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We report the electronic transmission properties of a simple tight binding Aharonov-Bohm ring threaded by
a magnetic flux to one arm of which a finite cluster of atoms has been attached from one side. We demonstrate
that, by suitably choosing the number of scatterers in each arm of the quantum ring, the transmission across the
ring can be completely blocked when the ring is decoupled from the atomic cluster and the flux threading the
ring becomes equal to half the fundamental flux quantum. A transmission resonance then immediately occurs
as the coupling between the ring and the impurity cluster is switched “on.” It is shown that narrow transmission
resonances precisely occur at the eigenvalues of the side-coupled chain of atoms. The “switching” effect can be
observed either for all the eigenvalues of the isolated atomic cluster, or for a selected set of them, depending
on the number of scatterers in the arms of the ring. The ring-dot coupling can be gradually increased to
completely suppress the oscillations in the magnetotransmission. However, the suppression can lead either to a
complete transparency or no transmission at all, occasionally accompanied by a reversal of phase at special
values of the magnetic flux.
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I. INTRODUCTION

Simple tight binding models of mesoscopic systems have
been quite extensively studied in recent times1–20 with a view
to understand the basic features of electronic transport in
quantum dots �QDs� or the magnetotransport in closed loop
geometries such as an Aharonov-Bohm �AB� ring. One rea-
son behind such model studies is definitely the simple geom-
etry of the models, which enables one to derive exact results
and to look into the possible causes of certain salient features
observed in the transport properties of real life small scale
semiconducting or metallic systems. The other reason can be
attributed to the immense success of nanotechnology and the
use of precision instruments such as a scanning tunneling
microscope which can be used to build low dimensional
nanostructures with tailor-made geometries. One such geom-
etry, which will be our concern in this paper, is an AB ring
threaded by a magnetic flux � and with a finite segment of N
atomic sites attached to one arm of the ring at an arbitrary
point.

The central feature of electron transport across an AB ring
is the periodic oscillation in the magnetoconductance when-
ever the phase coherence length exceeds the dimension of
the sample.21 Büttiker et al.22 provided an early formulation
of the problem. The transport in such a closed geometry was
readdressed by Gefen et al.23 who obtained an exact expres-
sion for the two-terminal conductance across the ring. By
using a discrete tight binding formulation, the two-terminal
conductance was also examined by D’Amato et al.24 and,
subsequently, by Aldea et al.25 A nontrivial change in the
transport of an AB ring is observed when the ring contains a
QD either embedded in an arm or side coupled to it.26–28

Motivated by the experiment of Yacoby et al.,26 Yeyati and
Büttiker29 prescribed an exact formulation of the magneto-
conductance of an AB ring with a QD embedded in its
arm. A similar problem with a multiterminal geometry was
later addressed by Kang.30 The QD-AB ring hybrid system

also received attention in relatively recent experiments by
Meier et al.31 and Kobayashi and co-workers,32,33 with a fo-
cus on the study of single electron charging and suppression
of AB oscillations31 and the Fano resonance34,35 in the mag-
netoconductance.

In a quantum dot, discrete energy levels arise as a conse-
quence of confinement of electrons in all three directions.
This has inspired a considerable number of theoretical works
involving a discrete lattice of the so-called “single level”
QDs,1 mimicked by “atomic” sites arranged either in an open
geometrical arrangement or in a closed AB ring within a
tight binding formalism. For example, QDs, single or in an
array, side coupled to an open chain have already received
attention in the context of the Kondo effect,3 one electron
transport,6,7,12 and the Dicke effect.9 The prospect of engi-
neering Fano resonances,13–16 design of spin filters,34 and the
localization-delocalization problem4 in a series of atomic
clusters side coupled to an infinite lattice have also been
discussed in detail.

Motivated by such simple models which, in spite of their
simplicity, bring out the rich quantum coherence effects ex-
hibited by a mesoscopic system, we revisit the problem of
magnetotransport in an AB ring threaded by a magnetic flux,
but now with a chain of N atomic sites �an array of single
level QDs� attached to one arm of the ring. In spite of the
previous studies, we believe that the interplay of the closed
loop geometry and the eigenvalue spectrum of the dangling
QD array is little studied and is likely to provide features in
the electronic transport, which might throw some light on the
potential of such systems as quantum devices. This is our
main objective.

We focus on the role of the ring-dot coupling, in particu-
lar, and come across several interesting results. For example,
it is found that the ring-dot system displays a “switching”
action for small values of the ring-dot coupling at selected
energies of the electron when the flux penetrating the ring is
�=�0 /2. The energy values �at which the switching takes
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place�, for a given size of the QD array coupled to the ring,
belong to the set of eigenvalues of the isolated QD array and
depend on the number of scatterers in the upper and the
lower arms of the ring. A gradual increase in the ring-dot
coupling suppresses the AB oscillations and is accompanied
by occasional transmission phase reversals at specific values
of the magnetic flux.

In what follows, we present the model and the method in
Sec. II. Section III contains the results and the related dis-
cussion, and we draw conclusions in Sec. IV.

II. MODEL AND METHOD

We begin by referring to Fig. 1. The ring contains l atoms
in the upper arm, excluding the sites marked by L and R
where the leads join the ring. The site marked by � in the
lower arm is the point where the dangling QD chain is at-
tached. There are m sites to the left of � and n sites to its
right. Changing m and n therefore shifts the location of the
attachment of the “defect” chain. The Hamiltonian of the
lead-ring-dot-lead system, in the standard tight binding form,
is written as

H = Hlead + Hring + Hdot + Hring-dot + Hring-lead, �1�

where

Hlead = �0 �
i=−�

L−1

ci
†ci + �0 �

i=R+1

�

ci
†ci + t0�

�ij�
ci

†cj ,

Hring = �LrL
†rL + �RrR

†rR + t0 exp�i���
�ij�

ri
†rj + H.c.,

Hdot = �
i=1

N

�idi
†di + t0�

i=1

N−1

di
†dj + H.c.,

Hring-dot = ��r�
† d1 + H.c.� ,

Hring-lead = t0�rL
†cL−1 + rR

†cR+1� . �2�

In the above, c†�c�, r†�r�, and d†�d� represent the creation
�annihilation� operators for the leads, the ring, and the QD
chain, respectively. rL�rL

†� and rR�rR
†� represent the same at

the lead-ring connecting sites L and R, respectively. The on-
site potential at the leads, in the QD chain and in the bulk of
the ring, is taken to be �0 for every site including the site
marked by �. The lead-ring connecting sites have been as-
signed the on-site potentials �L and �R, respectively. The am-
plitude of the hopping integral is taken to be t0 throughout
except the hopping from the site � in the ring to the first site
of the QD chain, which has been symbolized as � and rep-
resents the “strength” of coupling between the ring and the
QD array. � is given by �=2�� / �l+m+n+1��0, where �
is the flux threading the ring, and �0=hc /e is the fundamen-
tal flux quantum. The task of solving the Schrödinger equa-
tion to obtain the stationary states of the system can be re-
duced to an equivalent problem of solving a set of the
following difference equations.

For the sites L and R at the ring-lead junctions,

�E − �L��L = t0ei��1,U + t0e−i��1,L + t0�L−1,

�E − �R��R = t0e−i��l,U + t0ei��m+n+1,L + t0�R+1. �3�

In the above, �L−1 and �R+1 represent the amplitudes of the
wave function at the sites on the lead, which are closest to
the points L and R, and U and L in the subscripts refer to the
“upper” and the “lower” arms, respectively.

For the sites in the bulk of the ring, the equations are

�E − �0�� j,U = t0e−i�� j−1,U + t0ei�� j+1,U,

�E − �0�� j,L = t0ei�� j−1,L + t0e−i�� j+1,L, �4�

where, by j+1 and j−1, we symbolize the sites to the right
and to the left of the jth site in any arm of the ring.

For the site marked by � in the lower arm of the ring, the
equation is

�E − �0���,L = t0ei���−1,L + t0e−i���+1,L, �5�

where �	1 imply the sites to the right and to the left of the
site marked by �, respectively. Finally, for the QD array, we
have the following set of difference equations:

�E − �1��1 = ��� + t0�2,

�E − � j�� j = t0� j−1 + t0� j+1,

�E − �N��N = t0�N−1, �6�

where the central set of equations above refer to the bulk
sites, viz., j=2, . . . ,N−1 in the QD array.

The process of calculating the transmission coefficient
across such a ring-dot system consists of the following steps.
First, the dangling QD chain is “wrapped” into an effective
site by decimating the amplitudes �2 to �N from Eq. �6�. The
renormalized on-site potential of the first site of the QD array
is given by15

1
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ϕ
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Ν
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n LeadLead

"Dots"

R

L R

l
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FIG. 1. The quantum ring and the side-coupled chain of quan-
tum dots. The sites L and R �bigger solid circles� mark the left and
the right junctions with the leads, and the site marked by � is the
“connecting” point of the side-coupled chain.
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�̃ = �0 +
t0UN−3�x�
UN−2�x�

+
t0
2

UN−2
2 �x�

1

E − �0 −
t0UN−3�x�
UN−2�x�

�7�

for N
2. For N=1, we simply have �̃=�0+�2 / �E−�0�.
Here, x= �E−�0� /2t0 and UN�x� is the Nth order Chebyshev
polynomial of the second kind, with U0=1 and U−1=0.36

This “effective” site is coupled to the site marked by � in the
lower arm of the ring via a hopping integral �. In the second
step, the effective site with on-site potential is further
“folded” back into the site �, whose renormalized on-site
potential now reads15

�* = �0 +
�2

E − �̃
. �8�

We now have a ring with l atoms in the upper arm and an
effective site at position � in the lower arm, flanked by m
atoms on its left and n atoms on the right, so that there is a
total of m+n+1 atoms in the lower arm. This is just the case
of a QD with an energy dependent on-site potential embed-
ded in an arm of an AB ring. In the final step, all the l+m
+n+1 atoms are decimated by using the set of appropriate
difference equations �Eqs. �3� and �4�� to reduce the ring into
an effective diatomic molecule �Fig. 1�. The renormalized
values of the on-site potential at the two extremeties of the
molecule are given by

�̃L = �0 + t0�Ul−1

Ul
+

Um−1

Um
	 +

t0
2

Um
2 F�E,�,m,n� ,

�̃R = �0 + t0�Ul−1

Ul
+

Un−1

Un
	 +

t0
2

Un
2F�E,�,m,n� , �9�

where for a fixed set of �0 and t0,

F�E,�,m,n� = 
E − �* − t0�Um−1

Um
+

Un−1

Un
	�−1

. �10�

The time reversal symmetry of the hopping integral between
the atoms at L and R of the diatomic molecule is broken due
to the flux threading the ring and is given by

tF =
t0

Ul
ei�l+1�� +

t0
2

UmUn
F�E,�,m,n�e−i�m+n+2�� �11�

for the forward hopping from L to R and by tB= t
F
* for the

backward hopping from R to L. The transmission coefficient
across the effective diatomic molecule is given by37

T =
4 sin2 qa

�M12 − M21 + �M11 − M22�cos qa�2 + �M11 + M22�2 sin2 qa
,

�12�

where a is the lattice constant in the leads, taken to be equal
to 1 throughout the calculation. In what follws, we discuss
various aspects of the electronic transmission across the
ring-QD array system. We fix the on-site potential at all sites,
including the QD chain, as �0 and the hopping integrals have
been kept equal to t0 throughout, except the ring-QD array

coupling �. The defect that we hang from an otherwise per-
fect ring is thus only of a topological nature.

III. RESULTS AND DISCUSSIONS

A. Suppression of Aharonov-Bohm oscillations

In all transmission profiles, the ring-dot coupling � plays
a crucial role. The first effect that we present is a suppression
of the AB oscillations as a function of �. We choose the
energy E from a specially selected set obtained by solving
the equation E− �̃=0. For these E values, the suppression of
the AB oscillations can be directly worked out from our for-
mulation. It is to be appreciated that the eigenvalues of the
isolated quantum dot array are obtained by solving the poly-
nomial equation E− �̃=0.13–15 We select any one of the roots,
name it �̃0, and fix ��0. This last condition is important.

A close look at the expression of �* reveals that for E
= �̃0 �in fact, for any real root of the equation E− �̃=0�, we
get �*=�. This leads to the following reduced forms of �L,
�R, and tF �=t

B
*�:

�̃L = �0 + t0�Ul−1

Ul
+

Um−1

Um
	 ,

�̃R = �0 + t0�Ul−1

Ul
+

Un−1

Un
	 ,

tF =
t0

Ul
ei�l+1��. �13�

We observe that the ring-dot coupling � does not appear in
any of these expressions. This is because of the selection E
= �̃0 and a nonzero �, however, is small. Let us now define
cos�qa�= �E−�0� /2t0= ��̃0−�0� /2t0=� /2t0, �̃0− �̃L=�1, and
�̃0− �̃R=�2. With these, the transfer matrix elements for the
diatomic molecule read

M11 = 
 �1�2Ul

t0
2 −

1

Ul
�e−i�l+1��,

M12 = −
�2Ul

t0
e−i�l+1��,

M21 =
�1Ul

t0
e−i�l+1��,

M22 = − Ule
−i�l+1��. �14�

Finally, the transmission coefficient is given by

T =

4
1 −
�2

4t0
2�

�d1�2 + �d2�2
, �15�

where
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d1 =
e−i�l+1��

t0

� �1�2Ul

t0
2 +

Ul
2 − 1

Ul
	�

2
− ��1 + �2�Ul� ,

d2 = e−i�l+1��� �1�2Ul

t0
2 −

Ul
2 + 1

Ul
	
1 −

�2

4t0
2 . �16�

As we observe, �d1�2 and �d2�2 and hence T are independent of
the flux. That is, the AB oscillations are suppressed when-
ever the Fermi energy coincides with any of the discrete
eigenvalues of the isolated QD array.

In view of the above calculation, a few pertinent observa-
tions should be given importance. Let us slightly detune E
from an eigenvalue of the QD array. That is, let us set E
− �̃0=
, 
 being very small. How does the shape of the AB
oscillation get altered in the neighborhood of E= �̃0? In this
case, we have

�* = �0 +
�2



. �17�

Clearly, if ��0, but very very small so that �2�O�
�, then
the analysis as given above is not valid, as �* is not infinity
anymore. As a result, we shall observe AB oscillations in the
transmission spectrum in general. If we gradually increase
the value of � so that 
��, or even smaller, then we essen-
tially keep on making �2 /
 and hence �* larger and larger.
This results in the gradual suppression of the amplitude of
the AB oscillations, and finally, when �2 /
 becomes a very
large number �dictated by the machine precision�, the trans-
mission coefficient �T� becomes independent of the flux
threading the ring. AB oscillations completely disappear.

An interesting feature of the AB oscillations in such cases
is that a gradual increase in the value of � can lead either to
T=1 �Fig. 2�a�� or to T=0 �Figs. 2�b� and 2�c��. This depends
on the combination of the size of the ring �i.e., on l, m, and
n� and the length of the QD array �N�. In every case, how-
ever, the progress toward T=1 or T=0 is accompanied by a
gradual suppression of the AB oscillations. Most interest-
ingly, for a set of values of l, m, n, and N, the phase of the
AB oscillations is reversed at specific values of the magnetic
flux as soon as � exceeds some “critical” value. Incidentally,
a similar observation in a simpler geometry was reported by
Kubala and König as well.1 The present cases are depicted in
Figs. 2�b� and 2�c�, where the reversal is observed at �
=�0 /2 and 3�0 /2 �odd multiple of �0 /2 in general�. How-
ever, with different combinations of l, m, n, and N, the re-
versal can take place at other flux values as well, for ex-
ample, at �=0 and �=�0. We have not been able to obtain
an exact criterion for the phase reversal. However, an exten-
sive numerical search has revealed that this is true for vari-
ous combinations of the size of the ring and the length of the
QD array.

Before ending, it should be mentioned that the flux inde-
pendence that we have discussed above is basically caused
by the divergence of �* at special energies. This divergence
can also be achieved for any arbitrary energy other than the
eigenvalues of the isolated QD array by letting �→�. Such
a situation, as we have carefully observed, but do not report
here to save space, leads to a flux independent T-E spectrum.

B. Selective switching

At first, we note that, for l=m+n+1, i.e., for an equal
number �l� atoms in the two arms, and with �=0, the L-R
hopping integral in the effective diatomic molecule is real
and reads

tF =
2t0

Ul
cos���

�0
	 , �18�

where tB is, of course, equal to tF. It is now clear that for
�=�0 /2, the effective hopping integral becomes zero, re-
sulting in T=0 �an antiresonance�, independent of the energy
of the electron. As soon as the ring-dot coupling � assumes a
nonzero value, interesting transmission behavior is observed.
To get a clearer understanding, we refer to Fig. 3, which is a
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FIG. 2. The gradual suppression of AB oscillations in the trans-
mission spectrum as the ring-dot coupling increases. �a� E=10−6,
l=13, m=n=6, and N=5. Here, �=0.001 �solid�, 0.002 �dashed�,
0.005 �dotted�, and 0.1 �dot-dash�. �b� E=10−6, L=7, m=3, n=8,
and N=7. �=0.001 �solid�, 0.004 �dashed�, 0.005 �dotted�, and
0.006 �dot-dash�. �c� E=0.618 011 988, l=9, m=3, n=8, and N=4.
The values of � are 0.001 �solid�, 0.007 �dashed�, 0.01 �dotted�, and
0.5 �dot-dash�, respectively. Other parameters are �0=0 and t0=1,
and the energy and � are measured in units of t0, and the flux is
measured in units of �0.
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FIG. 3. A simple four-site ring with a single Fano-Anderson
�FA� defect attached to it.
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ring with just one atom in both the lower and the upper arms
with a single QD with an on-site potential �D coupled to the
atom in the lower arm. This is a simple modification of the
model used by Kubala and König.1 For this simple geometry,
with ��0, we get

�̃L = �0 +
t0
2

E − �0
+

t0
2�E − �D�

�E − �0��E − �D� − �2 ,

tF = �− i�t0
2 �2

�E − �0���E − �0��E − �D� − �2�
, �19�

with �̃R= �̃L and tB= t
F
*. By using these, one can work out the

transfer matrix elements for the diatomic molecule, in the
limit E→�D, to be equal to

lim
E→�D

M11 =
− i��2t0

2 − �2�
t0
3 ,

lim
E→�D

M12 =
− i�t0

2 − �2�
t0
2 ,

lim
E→�D

M21 =
i��2t0

2 − �2�
t0
3 ,

lim
E→�D

M22 =
− i�

t0
, �20�

where �=�0−�D. Inserting these values in the formula for the
transmission coefficient, it is observed that T=1 for E=�D
with any ��0. That is, the presence of a finite ring-dot cou-
pling, however small, triggers ballistic transmission across
the ring.

With an arbitrary number of scatterers in either arm of the
ring, and the QD array extending beyond one atom, the situ-
ation is nontrivial and closed form expressions look ex-
tremely cumbersome to deal with. We have conducted an
extensive and careful numerical investigation to examine
several cases. Here, details of a specific case are given which
reflect the generic features of the selective switching effect
that we wish to highlight.

We choose a situation where the QD array contains, for
example, five atoms �N=5�. The on-site potential �0 and the
hopping integral t0 are set equal to zero and unity every-
where, including the QD array. We set the magnetic flux �
=�0 /2 and select l=2m+1 and m=n. The five-site QD chain
is now diagonalized to get the eigenvalues 0, 	1, and 	
3.
With � set equal to zero, as discussed before, we get T=0
irrespective of energy E. Interestingly, it is found that, by
choosing a small nonzero value of � and an appropriate set
of values for l, m, and n, but always satisfying the require-
ment l=2m+1 and m=n, it is possible to make the ring-dot
system completely transparent to an incoming electron when
its energy becomes equal to some or all of the eigenvalues of
the five-site QD array. The transmission at any energy out-
side the set of five eigenvalues mentioned above can be com-
pletely suppressed if � is kept small enough. However, a
gradual increase in the value of � gives rise to secondary

transmission peaks as the ring more strongly “interacts” with
the QD. These secondary peaks finally settle into bands of
transmission separated by transmission dips, as a result of
quantum interference. The important thing to appreciate is
that whether we observe complete transparency at a subset of
the eigenvalues or for all of them depends strongly on the
mutual tuning of the values of the ring-dot coupling � and l,
m, and n. Figure 4 displays the selective switching action
when the QD array contains three and five sites, respectively
�Figs. 4�a� and 4�b��. In Fig. 4�a�, setting �=0.08 and attach-
ing the array to an �l ,m ,n�= �1,0 ,0� ring �like the one shown
in Fig. 2�, we see that the transmission coefficient is unity �or
very close to it� only when energy E is equal to the three
eigenvalues of the isolated three-dot array, viz., at E=0 and
	
2. On the other hand, with N=5 �Fig. 4�b��, with l=17,
m=n=8, and �=0.04, transmission is triggered only at three
of the five eigenvalues. The scenario of course changes as
the parameters are varied, keeping � small. However, the
“smallness” of � is to be selected by a trial method, at least
so far as we have checked. In Table I, we provide a list of
such selective values for which T=1 �or very close to it� at
�=�0 /2.

Before we end, it should be noted that the geometry dealt
with in the present communication can equivalently be
thought of as a discrete part �the lower arm plus the QD
array� to an infinite linear chain �the left lead plus the upper
arm plus the right lead�. Considering no magnetic field, we
expect Fano line shapes in the transmission spectrum as a
result of an “interaction” of the discrete spectrum of the
lower parts with the continuous spectrum offered by the up-
per section.13,16 Indeed, there are such line shapes in the
transmission resonances, which, however, get masked due to
quantum interference as we take larger and larger sizes of the
ring as well as the QD array.
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FIG. 4. Selective switching effect at �=�0 /2 for a QD array of
�a� three sites and �b� five sites. In �a�, we have taken l=1, m=n
=0, and �=0.08. Three transmission peaks at three distinct eigen-
values E=0 and 	
2 of the isolated three-site QD chain are visible.
In �b�, l=17, m=n=8, N=5, and �=0.04. Peaks appear at E
=0, 	
3 and transmission at two other eigenvalues of the isolated
QD chain, viz., at E= 	1 are blocked.
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IV. CONCLUSION

We have addressed the issue of transmission across an
Aharonov-Bohm ring with a dangling chain of single level
quantum dots within a tight binding formalism. In the pres-
ence of a magnetic flux threading the ring, we discuss the

role of the ring-dot coupling in controlling the profile of
transmission oscillations. The central feature is a suppression
of the AB oscillations with occasional reversal of phase at
specific values of the flux. Most interestingly, it is found that
a simultaneous adjustment of the number of scatterers in the
arms of the ring and the ring-dot coupling can lead to a
complete transparency of the system at some or all of the
eigenvalues of the QD array. It is important to note that a
bigger ring with large values of l, m, and n �always satisfying
the condition m=n, l=2m+1, and �=�0 /2� exhibits ballis-
tic transmission T=1 for rather low values of the ring-dot
coupling �. This is because with a bigger ring, the coupled
QD array stays far away from the junctions L and R. The
“end effects” are thus minimized. We have also tested these
features with a QD array formed according to the quasiperi-
odic Fibonacci growth rule.14 The essential features, such as
the self-similarity in the electronic transmission, are also ob-
served in the selective switching case. Such aspects will be
discussed elsewhere.
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TABLE I. Some typical combinations of l, m, and n and the
ring-dot coupling � that give rise to selective switching at �
=�0 /2. k is a positive integer.

�l ,m ,n� Typical value of � T�1 at E=

�12k−1,6k−1,6k−1� Arbitrary No peak at all

�12k−7,6k−4,6k−4� 0.04 0, 	
3

�12k−5,6k−3,6k−3� 0.04–0.045 	1, 	
3

�12k+3,6k+1,6k+1� 0.04–0.045 	1, 	
3

�12k−11,6k−6,6k−6� 0.05–0.10 0, 	1, 	
3

�12k−3,6k−2,6k−2� 0.05–0.10 0, 	1, 	
3
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