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Recent experiments have shown that it is possible to create an in-plane harmonic potential trap for a
two-dimensional �2D� gas of exciton polaritons in a microcavity structure, and evidence has been reported of
Bose-Einstein condensation of polaritons accumulated in this type of trap. We present here the theory of
Bose-Einstein condensation �BEC� and superfluidity of the exciton polaritons in a harmonic potential trap.
Along the way, we determine a general method for defining the superfluid fraction in a 2D trap, in terms of
angular momentum representation. We show that in the continuum limit, as the trap becomes shallower, the
superfluid fraction approaches the 2D Kosterlitz–Thouless limit, while the condensate fraction approaches
zero, as expected.
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I. INTRODUCTION

In the past decade, there has been extensive work on the
Bose coherent effects of two-dimensional �2D� exciton po-
laritons in cavity �for general reviews, see Refs. 1 and 2�. A
microcavity is formed by two mirrors opposite each other, as
in a laser cavity, with quantum wells embedded in the cavity
at the antinodes of the confined optical mode. The resonant
exciton-photon coupling leads to two polariton branches in
the spectrum. The lower polariton �LP� branch has a mini-
mum at k=0 with a very small effective mass, in the range of
10−5–10−4 of the vacuum electron mass, depending on the
details of the structure. These quasiparticles act as a weakly
interacting gas of bosons in two dimensions. Since the ther-
mal de Broglie wavelength in two dimensions varies in-
versely with mass, the extremely light mass of these bosonic
particles means that the critical temperature for superfluidity
can, in principle, be 100 K or above for experimentally
achievable number densities.

In a translationally invariant two-dimensional system,
without a trap, superfluidity occurs via a Kosterlitz–Thouless
superfluid transition. Experiments on untrapped systems3–5

have shown promising indications of the onset of spontane-
ous coherence effects. This can be viewed as a type of Bose-
Einstein condensation �BEC�, with coherence length on the
order of the size of the cloud of particles, which is sometimes
called a “quasicondensate.”6 It is possible, however, to have
a true BEC quantum phase transition in two dimensions, if
there is a confining potential.7,8 Recently, an experimental
method has been demonstrated for creating such a confining
potential trap in a �2D� exciton-polariton system, in which
the exciton energy is shifted using a stress-induced band-gap
shift,9 and evidence for Bose-Einstein condensation of po-
laritons has been observed in this system.10 In these experi-
ments, the trap is macroscopic, about 30 �m across com-
pared to a typical interparticle distance of 0.3 �m, and the
spring constant is low enough that the spacing between the
quantized states ��0 in the harmonic potential is small com-

pared to kBT, so that the states may be treated as a con-
tinuum. The diffusion length of the polaritons is comparable
to the trap size, so that we may consider them to be in equi-
librium spatially.

The properties of polaritons have been studied in several
theoretical works. The theory of polariton dynamics due to
polariton-polariton interaction has been developed in Refs.
11–14. The crossover between lasing and polariton coher-
ence has been studied in Refs. 15 and 16. Polariton superflu-
idity has been predicted17 as well as spontaneous linear po-
larization of the light emission.18 In these previous studies,
the coherent polaritonic phases were analyzed in the 2D in-
finite system.

In this paper, we present the theory of the trapped polar-
iton condensate. The paper is organized in the following way.
In Sec. II, the effective Hamiltonian of of microcavity polari-
tons in trapping potential is derived. In Sec. III, the number
of polaritons in BEC as a function of temperatures is calcu-
lated. The superfluid fraction as a function of temperature is
also obtained. Finally, in Sec. IV, we present our conclusions.

II. EFFECTIVE HAMILTONIAN OF MICROCAVITY
POLARITONS IN TRAPPING POTENTIAL

The polaritons are linear superpositions of excitons and

photons. The Hamiltonian of polaritons is given by Ĥtot

= Ĥexc+ Ĥph+ Ĥexc-ph, where Ĥexc is an excitonic Hamiltonian,

Ĥph is a photonic Hamiltonian, and Ĥexc-ph is a Hamiltonian
of exciton-photon interaction. Analogous to the case of the
Bose atoms in a trap,19,20 in the case of a slowly varying
external potential, we can make the quasiclassical approxi-
mation, assuming that the effective exciton mass is not a
function of r. This quasiclassical approach is valid only if the
characteristic Pr��, where P is the momentum and r is the
radial coordinate in the trap. This is the case in the recent
experiments.10
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The Hamiltonian of 2D excitons in the infinite homoge-
neous system is given by

Ĥexc = �
P

�ex�P�b̂P
† b̂P +

1

2A
�

P,P�,q

Uqb̂P+q
† b̂P�−q

† b̂Pb̂P�, �1�

where b̂P
† and b̂P are excitonic creation and annihilation op-

erators obeying to the Bose commutation relations. In the
first term, �ex�P�=Eband−Ebinding+�0�P� is the energy disper-
sion of a single exciton in a quantum well, where Eband is the
band-gap energy, Ebinding=Ry

2
*=�e-he4 / ��2�� is the binding

energy of a 2D exciton ��e-h=memh / �me+mh� is the reduced
excitonic mass, � is the dielectric constant, and e is the
charge of an electron�, and �0�p�= P2 / �2M�, where M =me
+mh is the mass of an exciton. In the second, interaction
term, A is the macroscopic quantization area and Uq is the
Fourier transform of the exciton-exciton pair repulsion po-
tential. As discussed in Refs. 11 and 21, in the low-density
limit, the excitons can be treated as pure bosons, with an
interaction potential that includes the effects of the underly-
ing fermion nature of the electrons and holes. For small wave
vectors �q�a2D

−1 , where a2D=�2� / �2�e−he2� is the effective
2D Bohr radius of excitons�, the pair exciton-exciton repul-
sion can be approximated as a contact potential Uq�U0
�U=6e2a2D /�. This approximation for the exciton-exciton
repulsion is applicable because resonantly excited excitons
have very small wave vectors.14 Another reason for this ap-
proximation is that the exciton gas is assumed to be very
dilute and the average distance between excitons rs
��	n�−1/2�a2D, which implies the characteristic momen-
tum q�rs

−1�a2D
−1 . A much smaller contribution to the

exciton-exciton interaction is also given by band-filling satu-
ration effects,22 which are neglected here.

The spatial dependence of the external field V�r� comes
about due to the shifting of the exciton energy with inhomo-
geneous stress;23 the photon states in the cavity are assumed
to be unaffected by stress. In this case, the band energy Eband
is replaced by Eband�r�=Eband�0�+V�r�. Near the minimum
of the exciton energy, V�r� can be approximated as 1

2
r2.
The Hamiltonian of noninteracting photons in a semicon-

ductor microcavity is given by24

Ĥph = �
P

�ph�P�âP
† âP, �2�

where âP
† and âP are photonic creation and annihilation Bose

operators and �ph�P�= �c /n�	P2+�2	2LC
−2 is the cavity pho-

ton spectrum �c is the speed of light in vacuum, LC is the
length of the cavity, and n=	� is the effective refractive
index�.

The Hamiltonian of harmonic exciton-photon coupling
has the form14

Ĥexc-ph = ��R�
P

âP
† b̂P + H.c., �3�

where the exciton-photon coupling energy represented by
the Rabi constant ��R depends on the overlap between the

exciton and photon wave function and the semiconductor
dipole moment.25 We neglect anharmonic terms for the
exciton-photon coupling.

The linear part of the total Hamiltonian Ĥtot �without the
second term on the right-hand side of Eq. �1�� can be diago-
nalized by applying unitary transformations and has the
form14

Ĥ0 = �
P

�LP�P�p̂P
† p̂P + �

P
�UP�P�ûP

† ûP, �4�

where p̂P
† and ûP

† are the Bose creation and operators for the
lower and upper polaritons, respectively; the energy spectra
of the low and/or upper polaritons are

�LP/UP�P� =
�ph�P� + �ex�P�

2

�
1

2
	��ph�P� − �ex�P��2 + 4
��R
2, �5�

which implies a splitting between the upper and lower states
at P=0 of 2�R, known as the Rabi splitting. For the GaAs
cavities used in Ref. 10, this splitting was approximately
14 meV. The upper and lower polariton energies from Eq.
�5� are plotted in Fig. 1�a� as a function of r at momentum
P=0 for a value of 
 chosen to give a fit to the experimen-
tally measured curvature of the lower polariton branch. The
fit implies 
=960 eV /cm2 for the bare excitons.

The excitonic and photonic operators are defined as14

b̂P = XPp̂P − CPûP, âP = CPp̂P + XPûP, �6�

where p̂P and ûP are the lower and upper polariton Bose
operators, respectively, and XP and CP are14

XP =
1

	1 + � ��R

�LP�P� − �ph�P��
2

,

CP = −
1

	1 + ��LP�P� − �ph�P�
��R

�2
, �7�

where 
XP
2 and 
CP
2=1− 
XP
2 represent the exciton and
cavity photon fractions in the lower polariton.14 Figure 1�b�
shows the photon fraction at zone center 
C0
2 as a function
of r. Further from the center, the exciton energy �ex becomes
detuned from the cavity photon energy, leading the lower
polariton to become more photonlike. Because cavity photon
lifetime is so much shorter than the intrinsic exciton lifetime
��2 ps compared to �100 ps�, the polariton lifetime is pro-
portional to the photon fraction. This implies that polaritons
at higher energy in the trap have shorter lifetime; in other
words, there is an evaporative cooling effect. As shown in
Fig. 1�b�, this effect can be magnified by tuning the exciton
level below the photon level at the center of the trap, so that
the polaritons are more excitonic there.
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Substituting the polaritonic representation of the excitonic
and photonic operators �Eq. �6�� into the total Hamiltonian

Ĥtot, the Hamiltonian of lower polaritons is obtained,14

Ĥtot = �
P

�LP�P�p̂P
† p̂P +

1

2A
�

P,P�,q

UP,P�,qp̂P+q
† p̂P�−q

† p̂Pp̂P�,

�8�

where

UP,P�,q =
6e2a2D

�
XP+qXP�XP�−qXP. �9�

For the slowly changing confinement potential V�r�
=−�Eband−Ebinding�+ �c /n��	LC

−1+ 1
2
r2 �r is the distance be-

tween the center of mass of the exciton and the center of the
trap�, the exciton spectrum is given in the effective mass
approximation as

�ex
�0��P� = �ex�P� + V�r� = �c/n��	LC

−1 +



2
r2 +

P2

2M
. �10�

This quasiclassical approximation is valid if P�� / l, where
l= �� / �M�0��1/2 is the size of the exciton cloud in an ideal
exciton gas and �0=	
 /M.

At small momenta �1 /2�M−1+ �c /n�LC /�	�P2 / 
��R

�1 and weak confinement potential ��
r2 / 
��R
�1, the
single-particle lower polariton spectrum obtained by substi-
tution of Eq. �10� into Eq. �5�, in linear order with respect to
the small parameters  and �, is

�0�P�  �c/n��	LC
−1 − 
��R
 +




4
r2

+
1

4
�M−1 + �c/n�LC/�	�P2. �11�

By substituting Eq. �10� into Eq. �7�, we obtain XP1 /	2.
The condition of the validity of the quasiclassical approach
in Eq. �1�, Pr��, is also applied here.

If we measure energy relative to the P=0 lower polariton
energy �c /n��	LC

−1− 
��R
, the resulting effective Hamil-
tonian for polaritons in the parabolic trap in P space in the
effective mass approximation has the form

Ĥeff = �
P
� P2

2Meff
+ Veff�r��p̂P

† p̂P +
Ueff

�0�

2A
�

P,P�,q

p̂P+q
† p̂P�−q

† p̂Pp̂P�,

�12�

where the sum over P and P� is carried out only over P
�� / l �as only in this case the quasiclassical approximation
used in Eq. �10� is valid�, and the effective mass of a polar-
iton is given by

Meff
−1 = 1

2 �M−1 + �c/n�LC/�	� . �13�

The effective external potential Veff�r�= 1
2V�r� �i.e., 
eff

=
 /2�, and the effective polariton-polariton pair repulsion
potential is given by the hard-core contact potential Ueff�r
−r��=Ueff

�0���r−r��= 1
4U0��r−r��. Using the experimental pa-

rameters for GaAs /AlGaAs structure used in Ref. 10 �Eph
=1.607 35 eV�, we obtain Meff=7.8�10−5m0, where m0 is
the vacuum electron mass, in good agreement with the value
of 7�10−5m0 obtained from direct measurement of the ef-
fective polariton mass using angle-resolved photon detection,
as reported in Ref. 10.

(a)

(b)

FIG. 1. �a� Dashed line: the energy of the bare exciton vs r for
the parameters of the GaAs /AlGaAs structure described in the text.
Dotted line: the energy of the cavity photon mode. Solid lines: the
upper and lower polariton energies which arise from the mixing of
the photon and exciton modes. �b� The photon fraction as a function
of r for two cases: solid line: exciton energy resonant with the
cavity photon mode at r=0; dashed line: exciton energy detuned
10 meV below the cavity photon.
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III. BOSE-EINSTEIN CONDENSATION AND
SUPERFLUIDITY OF MICROCAVITY POLARITONS

In the real space, the effective Hamiltonian for trapped
polaritons will look exactly like the Hamiltonian of weakly
interacting dilute 2D Bose gas in a confinement,

Ĥeff =� dr�̂†�r��−
�2�2

2Meff
+ Veff�r���̂�r�

+
Ueff

�0�

2
� dr�̂†�r��̂†�r��̂�r��̂�r� , �14�

where �̂†�r� and �̂�r� are real space Bose field operators of
creation and annihilation of polaritons, correspondingly.

Although BEC cannot happen in a 2D homogeneous ideal
gas at nonzero temperature, as discussed in Ref. 7, in a har-
monic trap, BEC can occur in two dimensions below a criti-
cal temperature Tc

0 given by kBTc
0=�	−1	6
effN /Meff, where

kB is the Boltzmann constant and N is the total number of
polaritons in a trap. This expression for the temperature of
BEC is valid if we neglect the polariton-polariton repulsion,
i.e., if we assume Ueff

�0�=0.

Neglecting the anomalous averages ��̂�̂� and ��̂†�̂†� via
the Popov approximation,26 implying the system to be very
dilute, which is na2D

2 �1, where n=N / �	R2� is the total den-
sity of polaritons and R is the 2D radius of the trap, the
self-consistent equation for the noncondensate density n��r�
at temperatures kBT��	
eff /Meff can be written as20

n��r� = −
MeffkBT

2	�2 log�1 − exp�−
1

kBT

�	�1

2

effr

2 + 2Ueff
�0�n − ��2

− 
Ueff
�0�
2n0

2�� ,

�15�

where n0 is the total density of condensate and �=2Ueff
�0�n

−Ueff
�0�n0 is the chemical potential of the system in the Popov

approximation.27 For the experimental parameters of interest,
the size of a trap is R�30 �m, the effective 2D Bohr radius
of an exciton is a2D=130 Å, and 
�103 eV /cm2, which im-
plies that the above equation is valid for T�1 K, which is
true in all of these experiments. Figure 2 plots the spatial
profile of the condensate for the experimental parameters of
the trap. Note that only the states P�� / l can be treated as
quasiclassical. Since the characteristic momenta for the Bose
condensate of weakly interacting particles is P
= �2MeffUeff

�0�n�1/2 satisfy to the condition � / l� P
= �2MeffUeff

�0�n�1/2, we can apply the quasiclassical approxima-
tion.

The total number of polaritons in the condensate is given
by N0=N−N�, where N�=2	�0

Rn��r�rdr is the total number
of noncondensate particles. Assuming n0=n−n��r� and solv-
ing the self-consistent equation �Eq. �15�� with respect to the
noncondensate density n��r�, we obtain the dependence of
the fraction N0�T� /N of the total number of condensate par-
ticles on the temperature T. This is plotted in Fig. 3 for the
experimental conditions.

In the thermodynamic limit N→�, the Thomas–Fermi
approximation that the kinetic energy of the system can
be neglected has been proved to be valid for BEC in a har-
monic trap.28 For small quasimomenta P�	2MeffUeff

�0�n0
and small temperatures, the energy spectrum of the
quasiparticles ��P� is given by20 ��P ,r�cs�r�P, where
cs�r� is the sound velocity in the Popov approximation27

�cs�r�=	Ueff
�0�n0�r ,T� /Meff�.

Since the spectrum of the quasiparticles is a linear sound
spectrum satisfying the Landau criterium of superfluidity,29

superfluidity of the polaritons can occur in the trap. There-
fore, at small temperatures, there are two components in the
trapped gas of polaritons: the normal component and the
superfluid component. We define the total number of par-
ticles in the superfluid component s, Ns�N−Nn, where Nn is
a total number of particles in the normal component. We
define Nn analogously to the procedure applied for definition

FIG. 2. �Color online� The condensate profile n0�r� in the trap
for 
=960 eV /cm2 and total density at the center, n�0�=1.2
�109 cm−2. Solid line: T=0 using the Thomas–Fermi/Bogoliubov
approximation. Dotted line: T=15 K using the theory presented in
the text.

FIG. 3. �Color online� Condensate fraction N0 /N as a function
of temperature for the three trap spring constants. Solid line:
760 eV /cm2; dotted line: 860 eV /cm2; and dashed line:
960 eV /cm2.
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of the density of the normal component in the infinite system
nn �Ref. 29� using the isotropy of the trapped polaritonic gas
instead of the translational symmetry for an infinite system.
We imagine that a “gas of quasiparticles” rotates in the liquid
in the plane perpendicular to the axis of the trap with some
small macroscopic angular velocity �. In this case, the dis-
tribution function of a gas of quasiparticles can be obtained
from the distribution function of a gas at rest by substituting
for the energy spectrum of the quasiparticles ��P�−L�,
where L=r�P is the angular momentum of the particle.
Assuming Pr /��1, we apply the quasiclassical approxima-
tion for the angular momentum: L Pr and ��L ,r�
=r−1cs�r�L. The total angular momentum in a trap per unit of
volume Ltot�r� is given by

Ltot�r� =� d2L

�2	�r�2LnB���r,L� − L�� , �16�

where we assume that at small temperatures the quasiparti-
cles are noninteracting, and they are described by the Bose-
Einstein distribution function nB���= �exp�� / �kBT��−1�−1.
For small angular velocities, nB ��−L�� can be expanded
with respect to L�. Then, we get

Ltot�r� = −� d2L

�2	�r�2L�L��
�nB���

��
. �17�

Assuming that only quasiparticles contribute to the total an-
gular momentum, we define the density of the normal com-
ponent nn�r� by Ltot�r�=nn�r�L0, where L0=Meffr� is the an-
gular momentum of one quasiparticle. For the total number
of particles in the normal component, we obtain

Nn = 2	�
0

R

nn�r�rdr = �
0

R 3��3�kB
3T3

�2cs
4�n0�r��Meff

rdr , �18�

where ��z� is the Riemann zeta function ���3��1.202� and
the density of the condensate n0�r�=n−n��r� �the density of
noncondensate polaritons n��r� can be obtained from Eq.
�15��. The dependence of the fraction Ns�T� /N of the total
number of polaritons in the superfluid component Ns�T�=N
−Nn�T� on the temperature T is presented in Fig. 4. The
superfluid fraction depends only weakly on the spring con-
stant 
, and in the limit 
→0 approaches the the superfluid
density for a 2D translationally invariant system.30

IV. DISCUSSION

In conclusion, at low temperature, the Hamiltonian of 2D
exciton polaritons in a slowly varying external parabolic po-
tential directly corresponds to the case of a weakly interact-
ing Bose gas with an effective mass and effective pair inter-
action in a harmonic potential trap. The condensate fraction
and the superfluid component are decreasing functions of
temperature, as expected, and increasing functions of the cur-
vature of the parabolic potential. The mixing with the photon
states leads to a decreased lifetime for high-energy states,
that is, an evaporative cooling effect, but does not fundamen-
tally prevent condensation.

The results given here are comparable to those of the
experiments, but do not exactly correspond. The condensate

peak seen in the experiments with a trap has approximately
15 �m full width at half maximum, while the peak, shown in
Fig. 2, comparable conditions has a width of approximately
30 �m. The most likely reason is that the mean-field shift
due to the repulsive interaction between particles Ueffn is
known to strongly overestimate the actual energy shift by as
much a factor of 10 �Ref. 31� because anticorrelation of the
excitons tends to reduce the average interaction potential.

The condensate fraction obtained is a decreasing function
of the characteristic potential of the interparticle repulsion,
which corresponds to the results obtained in Ref. 32. Holz-
mann et al.32 showed that at finite number of bosons N, the
interparticle repulsion suppresses the temperature of BEC,
and in the thermodynamic limit N→�, the interparticle in-
teraction eliminates BEC at finite temperatures. Since we
consider the very dilute gas of a finite number of polaritons
with weak repulsion �weakly nonideal Bose gas�, the in-
crease in the interparticle repulsion results in the increase in
the noncondensate fraction �Eq. �15�� at the fixed finite tem-
perature, which agrees with the results of Ref. 32.

In our calculations, we have assumed thermal equilib-
rium. Since the polariton lifetime is short, one may question
this assumption. The condition for thermal equilibrium, how-
ever, is simply that the time scale for thermalizing collisions
be short compared to the particle lifetime. Porras et al.13

have shown than the time scale for polariton-exciton scatter-
ing can be fast enough for a thermalized distribution of po-
laritons to exist in lowest k states. Although polaritons have
very short lifetime, thermodynamic equilibrium can be
achieved in the regime of the strong pump. Polariton-
polariton interactions can help overcome of the bottleneck
and lead to large occupation numbers of the ground state.
However, we cannot rule out that consideration of pump and
decay in a steady state may lead to differences from the
results presented here. To give an example, the renormalized
dispersion of BEC of particles with infinite lifetime is
Bogoliubov-type, while in the steady state of the system with
pump and decay, it is very different.33 This consideration of
the influence of the decay on the BEC may be a subject of
further studies of a trapped gas.

FIG. 4. �Color online� Superfluid fraction Ns /N as a function of
temperature for the same three trap spring constants as in Fig. 3.
Dashed-dotted line: the superfluid fraction in the limit 
→0,
namely, the translationally invariant 2D case.
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The spin polarization is important not only for the excita-
tions but also for the condensate itself. In Ref. 7, the dynam-
ics of the spin of the polariton BEC was analyzed in detail. It
was shown that polariton-polariton interactions lead to the
polarization dephasing in spatially confined systems. The in-
fluence of spin on the phase transitions of the trapped polari-
tonic gases is the subject of further research.
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