentally inaccessible.
We found that transport across the superconducting junction
depends on two independent interaction parameters ��= �g2
−2g1� /2��vF�, which is due to the usual correlations com-
ing from Friedel oscillations for spin-full electrons and ���
= �g2+g1� /2��vF�, which arises due to the scattering of elec-
tron into hole by the proximity-induced pair potential in the
QW. We computed the length scale �or temperature� depen-
dance of the conductance taking into account interaction in-
duced forward and backscattering processes. We found a
nonmonotonic dependence of the conductance for the two-
wire NSN superconducting junction in contract to the NS
junction where the dependence is purely monotonic.

When more than two wires are attached to the supercon-
ductor, we found even more exotic fixed points such as the
AGFP which happens to be a stable fixed point for a reflec-
tionless symmetric junction thus increasing its chances of
being experimentally seen. However, reflection is a relevant
perturbation and asymmetry between different wires is likely
to be a relevant parameter.44 Hence, the RG flow due to these
perturbations will take the system to the RFP in the low
energy limit. So, the experimental detection of AGFP fixed
point will critically depend on how efficiently the conditions
of reflectionlessness and symmetry can be maintained in the
experimental setup. If the reflection and asymmetry are re-
duced to a large extent, then as we cool the system, the S
matrix at the junction is expected to flow very close to the
AGFP fixed point. However, ultimately, the RG flow will
lead to enhancement of any initial small value of reflection
and asymmetry and we will finally flow to the disconnected
fixed point in the T=0 limit. Thus, it would be an interesting
experimental challenge to look for signature of the AGFP at
intermediate temperatures.

Before we conclude, it is worth mentioning that the ge-
ometry studied in our paper is of direct interest for the pro-
duction of nonlocal entangled electron pairs propagating in
two different wires. These electron pairs are produced by
Cooper pair breaking via crossed Andreev processes when
the superconductor is biased with respect to the wires com-
prising the junction. One can ask if electron-electron interac-
tion in the wires actually leads to enhancement of entangled
electron pair production via the crossed Andreev processes.
For example, we have observed that for the NSN junction
with r=0, t=0,rA�0, tA�0, interaction can lead to enhance-
ment of the crossed Andreev amplitude �tA� under RG flow.
This implies that for the case when the superconductor is
biased with respect to the wires, interelectron interactions
enhance the production of nonlocal entangled pairs, for
which the amplitude tA is relevant, as compared to local en-
tangled pairs for which the amplitude rA would be relevant.
This is consistent with the results of Recher and Loss45 who
also argued that it is energetically more favorable for the two
entangled electrons of the Cooper pair to go into different
wires, rather than the same wire. Finally, the RG flow leads
to a fixed point with tA=1 where the system becomes a per-
fect entangler. A more general case would be when r�0, t
�0,rA�0, tA�0. To study this case, one can start from the
two-wire SFPS matrix and study the RG flow of tA for an S
matrix which is in close vicinity of this fixed point. The
result of this study is shown in Fig. 9. We show that starting
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distance cutoff for the RG flow. The three curves correspond to
three different values of V�0� and V�2kF�. The set of curves in the
top represents the RG flow of tA2 when the starting point is in the
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from the short-distance cutoff d the RG flow initially leads to
enhancement of tA which will lead to an enhancement in the
production of nonlocal entangled pairs. Hence, these studies
establish the fact that electron-electron interactions of the
wires can actually an enhancement of nonlocal entangled
electron pair production.
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APPENDIX A

Here, we give the RG equations for nine independent pa-
rameters in case of a FSN junction.

dr

dl
= ��

2
r�1 − r2� −

�

2
�tr��t� + r��tAtA��

+
��

2
�trA

�tA� + tArA�
�t��� , �A1�

dt

dl
= − ��

2
r2t +

�

2
�r�2t + tAr��rA�� −

��

2
�rA

�rA�t + r�rA�
�tA�� ,

�A2�

dtA

dl
= − ��

2
r2tA +

�

2
�r�2tA + tr��rA� −

��

2
�rA

�r�t + rArA�
�tA�� ,

�A3�

dr�

dl
= − ��

2
r�tt� +

�

2
�r��rArA� − r��1 − r�2��

−
��

2
r��rArA�

� + rA
�rA��� , �A4�

drA

dl
= − ��

2
r�ttA +

�

2
rA�r�2 + r�2�

+
��

2
�rA − rA

2rA�
� − rA

�r�r��� , �A5�

dt�

dl
= − ��

2
r2t� +

�

2
�r�2t� + rAr��tA��

−
��

2
�rArA�

�t� + r�rA
�tA��� , �A6�

dr�

dl
= − ��

2
r�tAtA� +

�

2
�r��rArA� − r��1 − r�2��

−
��

2
r��rArA�

� + rA
�rA��� , �A7�

drA�

dl
= − ��

2
r�tA�t +

�

2
rA��r�2 + r�2�

+
��

2
�rA� − rA

�rA�
2 − rA�

�r�r��� , �A8�

dtA�

dl
= − ��

2
r2tA� +

�

2
�r�2tA� + r��t�rA��

−
��

2
�rA�

�r�t� + rA�rA
�tA��� . �A9�

APPENDIX B

Here, we give the RG equations for six independent pa-
rameters in case of a symmetric three-wire NSN junction.

dr

dl
= − 	�

2
�r��rA

2 + t2 + t�2 + tA
2 + tA�

2�

− r�1 − r2�� − ���rrA2 + rA
��ttA + t�tA���
 , �B1�

dt

dl
= − ���r2t + r��rAtA + t�2 + tA�

2��

− ���rA2t + rA
��rtA + t�tA���� , �B2�

dt�

dl
= − ��

2
�2r2t� + r��tt� + tAtA� + 2rAtA���

−
��

2
�2rA2t� + rA

��r�t� + tA�� + �t�tA + ttA����� ,

�B3�

drA

dl
= − ��

2
�2r2rA + r��2ttA + tA��t + t����

+
��

2
�rA − rA

��r2 + rA
2 + tA

2 + tA�
2 + 2tt���� , �B4�

dtA

dl
= − 	�

2
�2�r2tA + r�rAt� + r�t�tA� + rA

�t�2�

−
��

2
�2�rA2tA + rtrA

�� + rA
��t�2 + tA�

2��
 , �B5�

dtA�

dl
= − 	�

2
�2�r2tA� + r�rAt�� + r��t�tA + ttA���

−
��

2
�2�rA2tA� + rt�rA

�� + rA
��tt� + tAtA���
 . �B6�
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