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We present a quantum theoretical analysis of the electroluminescence from an intersubband transition of a
quantum well structure embedded in a planar microcavity. By using a cluster factorization method, we have
derived a closed set of dynamical equations for the quantum well carrier and cavity photon occupation
numbers, the correlation between the cavity field and the intersubband polarization, as well as polarization-
polarization contributions. In order to model the electrical excitation, we have considered electron population
tunneling from an injector and into an extractor contact. The tunneling rates have been obtained by considering
the bare electronic states in the quantum well and the limit of validity of this approximation �broad-band
injection� are discussed in detail. We apply the present quantum model to provide a comprehensive description
of the electronic transport and optical properties of an intersubband microcavity light-emitting diode, which
account for nonradiative carrier relaxation and the Pauli blocking. We study the enhancement of the electrolu-
minescence quantum efficiency passing from the weak to the strong polariton coupling regime and compare it
with the free-space case.
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I. INTRODUCTION

In the last two decades, the fundamental research on the
physics of intersubband transitions in semiconductor quan-
tum wells has enjoyed considerable success and also led to
novel applications in quantum optoelectronics.1 Recently, re-
flectivity experiments2–4 have demonstrated that by embed-
ding a doped quantum well structure in a planar microcavity,
it is possible to achieve the strong coupling regime between
an intersubband transition and a cavity photon mode, pro-
vided that a dense enough two-dimensional electron gas
populates the fundamental quantum well subband. The inter-
action between a bright intersubband excitation and a cavity
photon is quantified by the so-called vacuum Rabi frequency.
The strong coupling regime occurs when the vacuum Rabi
frequency exceeds the electronic and photonic losses. In such
a regime, the normal modes of the system are cavity polari-
tons, which are half-photon half-intersubband excitations. In
this kind of system, it is even possible to reach an unconven-
tional ultrastrong coupling regime, i.e., a vacuum Rabi
frequency comparable to the intersubband transition
frequency.5–7

The interplay between judiciously quantum engineered in-
tersubband transitions and vertical electron transport is the
essence of the so-called quantum cascade electroluminescent
devices and lasers, which are unipolar optoelectronic sources
emitting in the mid- and far-infrared portions of the electro-
magnetic spectrum.8–10 A new kind of microcavity-
embedded quantum cascade devices in the strong coupling
regime was proposed in Ref. 11. The first experimental dem-
onstrations of a microcavity quantum cascade photovoltaic
detector12 and of an electroluminescent device in the strong
coupling regime have been recently reported.13

This promising research topic is in its very infancy and
many interesting theoretical questions need to be addressed.
In Ref. 6, intersubband polariton electroluminescence has

been analytically treated within a simplified Hamiltonian
model based on the following assumptions: �i� only the
bright intersubband excitations have been taken into account,
while dark excitations have been neglected; �ii� only the low-
excitation regime has been considered, in which the bright
intersubband excitations have been approximated as bosons;
and �iii� the electronic coupling to the intersubband polariza-
tion field has been modeled through a phenomenological res-
ervoir of bosonic excitations. In this work, we will attempt to
treat the same problem starting directly from the fermionic
Hamiltonian for the quantum well carriers. This approach
can give us useful insight to understand the physics obtained
by relaxing the assumptions used in Ref. 6 and to grasp
which intrinsic factors ultimately determine the quantum ef-
ficiency of these strong coupling emitters. On one hand, the
large values of the vacuum Rabi frequency could induce a
very fast and efficient emission of photons. On the other
hand, the large density of dark intersubband excitations cre-
ated by the injection current and the Pauli blocking in the
densely populated fundamental subband could suppress such
enhancement.

We would like to point out that from a theoretical point of
view, a description of the considered system in terms of the
fermionic carrier operators makes the system Hilbert space
much larger than within a bosonic model. In this paper, we
have followed an approach based on a truncation of the in-
finite hierarchy of dynamical equations for the operator ex-
pectation values, allowing us to describe many relevant as-
pects of the intersubband microcavity electroluminescence.
However, some of the nonperturbative features obtained ana-
lytically within a bosonic model6 cannot be accounted for
within the present treatment. Different fermionic approaches
based on exact diagonalization methods14 are eventually nec-
essary for further refinements.

In this paper, we present a quantum model of the sponta-
neous photon emission from an electrically excited intersub-
band transition of a quantum well structure embedded in a
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planar microcavity mode. Here, we will consider the case of
an incoherent electron transport, where the quantum well
electron populations in the two subbands have a tunneling
coupling to an electronic injector and to an extractor. The
tunneling rates have been obtained by considering the bare
electron states inside the quantum well. The domain of va-
lidity of this approximation will be discussed in detail. The
present theoretical model is applied to describe the incoher-
ent electron transport and electroluminescence of an inter-
subband microcavity light-emitting diode in the strong cou-
pling regime. The paper is structured as follows. In Sec. II,
we describe the system and introduce the second quantiza-
tion Hamiltonian describing electrons in the two conduction
subbands and photons in the fundamental microcavity mode.
In Sec. III, we present a closed set of dynamical equations
for the one-time expectation values of operator products, de-
scribing photon and carrier populations as well as intersub-
band polarization-polarization and polarization-field correla-
tions. These equations have been obtained through a cluster
expansion, whose details are reported in Appendix A. In Sec.
IV, we discuss the steady-state regime obtained under con-
stant electrical excitation. The corresponding set of algebraic
equations for the steady-state expectation values are reported
in Appendix B. In Sec. V, the electroluminescence spectra
are analytically calculated as a function of the populations
and the appearance of intersubband cavity polaritonic reso-
nances in the emission spectra is shown. Numerical applica-
tions of the theory are presented in Sec. VI by using a spe-
cific configuration for the injection and extraction electronic
reservoirs. The results predict the current-voltage character-
istics, emission spectra, and quantum efficiency by using dif-
ferent �controllable� parameters for the considered microcav-
ity system. The results are critically discussed with respect to
the approximations of the model. Finally, conclusions and
future perspectives are drawn in Sec. VII.

II. DESCRIPTION OF THE SYSTEM AND QUANTUM
HAMILTONIAN

The system under study is described by the following sec-
ond quantization Hamiltonian:

H = �
k,�

��1�k�c1,�,k
† c1,�,k + �

k,�
��2�k�c2,�,k

† c2,�,k

+ �
q

��c�q�aq
†aq + �

k,q,�
���q�aqc1,�,kc2,�,k+q

†

+ �
k,q,�

��*�q�aq
†c2,�,k+qc1,�,k

† + Hother. �1�

The energy dispersions of the two quantum well conduction
subbands are ��1�k�= �2k2

2m� and ��2�k�=E12+ �2k2

2m� , being k
the electron in-plane wave vector and m� the effective mass
�here, nonparabolicity is neglected�. The corresponding elec-
tron creation fermionic operators are c1,�,k

† and c2,�,k
† , where

� is the electron spin. �c�q�= c
��r

�qz
2+q2 is the bare fre-

quency dispersion of a cavity photonic branch as a function
of the in-plane wave vector q, where c is the speed of light,
�r is the cavity spacer dielectric constant, and qz is the quan-

tized photon wave vector along the normal direction. aq
† is

the corresponding photon creation operator, obeying bosonic
commutation rules. Due to the well-known polarization se-
lection rules of intersubband transitions, we omit the photon
polarization, which is assumed to be transverse magnetic
�TM�. For simplicity, we consider only a photonic branch,
which is quasiresonant with the intersubband transition,
while other cavity photon modes are supposed to be off reso-
nance and can be therefore neglected in first approximation.
The interaction between the cavity photon field and the two
electronic subbands is quantified by the coupling constant,

��q� =� �12
2 d12

2

��0�rLcavS�c�q�
q2

��/Lcav�2 + q2 , �2�

where d12 is the intersubband transition dipole along the
quantum well growth direction, �12=E12 /� is the frequency
of the intersubband transition, �0 is the vacuum permittivity,
Lcav is the effective cavity length, and S is the sample area.
For simplicity, we have considered a 	 /2 cavity, with qz
=� /Lcav being the quantized vector along the growth direc-
tion. The geometrical factor q2

��/Lcav�2+q2 originates from the
TM-polarization nature of the transition. Moreover, in Eq.
�2�, we have assumed that the active quantum well is located
at the antinode of the cavity mode field, providing a maxi-
mum coupling. Note that here we have neglected the anti-
resonant terms of the light-matter interaction and therefore
we can describe the strong coupling regime for the electri-
cally excited system, but not the ultrastrong coupling limit,
as instead done in Refs. 5–7. The Hamiltonian term Hother is
meant to include all the other interactions: �i� electron-
phonon interaction, �ii� electron-electron interaction, �iii�
electron tunneling coupling to the injection and extraction
reservoirs, and �iv� coupling between the cavity photon field
and the extracavity field.

III. CLOSED SET OF DYNAMICAL EQUATIONS FOR
THE ONE-TIME EXPECTATION VALUES

It is known that due to the cubic light-matter coupling
term in the Hamiltonian �the product of the two fermion
operators and one boson operator�, it is not possible to write
down an exact closed set of equations for the evolution of
operators, being the Heisenberg equation of motion for each
product of N operators coupled at least with one product of
N+1 operators. In other words, the equations of motion of
the different observables of the system form an infinite hier-
archy. One approximation method that has been used in order
to solve this kind of systems is the so-called cluster expan-
sion scheme.15–17 It is based on a systematic development of
expectation values of operator products in terms of correla-
tion functions.

In order to obtain a consistent truncation scheme, a pair of
fermionic operators has to be considered of the same order as
a single bosonic operator. In this work, we have truncated the
hierarchy at the level of the product of two excitation opera-
tors �i.e., the product of four fermion operators�. The details
of the factorization are in Appendix A. The expectation val-
ues entering the present cluster factorization are the elec-
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tronic and photonic populations, the correlation between the
cavity photon field and the intersubband polarization, as well
as polarization-polarization correlations. The electron occu-
pation numbers in the two quantum well conduction sub-
bands are n1,k= �c1,�,k

† c1,�,k� and n2,k= �c2,�,k
† c2,�,k�. Since in

the absence of a magnetic field all quantities are spin inde-
pendent, we omit the spin index in the notation of the aver-
aged quantities. The cavity photon number is na,q= �aq

†aq�.
The correlation between the cavity photon field and the in-
tersubband electronic polarization is represented by the
quantity

Y�q,k� = �aq
†c1,�,k

† c2,�,k+q� . �3�

Finally, the polarization-polarization correlation function is
given by

X�q + k�,k�,k� = �
�

�c2,�,q+k�
† c1,�,k�c1,��,k

† c2,��,k+q� . �4�

In the spontaneous photon emission regime, Y�q ,k� cannot
be factorized: in fact, spontaneous emission is incoherent and
�aq�=0, �c1,�,k

† c2,�,k+q�=0, meaning that the cavity field and
the intersubband polarization have no definite phase. Loss of
coherence due to dephasing processes and photonic losses is
phenomenologically quantified by the damping rate 
Y. Un-
like Y�q ,k�, X�k�+q ,k� ,k� can be factorized in products of
nonzero lower-order expectation values of operators. In fact,
we have X�k�+q ,k� ,k�=2n2,k+q�1−n1,k��k,k�+�X�k�
+q ,k� ,k�. The first contribution is an uncorrelated plasma
term, while �X�k�+q ,k� ,k� describes the higher-order cor-
relation, which can be destroyed by dephasing processes
quantified by the damping rate 
X.

The terms in Hother, namely, the phonon scattering,
electron-electron interaction, the coupling to the contact res-
ervoirs, and the coupling to the external electromagnetic
field, will be treated in an effective way. The carrier nonra-
diative relaxation �due to phonon-electron and electron-
electron scatterings� is modeled in terms of a simple phe-
nomenological relaxation time �k. The role of the Coulomb
electron-electron interaction on intersubband transitions has
been studied, e.g., in Ref. 19. In the case of subbands with
parallel parabolic dispersion �e.g., same effective mass�, the
Coulomb interaction produces a moderate renormalization of
the intersubband transition frequency �12 and of its oscillator
strength, which will not be explicitly accounted for in the
present work.

Let n1,k
0 and n2,k

0 be the self-consistent local equilibrium
occupation numbers. They are given by the Fermi-Dirac dis-
tributions,

n1,k
0 =

1

e���1�k�−�F� + 1
,

n2,k
0 =

1

e���2�k�−�F� + 1
, �5�

where =1 / �KT� is the Boltzmann thermal factor and �F is
the quantum well self-consistent Fermi level, such that

�
k

n1,k + n2,k =
Sm*

2��2	
0

�

d�
1

e��−�F� + 1
+

1

e��+E12−�F� + 1
.

�6�

The two subbands are coupled to two electronic reser-
voirs, named, respectively, left and right contacts. We will
call 
p,j,k

in the electronic tunneling rate into the k mode of the
subband j=1,2 from the reservoir p=left , right. Analo-
gously, 
p,j,k

out is defined as the electronic tunneling rate from
the k mode of the subband j into the reservoir p. The total
in-tunneling and out-tunneling rates are 
 j,k

in =
left,j,k
in

+
right,j,k
in and 
 j,k

out=
left,j,k
out +
right,j,k

out .
The resulting closed system of equations for the one-time

expectation values reads

d

dt
na,q = − 2�na,q + �2i�

k
�*�q�Y�q,k� + c.c.� ,

d

dt
n1,k = −

n1,k − n1,k
0

�k
− 
1,k

outn1,k + 
1,k
in �1 − n1,k�

+ �i�
q

�*�q�Y�q,k� + c.c.� ,

d

dt
n2,k = −

n2,k − n2,k
0

�k
− 
2,k

outn2,k + 
2,k
in �1 − n2,k�

− �i�
q

�*�q�Y�q,k − q� + c.c.� ,

d

dt
Y�q,k� = i��c�q� + �1�k� − �2�k + q� + i
Y�q,k��Y�q,k�

− i�
q�

��q�X�q + q�,q�,k�

+ i��q�na,q�n1,k − n2,k+q� ,

d

dt
X�k� + q,k�,k�

= i�− �1�k�� + �2�k� + q� + �1�k� − �2�k + q��

�X�k� + q,k�,k� − 
X�k� + q,k�,k��X�k� + q,k�,k�

− 2n2,k+q�1 − n1,k��k,k�� + i�
q�

��q���Y*�q�,k��k�,kn2,k+q

+ Y*�q�,q + k − q���k�,k�1 − n1,k�� + 2i��q�Y*�q,k��

��n1,k − n2,k+q� − 2i�*�q�Y�q,k��n1,k� − n2,k�+q� . �7�

A. Injection and extraction tunneling rates

The wave vector dependent injection and extraction rates
in Eq. �7� can be, in principle, of different origins. Here, we
give the formal expression for elastic tunneling processes
conserving the in-plane momentum. Additional processes
�such as assisted tunneling� can be accounted for by adding
their contribution to the expressions for 
 j,k

in and 
 j,k
out to be

inserted in Eq. �7�.
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As electronic contact reservoirs, we will consider semi-
conductor doped superlattices, as is generally the case in
unipolar quantum cascade devices. The chemical potential in
each contact is labeled �p with p=left , right. In each reser-
voir, we will consider miniband states with energy Ep,k,kz

res . In
the elastic tunneling process, electron energy and in-plane
momentum are conserved. The tunneling rate from the con-
tact reservoir into the jth subband is


p,j,k
in =

2�

�
�
kz


Vp,j,k,kz

2��Ep,k,kz

res − �� j�k��

1 + e�Ep,k,kz

res −�p�
, �8�

where Vp,j,k,kz
is the tunneling matrix element and kz is, in

general, an index over the electronic states of the miniband
with in-plane wave vector k. It can be interpreted as the axial
electronic wave vector in case the two leads are just bulk

contacts. 1 / �1+e�Ep,k,kz

res −�p�� is the Fermi-Dirac occupation
number of the electron states in the contact. Analogously, the
tunneling rate from the jth subband of the quantum well into
the reservoir p reads


p,j,k
out =

2�

�
�
kz


Vp,j,k,kz

2��Ep,k,kz

res − �� j�k��

1 + e−�Ep,k,kz

res −�p�
, �9�

where 1 / �1+e−�Ep,k,kz

res −�p��=1−1 / �1+e�Ep,k,kz

res −�p�� is the hole
occupation number in the contact. The value of 
p,j,k

in,out can be
quantum engineered, depending on the specific structure. In
particular, by changing the thickness of the potential barriers,
it is possible to tailor considerably the tunneling matrix ele-
ment. It is straightforward to see that a simple relationship
occurs between 
p,j,k

in and 
p,j,k
out , namely,


p,j,k
in


p,j,k
out = e��p−��j�k��. �10�

Note that here we have assumed that the bare energy disper-
sion of the electrons in the two subbands is unaffected. This
is valid in the weak light-matter coupling regime or when the
injector miniband energy width is broad enough. For large
values of the vacuum Rabi frequency, the spectral function of
the electrons in the second subband is nontrivially modified
as well as the tunneling process using a narrow-band injec-
tor. This will be proved and discussed in detail in a forth-
coming paper.14

IV. STEADY-STATE REGIME AND OBSERVABLE
QUANTITIES

In this work, we will focus on the steady-state solutions
for the quantities na,q, n1,k, n2,k, Y�q ,k�, and X�q
+q� ,q� ,k�. Hence, we can set the time derivatives equal to
zero, which transforms the differential system �Eq. �7�� into
an algebraic one. In the steady-state regime, the electronic
current �number of electrons per unit time� through the struc-
ture is given by the expression

I = �
k


1,k
outn1,k − 
1,k

in �1 − n1,k� = �
k


2,k
in �1 − n2,k� − 
2,k

outn2,k.

�11�

The total rate of photons emitted out of the microcavity reads

P = 2��
q

na,q, �12�

where 1 / �2�� is the escape time of a photon out of the mi-
crocavity. The quantum efficiency � is defined as the ratio
between the photonic current out of the cavity and electronic
current, i.e., �= P

I .

V. EMISSION SPECTRA

In the steady-state regime, the momentum-dependent
spontaneous photon emission spectra are given by the fol-
lowing expression:

Lq��� � 	
0

�

dt Re�aq
†�0�aq�t��e�i�−0+�t. �13�

In order to determine �aq
†�0�aq�t��, we need to solve the fol-

lowing Heisenberg equations of motion,

d

dt
�aq

†�0�aq� = − i�c�q��aq
†�0�aq�

+ i�*�q��
k,�

�aq
†�0�c1,�,k

† c2,�,k+q� ,

d

dt
�aq

†�0�c1,�,k
† c2,�,k+q�

= − i�12�aq
†�0�c1,�,k

† c2,�,k+q�

− i�
q�

��q���aq
†�0�aq�c2,�,k+q�

† c2,�,k+q�

+ i�
q�

��q���aq
†�0�aq�c1,�,k

† c1,�,k+q−q�� . �14�

Here we have omitted the coupling of the electronic
injector and extractor reservoirs to the quantity
�aq

†�0�c1,�,k
† c2,�,k+q�. This coupling would involve correla-

tions between the quantum well electronic field and the con-
tact electronic fields. Since in this paper we are dealing with
incoherent electron transport, we will neglect such correla-
tions with the contact reservoirs, which are also extremely
tricky to tackle.

Truncating the hierarchy at the level of two excitations
�details in Appendix B� and taking the unilateral Fourier
transform ��0

�dtei�t�, we obtain

Sq�t = 0� = na,q = i�� − �c�q� + i
S�q��S̃q��� + 2i�*�q�Z̃q��� ,

Zq�t = 0� = �
k

Y�q,k�

= i�� − �12 + i
Z�q��Z̃q��� + i��q�S̃q���D ,

�15�

where Sq�t�= �aq
†�0�aq�t��, Zq�t�=�k�aq

†�0�c1,�,k
† c2,�,k+q�, and

D represents half the difference between the total number of
electrons in the fundamental subband and the number in the
second one, namely,
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D = �
k

Dk = �
k

n1,k − n2,k. �16�

The total density of electrons is 2�kn1,k+n2,k, where the 2
factor accounts for the twofold spin degeneracy of the elec-
tron states in the conduction subbands. 
S and 
Z are phe-
nomenological damping rates for Sq and Zq, respectively.
The analytical solutions are

S̃q��� =

ina,q���c�q� − �12


Y
+ i� − �� − �12 + i
Z��

�� − �12 + i
Z��� − �c�q� + i
S� − 2��q�2D
,

Z̃q��� = −

��q�Sq���D + i
�na,q

2��q��c�q� − �12


Y
− i�

� − �12 + i
Z
.

�17�

The electroluminescence spectrum is simply

Lq��� � Re S̃q��� . �18�

From the analytical result for S̃q���, we immediately see that
the emission spectrum is resonant at the two polariton fre-
quencies ���q� satisfying the equation

�� − �12 + i
Z��� − �c�q� + i
S� − 2��q�2D = 0. �19�

The quantity �R=��q��2D is just the vacuum Rabi fre-
quency of the present system. At resonance �i.e., �c�q�
=�12�, the necessary condition for the appearance of a strong

coupling polaritonic splitting is D�D0=
�
S−
Z�2

8��q�2 , which
means that the total density of electrons in the fundamental
subband must be larger enough than the total density in the
second. For a vacuum Rabi frequency much larger than 
Z
and 
S, the minimum polariton splitting is given by twice the
vacuum Rabi frequency.

Note that here the electroluminescence spectral shape
does not explicitly depend on the spectral properties of the
injector and extractor reservoirs. The spectrum in Eq. �17�
has the same shape as the absorption �in the presence of the
same carrier densities�. The dependence on the transport is
only implicit, being given by the steady-state carrier and
photon populations. In contrast, in the exact solution of the
simplified model of Ref. 6, it is shown that the electrolumi-
nescence spectra are the absorption spectrum times the spec-
tral distribution of excitations in the electronic reservoir,
which then acts as an electronic filter.13 A fermionic ap-
proach based on an exact diagonalization method14 indeed
shows that the spectral properties of the electronic contact
significantly modify the spectral shape of the electrolumines-
cence in the case of narrow-band injectors. Hence, the spec-
trum predicted by Eq. �17� is valid only for broad-band in-
jectors. This is not really surprising because, in order to
calculate the tunneling rates, we have considered bare elec-
tronic states in the quantum well and have only considered
incoherent population injection and extraction processes.

VI. NUMERICAL APPLICATION

Here, we apply our theory by using realistic parameters
for a microcavity-embedded quantum cascade electrolumi-
nescent source. In order to simplify the algebra, we have
systematically neglected the photon wave vector whenever
added to an electronic wave vector. Given the huge differ-
ence in the typical wave vectors of photons and electrons,
this simplification is safe. Applying this approximation, we
can obtain a closed set of algebraic equations where the vari-
ables are the populations in the two subbands and in the
cavity photonic branch, as shown in Appendix B. This sys-
tem has been numerically solved by using a standard Newton
method. We achieve numerical convergence in a relatively
fast computation time except in the limit of vanishing bias,
when the injector and extractor are strongly “misaligned”
with the two subbands. Physically in this case, the steady-
state situation is reached in times very long compared to the
dynamics of the quantum well system, the photon population
is extremely small, and correspondingly the numerical
method fails to converge. Anyway, this is not a real limita-
tion because we are interested in the behavior of the system
in the presence of a finite voltage bias, producing a signifi-
cant current flow and photonic output.

In Figs. 1 and 2, we show a sketch of the energy profile of
the injector and extractor with respect to the quantum well
subbands, respectively without and with an applied bias.
Specifically, in the numerical calculations, we have used the
following electronic out-tunneling rates,


left,j,k
out =


e−��E0,left − qV/2�2/2�2�

1 + e�−��j,k+�left−qV/2� , �20�

µ
right

µ
leftE

ne
rg

y
di

sp
er

si
on

(a
rb

.u
ni

ts
)

In plane wave vector (arb. units)

E
12

QWLeft contact Right contact

FIG. 1. Sketch of the energy dispersion of the two quantum well
subbands and of the minibands in the left and right contacts in the
zero-bias case. Here, the system is in thermal equilibrium and the
Fermi level in the quantum well is the same as in the two contacts.
The doping level in the contacts determines the equilibrium density
in the quantum well. The subbands and minibands have an energy
dispersion versus the in-plane wave vector, which is a conserved
quantity in the planar structure. This electronic structure is embed-
ded in a planar microcavity, with a cavity photon mode quasireso-
nant to the intersubband transition.
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right,j,k
out =


e−��E0,right + qV/2�2/2�2�

1 + e�−��j,k+�right+qV/2� ,

where �=0.1E12, 1 /
=0.4 ps, and E0,left and E0,right are the
energy offsets of the left and right minibands. The in-
tunneling rates are determined by applying the relation in Eq.
�10�. In all the simulations, we have taken E0,left=E0,right

=0.5��12 and �left=�right=
1
3��12.

Note that these are just phenomenological injection rates.
For the amplitude 
, we have considered values which are
consistent with what realistically obtainable in semiconduc-
tor intersubband devices. Importantly, in real structures, 

can be considerably quantum engineered by changing the
barrier thickness and/or the miniband structure of the injec-
tion superlattices. This is why we have not considered a very
specific injector configuration and taken the simplified ex-
pression in Eq. �20� with realistic parameters.

When a voltage bias is applied, the two reservoirs are
symmetrically shifted, as shown in Fig. 2. In all the simula-
tions, except when otherwise stated, we used the realistic
damping parameters 
X=
Y =
S=
Z=0.1�12, �=0.05�12,
while the temperature is T=77 K. In the simulations, we
have also considered �k to be independent of k and such that
1
� =0.005�12, except when otherwise stated. Here we have
considered only an active quantum well. For quantum cas-
cade structures with several active quantum wells repeated in
a periodic way, the dynamics is similar and the present treat-
ment can be generalized without major difficulties. In the
simulations, the intersubband transition energy E12=��12 is,
except where otherwise stated, equal to 150 meV and the
coupling constant ��q� is such that the vacuum Rabi fre-
quency is 0.1�12 for an electron density of 5�1011 cm−2 �all
in the fundamental subband�. When E12 is changed, the cou-
pling constant is adjusted in order to keep the ratio between
the vacuum Rabi frequency and transition frequency con-
stant. The effective mass m* has been taken to be one-tenth
of the bare electronic mass. In the numerical calculations, the

cavity spacer dielectric constant is �r=10. For each simula-
tion, the resonance in-plane wave vector qres, given by the
condition �c�qres�=�12, corresponds to an internal cavity
photon propagation angle �res equal to 70°, where tan �res
=qres /qz.

In Fig. 3, we show the current density versus applied volt-
age �between the injector and extractor� for different values
of E12. The current-voltage profile is characteristic of a uni-
polar quantum cascade light-emitting diode. The current
grows superlinearly in the voltage region where the injector
Fermi level approaches the second subband. The current is
bigger for smaller E12 because, keeping the injection rate 

constant �but all the internal rates of the system proportional
to E12�, the injection and extraction processes become the
dominant processes. Note that an increase in the nonradiative
relaxation rate 1 /� produces a nearly proportional increase in
the electronic current �not shown�. The rates of emitted pho-
tons per unit area �integrated all over the in-plane wave vec-
tors� are shown in Fig. 4 as a function of the flowing current,
showing an approximately linear behavior.

Figures 5 and 6 show the contour plots of the electron
occupation numbers of the first and second subbands, respec-
tively, as a function of the applied voltage and of the kinetic
energy. The insets in Figs. 5 and 6 show, respectively, the
integrated density of electrons in the first and second sub-
bands. It is apparent that with increasing voltage, the popu-
lation in the first subband decreases, while the population in
the second subband increases.

When the injector Fermi level becomes aligned with the
second subband, as expected, the carrier occupation numbers
in the two subbands are considerably out of equilibrium. The
decrease in the first subband carrier occupation numbers is
beneficial for the radiative efficiency of the spontaneous
emission because the influence of the Pauli blocking is re-
duced. Moreover, in the considered conditions, the density of
electrons in the first subband is still considerably larger than
in the second subband, thus producing a large vacuum Rabi
coupling and efficient emission rate.

Figure 7 contains a contour plot of the cavity photon oc-
cupation number versus the bare photon energy, showing that
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FIG. 2. Same as in Fig. 1, but with an applied voltage bias.
Here, the left contact acts as an electronic extractor, while the right
one is the injector. In the quantum well, nonequilibrium steady-state
populations can be established in the two subbands.
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FIG. 3. Current density versus applied voltage for different val-
ues of the intersubband transition energy: E12=50 meV �dashed-
dotted line�, 100 meV �dashed line�, and 150 meV �solid line�.
Other parameters can be found in the text.
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the maximum of emission is obtained when the bare photon
energy is resonant with the intersubband transition, as ex-
pected and as experimentally observed.13,18 With the consid-
ered parameters, the density of electrons in the first subband
is high enough to be in the strong coupling regime, as de-
picted in Fig. 8, where the anticrossing of the two polariton
branches is clearly present. The minimum polariton splitting,
given by the expression 2��q��2D, is reported in Fig. 9 as a
function of the applied bias. With increasing voltage, the
population difference D=�kDk=�kn1,k−n2,k diminishes.
This results in a decrease in the vacuum Rabi frequency and
consequently of the polariton splitting. This high-excitation
feature has already been observed in experiments13,18 and
cannot be described within a bosonic approach,6 which can
be applied only to the low excitation density case.20

It is interesting to analyze the quantum efficiency �, de-
fined as the ratio between the photonic emission rate and the
electronic current, namely,

� =
2��qna,q

�k
1,k
outn1,k − 
1,k

in �1 − n1,k�
. �21�

In Fig. 10, we plot the quantum efficiency � at eV=E12
versus the vacuum Rabi frequency �R at the same voltage
�log-log scale�. In the simulations, the vacuum Rabi fre-
quency has been varied by changing the coupling constant
��q�. In a realistic quantum engineered device, ��q� can be
tailored in different ways. For example, by growing the ac-
tive quantum wells in a spatial region where the cavity mode
field is very small, it is possible to dramatically quench the
value of ��q�. Moreover, by using different shapes of quan-
tum wells, it is also possible to tailor the transition dipole
d12. Figure 10 shows that in the weak coupling regime �small
values of �R�, the efficiency grows like �R

2 . In the strong
coupling regime, the efficiency becomes impressive and then
tends to saturate. It is apparent that the radiative efficiency
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FIG. 4. Photonic current density versus electronic current for
different values of the intersubband transition energy: E12

=50 meV �dashed-dotted line�, 100 meV �dashed line�, and
150 meV �solid line�. The same parameters and range of applied
voltages as in Fig. 3.
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FIG. 5. Electron occupation number in the fundamental conduc-
tion subband as a function of kinetic energy and applied voltage.
Inset: the integrated density of electrons in the fundamental sub-
band versus voltage. E12=150 meV and other parameters as in Fig.
3. For eV=E12, the density of electrons in the first subband is 8.3
�109 cm−2.

FIG. 6. Same as in Fig. 5 but for the second subband. Inset: the
integrated density of electrons in the second subband versus volt-
age. For eV=E12, the density of electrons in the second subband is
4.3�109 cm−2.

FIG. 7. Contour plot of the photon occupation �logarithmic
scale� versus the applied voltage and the energy of the bare cavity
photon mode.
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smoothly increases passing from the weak to the strong cou-
pling regime. This crossover occurs because the radiative
efficiency depends on the spectrally integrated emission and
it is therefore insensitive to the sudden appearance of the
polariton doublet in the strong coupling emission spectra.

These results are in qualitative agreement with the ana-
lytical solutions of the simplified model in Ref. 6, where
only the bright intersubband states are considered and where
the electronic reservoir is modeled with a bath of harmonic
oscillators. As shown in Fig. 11, the nonradiative population
relaxation rate 1 /� has the most significant effect. In the
considered regime of parameters, the efficiency is propor-
tional to �.

It is interesting to compare our results for this microcavity
system with the standard free-space case. In the free-space
case, the photon current, obtained by applying Fermi’s

golden rule, is given by the formula P=
2d12

2 �12
3 ��r

3�c3��0
�kn2,k�1

−n1,k�. As it is well known, the free-space radiative effi-
ciency dramatically decreases with the intersubband emis-

sion wavelength due to the �12
3 d12

2 dependence of the spon-
taneous emission rate �d12

2 �1 /�12, so the spontaneous
emission rate scales effectively as �12

2 �. In the mid-infrared,
by using the same parameters, for a transition of 150 meV,
the quantum efficiency is of the order of 10−4–10−5. Hence,
it is clear from our results that a strong coupling light-
emitting diode based on a planar microcavity system can
provide a dramatic enhancement with respect to the free-
space case �even 3 orders of magnitude for the larger vacuum
Rabi frequency case�.

VII. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have presented a quantum theoretical
study of the quantum well intersubband electroluminescence

FIG. 8. Contour plot of the electroluminescence �arb. units� as a
function of the bare cavity photon energy �c�q� and of the emission
frequency � for an applied voltage eV=0.5E12. The anticrossing of
the two intersubband polariton branches is apparent in electrolumi-
nescence spectra.
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FIG. 9. Minimum polariton splitting as a function of the applied
voltage. E12=150 meV and the other parameters can be found in the
text.
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from a semiconductor microcavity in the incoherent transport
regime, i.e., when the coupling to the electronic contacts
concerns only the electron populations. The problem has
been tackled starting from the fermionic electron Hamil-
tonian for the two subbands and by using a cluster factoriza-
tion method to truncate the infinite hierarchy of dynamical
equations for the relevant expectation values of operator
products. At the present level of approximation, we have
been able to describe the incoherent electron transport
through the dynamics of the electronic subband populations
and the electroluminescence through the dynamics of the
cavity photon population, which is coupled to the correla-
tions between the electromagnetic field and the intersubband
polarization. We have discussed the limits of applicability of
the present approach, which neglects the impact of the
vacuum Rabi coupling on the quantum well carrier spectral
function and any correlation between the quantum well and
the contact reservoirs. The analogies and differences with the
exact predictions of the simplified model in Ref. 6 have been
critically and extensively discussed. We have shown the ap-
pearance of cavity polariton resonances in the emission spec-
tra, when a large density of electrons occupies the fundamen-
tal subband. We have described how the vacuum Rabi
splitting decreases with increasing voltage and described the
photonic output in the different transport conditions. Our re-
sults show that even in the presence of nonradiative relax-
ation and the Pauli blocking, the quantum efficiency of the
microcavity intersubband electroluminescence can be con-
siderably enhanced by increasing the vacuum Rabi fre-
quency. A more refined treatment14 based on a fermionic ex-
act diagonalization method shows that under certain
conditions, the strong vacuum Rabi coupling regime affects
considerably not only the dynamics of the intersubband po-
larization �hence the absorption spectrum� but also the quan-
tum well electron spectral properties and consequently the

tunneling transport using narrow-band injectors. As a future
perspective, this could be exploited to further improve the
quantum efficiency of microcavity intersubband emitters and
for the eventual realization of intersubband polariton lasers.
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APPENDIX A: FACTORIZATIONS

As stated in the main body of the paper, we used a cluster
expansion and truncation scheme to obtain a closed set of
equations. Here, we briefly review the principles of this
method following15–17 and applying it to the actual case.

If we consider each bosonic operator or each pair of fer-
mionic operators as an excitation operator and we write the
expectation value of an N-excitation operator as �N�, then the
Heisenberg equation of motion takes the form,

i
�

�t
�N� = T��N�� + V��N + 1�� ,

where the N-excitation expectation value is coupled to higher
order quantities via the functional V. An N-excitation trunca-
tion scheme is obtained if we factorize all the expectation
values of more than N excitation in all the possible ways and
considering the sign exchange for the fermionic operators in
order to obtain a factorized quantity that respects the com-
mutation and anticommutation properties of the original
quantity.

We are interested in incoherent emission only, so the only
nonzero one excitation operators we consider are
�c1,�,k

† c1,�,k� and �c2,�,k
† c2,�,k�. We factorized the three excita-

tion operators in the following way:

�aqc1,�,kc2,�,k�
† c2,��,k�

† c2,��,k�� = − �aqc2,�,k�
† c1,�,k��c2,��,k�

† c2,��,k�� + �aqc2,��,k�
† c1,�,k��c2,�,k�

† c2,��,k��

= − �aqc2,�,k�
† c1,�,k��k�,k�n2,k� + �aqc2,�,k�

† c1,�,k��k�,k���,��n2,k�,

�aqc2,�,k
† c1,�,k�c1,��,k�c1,��,k�

† � = − �aqc2,�,k
† c1,��,k���c1,�,k�c1,��,k�

† � + �aqc2,�,k
† c1,�,k���c1,��,k�c1,��,k�

† �

= − �aqc2,�,k
† c1,�,k���k�,k���,���1 − n1,k�� + �aqc2,�,k

† c1,�,k���k�,k��1 − n1,k�� .

For the two-time quantities in the calculation of the luminescence spectrum, we proceed analogously and obtain

�aq
†�0�aq�c2,�,k+q

† c2,�,k+q�� = �aq
†�0�aq���c2,�,k+q

† c2,�,k+q���q,q�,

�aq
†�0�aq�c1,�,k

† c1,�,k+q−q�� = �aq
†�0�aq���c1,�,k

† c1,�,k+q−q���q,q�.

APPENDIX B: ALGEBRAIC EQUATIONS FOR THE STEADY-STATE REGIME

In the steady-state regime, neglecting the photonic wave vector into sums over electronic wave vectors, the system of
equations �Eq. �7�� reduces to the following system of algebraic equations:

0 = �Bq�� + 
X� +  �q
2


Y
+

Gq
X

2D��q�2���na,q +
Bq

D
�
k

�1 − Dk�n1,k − n1,k
0

�k
+ 
1,k

outn1,k − 
1,k
in �1 − n1,k�� −

2BqF
X

D
,

QUANTUM MODEL OF MICROCAVITY INTERSUBBAND… PHYSICAL REVIEW B 77, 155321 �2008�

155321-9



0 = �
q

Bq��q�2

Gq
X
�1 − Dk� +

1

2�n1,k − n1,k
0

�k
+ 
1,k

outn1,k − 
1,k
in �1 − n1,k�� +

Dk


X
Y
�
q

��q�2na,q

Gq
�
YBq�� + 
X� + �q

2��

− 2Fk�
q

Bq��q�2

Gq
,

0 = −
n2,k − n2,k

0

�k
− 
2,k

outn2,k + 
2,k
in �1 − n2,k� −

n1,k − n1,k
0

�k
− 
1,k

outn1,k + 
1,k
in �1 − n1,k� ,

where

Dk = n1,k − n2,k,

Fk = n2,k�1 − n1,k� ,

D = �
k

Dk,

F = �
k

Fk,

n1,k
0 =

1

exp ���1�k� − �F� + 1
,

n2,k
0 =

1

exp ���2�k� − �F� + 1
,

Bq = 
Y +
2��q�2


X
D ,

�q = �c�q� − �12,

Gq = ��c�q� − �12�2 + �
Y +
2��q�2D


X
�2

.

Here, �F is calculated by inverting the relation

�
k

n1,k + n2,k =
m*

2��2	
0

�

d�
1

exp �� − �F� + 1

+
1

exp �� + E12 − �F� + 1
.

Discretizing the electronic and photonic wave vectors on a
grid of, respectively, Nk and Nq points, we have a system of
2Nk+Nq equations that can be numerically solved, e.g., with
a Newton algorithm.
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