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We study the electrostatic confinement properties of a ballistic GaInAs nanostructure, a system with a high
potential for quantum applications due to its small effective mass and persistence of quantum effects to higher
temperatures. By measuring the magnetic depopulation of one-dimensional subbands in an etched quantum
point contact, we demonstrate that the slope of the confinement at the Fermi level is an order of magnitude
steeper than in surface-gated devices, indicating that this system is ideal for applications that are sensitive to
the boundary geometry of devices. The subband spacing is found to range from 7 to 9.5 meV, which is
significantly larger than previously reported for this material system.
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I. INTRODUCTION

Quantum confinement of a two-dimensional electron gas
�2DEG� has been used for remarkably diverse investigations,
ranging from fundamental physics �e.g., fractionally charged
quasiparticles1 and quantum chaos2� to potential device ap-
plications �e.g., electron coherence3 and spintronics4�. The
devices responsible for this success are traditionally defined
by patterned surface gates in AlxGa1−xAs /GaAs heterostruc-
tures. However, GaxIn1−xAs heterostructures have been in-
creasingly utilized for electron transport studies in low-
dimensional systems recently, especially in the areas of
quantum coherence and spintronics. The reduced effective
mass of GaInAs ��0.04–0.05 compared to 0.067 for GaAs�
leads to enhanced confinement and the potential for higher
operational temperatures due to the larger associated energy
level spacings. Large spin-orbit coupling parameters mea-
sured for GaInAs have also made it a viable candidate for the
control of spin procession.5,6 Crucially, in this paper, we
demonstrate that the electrostatic confinement potentials pro-
duced by etching nanostructures into this heterostructure are
an order of magnitude steeper than for gated devices—
opening up the possibility of higher fidelity patterning, which
is critical for many classical and phase-coherent device ap-
plications. A number of such applications have already uti-
lized etched devices in GaInAs; examples include phase co-
herence studies in quantum dots,7,8 fractal analysis of
quantum interference,9 and symmetry studies in quantum
billiards.10,11 In all of these studies, inherent assumptions are
made regarding the confinement in these devices, as the con-
finement properties of GaInAs nanostructures have not been
previously explored in detail.

In this paper, we investigate the confinement potential in
etched GaInAs devices by utilizing the magnetic depopula-
tion of one-dimensional �1D� subbands in a quantum point
contact �QPC�. Etched QPCs have been demonstrated to
have 1D subband spacings on the order of 10 meV,12,13 more
than double those found in surface-gated QPCs.14,15 Here, we
establish that these large subband spacings are also achiev-
able in a GaInAs heterostructure. Using a uniform top gate to

tune the Fermi energy relative to the subbands of the QPC,
we perform magnetic depopulation measurements to deter-
mine the 1D subband spacing �En and the shape of the con-
fining potential.16,17 We model the depopulation in the QPC
using a “bathtub” potential16,17 and match the output of this
model to the measured physical depopulation. This enables
us to extract parameters that determine the physical confine-
ment while keeping the measurement in the linear response
regime.

II. EXPERIMENT

Our QPC is etched into a strained Ga0.25In0.75As / InP
heterostructure,18,19 as shown schematically in the inset of
Fig. 1. The heterostructure is grown using metal-organic va-
por phase epitaxy onto a substrate of semi-insulating �100�
InP:Fe.18 It consists of a 9 nm wide Ga0.25In0.75As quantum
well �m*=0.047m0� �Ref. 18� situated between a 50 nm
buffer layer and a 41 nm capping layer of nonintentionally
doped InP. The midpoint of the capping layer is delta doped
��1 nm� with Si donors at a density of 5�1018 cm−3. The

FIG. 1. Carrier density ns in the 2D reservoirs plotted as a func-
tion of gate voltage Vg �lower axis� and the Fermi energy EF

2D in the
2DEG �upper axis�. The solid line shows the linear trend at negative
voltages; at positive voltages, ns departs from this trend and satu-
rates. Inset: schematic of the heterostructure.
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QPC is located on a Hall bar mesa featuring NiAuGe Ohmic
contacts and is defined using electron-beam lithography and
a nonselective HBr wet etch �see Fig. 2, inset�. A 1 �m thick
layer of hard-baked Shipley 1813 photoresist is used to fill
the etch trenches, passivate the heterostructure, and electri-
cally insulate the heterostructure from the Ti /Au top gate.
This insulating layer limits the gate leakage current to
�10 pA. Further details of the fabrication can be found
elsewhere.18,19 All measurements were performed in a four-
terminal configuration using standard ac-lock-in techniques
at 37 Hz, with a constant current of �1 nA to prevent elec-
tron heating.

Figure 1 shows the carrier density ns in the 2DEG as a
function of gate voltage Vg, obtained from measurements of
the Shubnikov–deHaas �SdH� oscillations and the low-field
Hall slope. Within the voltage range of Fig. 1, the mobility
and mean free path vary between �1.5–2.5��105 cm2 /V s
and 2–4 �m, respectively, indicating ballistic transport
through our �160 nm long QPC. For an ideal metal-
insulator-semiconductor device structure, the top gate and
2DEG interact as a simple capacitor producing a linear rela-
tionship between ns and Vg. In our device, while linear be-
havior is observed at negative Vg, ns saturates at positive Vg.
The region of saturation at Vg�0 suggests that charge is
building up somewhere between the 2DEG and the gate, lim-
iting the gate’s ability to modify ns. Likely causes for this
saturation include interface traps20 between the capping layer
and the photoresist, or a repopulation of the Si donor sites.
Measurements of the longitudinal resistivity reveal that the
SdH oscillations fall to zero and there is no noticeable posi-
tive magnetoresistance,21 suggesting the absence of parallel
conduction in the measurement.22 Based on these observa-
tions, we assume that the charge causing the saturation does

not contribute to conduction measurements in our device and
that the only mobile charge is in the quantum well. A detailed
analysis of the cause of the saturation is reported
elsewhere.21

The saturation at Vg�0 signifies a nonlinear relationship
between Vg and the Fermi energy, as shown in the upper axis
of Fig. 1. In Fig. 2, the conductance g through the QPC is
plotted as a function of the Fermi level EF

2D in the 2DEG
reservoirs. By plotting the data vs EF

2D instead of vs Vg, we
are able to bypass this spurious saturation and chart g rela-
tive to the movement of the Fermi level. The conductance
measured at B=0 and T=240 mK is shown in the upper trace
�black� of Fig. 2. Plateaus at integer values of 2e2 /h appear
as EF

2D is increased and rises through the 1D subbands of the
QPC.23 The same measurement at T=4.2 K is shown super-
imposed �red� over the trace at 240 mK. The transitions be-
tween plateaus at 4.2 K show little deviation from those at
240 mK, suggesting that the subband spacing in our QPC is
larger than a few meV.23 Note that while the data in Fig. 2
and our subsequent analysis are presented for a particular
QPC, it is consistent with measurements we have made in
other etched QPCs in this heterostructure.9

We use magnetic depopulation of the subbands in the
QPC to determine �En and to characterize the electrostatic
confinement potential. Applying a magnetic field B perpen-
dicular to the 2DEG strengthens the confinement in the QPC,
moving the subband transitions to higher energy �see Fig. 2�.
As B is increased, lower indexed subbands eventually coin-
cide with higher indexed subbands at the same value of EF

2D.
This is emphasized by the blue dashed line in Fig. 2, and it is
schematically represented in Fig. 3�a�, where the n=5 sub-
band at 0 T and the n=4 subband at 2.31 T align at an iden-
tical value of EF

2D. Under the assumption that the bottom of
the conduction band is insensitive to changes in B, the
minima of the potentials at B=0 and 2.31 T must also align
in energy. Thus, a calculation of the two subband energies
that coincide at EF

2D in Fig. 3�a� must result in identical val-
ues EF

1D �where EF
1D is the Fermi energy in the QPC�. This

calculation can be used to constrain a model of the electro-
static confinement.16,17 To more easily identify the values of
B at which subbands coincide, in Fig. 3�b�, we replot the
depopulation points from Fig. 2 on a parameter space of EF

2D

and B. We neglect the effects of spin splitting and assume the
subband crossings occur half-way between the spin-resolved
transitions in Fig. 2; the error bars in Fig. 3�b� represent the
strength of the Zeeman splitting for these transitions.

III. RESULTS AND DISCUSSION

To extract the form of the confinement potential from the
magnetic depopulation data in Fig. 3�b�, we assume a model
potential and constrain this model by calculating the subband
energies that coincide in EF

2D. It is well established that the
form of the confining potential in a 1D constriction evolves
from a parabolic potential at depletion to a flat bottomed
parabola when populated by electrons.24 Therefore, we
choose a bathtub as our model potential �see Fig. 3�a��,
which is characterized by a flat, central valley of width d
situated between regions of harmonic confinement of fre-
quency �0,16,17
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FIG. 2. �Color online� Conductance g through the QPC plotted
vs the Fermi energy EF

2D in the 2DEG for selected magnetic fields
B. As B increases, the subband transitions move to higher energy.
The data are offset for clarity by multiples of 2e2 /h. Black traces
are measured at 240 mK, the red trace at 4.2 K. Inset: scanning
electron microscopy image of the QPC.
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Note that �0 and d will, in general, depend on EF
2D. The

subband energies are calculated by inserting V�EF
2D ,x� into

the Schrödinger equation, which is numerically solved using
the finite difference method with �0 and d as fitting param-
eters. For a given value of EF

2D, three coincident subband
transitions are necessary to uniquely determine these param-
eters. This condition is satisfied for n	5 in Fig. 3�b�, and we
calculate 
�0=11.5�1 meV for this region of the parameter
space. For n�5 where there are at most two coincident sub-
bands, we assume �0 to be fixed17 and use d as the fit pa-
rameter. This is consistent with the calculations of Laux et
al.,24 where the harmonic part of the confinement �i.e., the
walls� was found to be insensitive to changes in the subband
population and carrier density n1D in the constriction.

In Figs. 4�a�–4�c�, we plot the Fermi level EF
1D in the

QPC, the width d, and n1D as a function of EF
2D for 
�0

=10.5, 11.5, and 12.5 meV. The carrier density n1D is calcu-
lated from the 1D density of states and EF

1D at B=0 T. Fig-
ures 4�a� and 4�c� reveal that EF

1D and n1D are insensitive to
changes in �0 within the range of our uncertainty. Note that
EF

1D will not necessarily be the same as EF
2D �see Fig. 3�a��,

since the conduction band bends up within the QPC to form
a barrier. The energy of this barrier, Ebar=EF

2D−EF
1D, directly

follows from the solutions to our model. Symbols in Fig. 4

correspond to the values of EF
2D where at least two subband

crossings are coincident. Taking the median value 
�0
=11.5 meV, we linearly extrapolate the trends in Figs. 4�a�
and 4�b� down to the n=1 transition. The trend in Fig. 4�b�
extrapolates to d=0 at about the same value of EF

2D at which
the n=1 transition occurs. This is consistent with the bathtub
model, where the flat region should disappear once n1D is
entirely depleted from the QPC. Finally, we use the data and
extrapolated trends in Figs. 4�a� and 4�b� to simulate the
subband transitions in the parameter space of Fig. 3�b�, plot-
ted there as dashed lines. Despite being derived from a linear
extrapolation, the simulated trends for the n=2 and n=3 sub-
bands reproduce the data with a fair amount of accuracy.
However, our model breaks down at the n=1 transition be-
cause EF

1D extrapolates to a value above what is expected for

�0=11.5 meV.

The agreement between our model and the experimental
data in Fig. 3�b� suggests that our model potential is a good
approximation to the confinement in the QPC for n�1.
Thus, we use this model to estimate a number of important
transport parameters in the QPC as a function of EF

2D: the
subband spacing, the electrostatic width, and the slope of the
confinement at the Fermi level. The subband spacing at the
Fermi level �En is plotted in Fig. 4�a� and ranges from
7 to 9.5 meV as the subbands are depopulated from n=6 to
n=2. These values are consistent with the temperature de-
pendence observed for the subband transitions at B=0 T in
Fig. 2. They are also significantly larger than the subband
spacing of 2.5 meV previously measured using a biasing
technique for a quantum wire of similar width ��100 nm�
etched into the same heterostructure.25 This discrepancy is

E
F

2D

X

n = 5

3
2
1

B = 0 T

4

d

E
F

1D

30

32

34

36

38

0 1 2 3 4 5

E
F

2D
(m

eV
)

B (T)

n = 6

n = 5

n = 4

n = 3

n = 2

n = 1

n = 4

2
1

B = 2.31 T

X

3

(a)

(b)

FIG. 3. �Color online� �a� Schematic of the confinement poten-
tial plotted vs distance x across the QPC for B=0 and 2.31 T. The
additional confinement due to B raises the subbands to higher en-
ergy. �b� Parameter-space plot of the subband transitions: Fermi
energy EF

2D in the 2DEG vs magnetic field B. Black dashed lines are
fits to the data based on the bathtub model. Blue arrows point to the
values of B at which the n=5 and n=4 subbands are coincident in
EF

2D, as schematically depicted in �a�.
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bathtub’s flat region, and �c� carrier density n1D in the QPC plotted
vs the Fermi energy EF

2D in the 2DEG. Symbols correspond to dif-
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�0. The dashed lines in �a� and �b� are extrapolated trends
based on the data, while the dashed line in �c� is calculated from the
trends in �a� and �b�. Open diamonds in �a� plot the subband spacing
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explained by noting that in Ref. 25 the quantum wire was
overgrown with InP, which is expected to eliminate interface
states at the etch boundary and result in a square-well con-
finement. In our QPC, interface states are expected to deplete
the constriction causing an increase in confinement. This
depletion strengthens as the subbands are depopulated, re-
sulting in an electrostatic width that can range from
50 to 100 nm at the Fermi level. Note that a bias measure-
ment of our subband spacing would require large biases
��10 meV� relative to the Fermi energy ��30 meV�, which
can place the measurement outside of linear response.26 A
detailed analysis of biasing in this regime will be presented
elsewhere.

We find that the slope of our confinement potential ranges
from 1.5 to 2.2 meV /nm at the Fermi level, which is an or-
der of magnitude steeper than found for surface-gated con-
finement in GaAs.27 This suggests that nanostructures etched
into our heterostructure will have better shape fidelity, where
the shape of the electrostatic confinement more accurately
conforms to a lithographic pattern. For example, the corners
of a square or triangle will be less rounded. This is consistent
with the results from recent studies of nonlinear and asym-
metric transport in ballistic quantum billiards,10,11 where the
transport dynamics were shown to be very sensitive to the
boundary shape. Enhanced control over the boundary shape
is particularly important to transport through open quantum
dots,32 where it is well known that curvature in the device
geometry produces chaotic orbits28,29 that limit the dwell
time of carriers in the dot.8,30 Sharper boundary features can
introduce stable orbits into a dot’s classical phase space,
which can lead to dynamical tunneling31 and an enhancement
of the dwell time. We emphasize that the steeper confinement

should result from the etched nature of the device, as op-
posed to being specific to GaInAs, and thus steeper profiles
can be expected in other etched heterostructures such as
AlGaAs /GaAs. We also stress that we observe an order of
magnitude enhancement despite the presence of depletion at
the boundaries of the constriction—which we attribute to
charge states at the etched boundary.

IV. CONCLUSION

In summary, we have determined the confinement proper-
ties of an etched quantum point contact in a
Ga0.25In0.75As / InP heterostructure by utilizing the depopula-
tion of the device conductance as a function of the Fermi
level and a perpendicular magnetic field. By modeling the
confinement as a bathtub potential, we obtain close agree-
ment between the measured points of depopulation and those
predicted by our model. The subband spacing in our QPC is
calculated to range from 7 to 9.5 meV, which is similar to
that observed for etched QPCs in AlGaAs /GaAs
heterostructures.12,13 The slope of the confinement at the
Fermi level is found to be an order of magnitude steeper than
in surface-gated devices, indicating that etched GaInAs het-
erostructures will be beneficial for applications requiring
smaller and better defined nanostructures.
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