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We consider spin-polarized electrons in a single Landau level on a torus. The quantum Hall problem is
mapped onto a one-dimensional lattice model with lattice constant 277/ L, where L, is a circumference of the
torus (in units of the magnetic length). In the Tao-Thouless limit L; — 0, the interacting many-electron problem
is exactly diagonalized at any rational filling factor v=p/g=1. For odd ¢, the ground state has the same
qualitative properties as a bulk (L;— ) quantum Hall hierarchy state and the lowest-energy quasiparticle
excitations have the same fractional charges as in the bulk. These states are the L; — 0 limits of the Laughlin
and Jain wave functions for filling fractions where these exist. We argue that the exact solutions generically, for
odd ¢, are continuously connected to the two-dimensional bulk quantum Hall hierarchy states—i.e., that there
is no phase transition as L; — o for filling factors where such states can be observed. For even-denominator
fractions, a phase transition occurs as L; increases. For v=1/2 this leads to the system being mapped onto a
Luttinger liquid of neutral particles at small but finite L,; this then develops continuously into the composite
fermion wave function that is believed to describe the bulk v=1/2 system. The analysis generalizes to non-

Abelian quantum Hall states.
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I. INTRODUCTION

The two-dimensional electron gas in a perpendicular mag-
netic field, the quantum Hall (QH) system, is remarkably
rich. The integer QH effect shows a conductance precisely
quantized in integer units of ¢*>/h,' and in the fractional QH
regime the conductance is quantized in fractions of ¢?/h and
there are fractionally charged quasiparticles that obey (Abe-
lian) fractional statistics.>~* Whereas the integer effect can be
understood in terms of noninteracting electrons,>® the frac-
tional effect is caused by the interaction between the
electrons.” Other states observed in this strongly correlated
electron system are metallic states that resemble a free two-
dimensional Fermi gas®~'° and inhomogeneous striped states
in higher Landau levels.'"'> A further example of an exotic
quantum state that may form is a non-Abelian state where
the quasiparticles obey non-Abelian fractional statistics.!3-13

The fractional QH effect is understood as an incompress-
ible quantum liquid with fractionally charged quasiparticles;
this is based on Laughlin’s wave functions for filling frac-
tions »=1/(2m+1).” For other fractions, a hierarchy con-
struction where quasiparticles condense to form new quan-
tum liquids just as electrons form the Laughlin states was
proposed by Haldane,'® Laughlin,'’and Halperin.'® An alter-
native view, where electrons supposedly capture magnetic
flux to form composite fermions that see a reduced magnetic
field, was developed by Jain.'?? Successful mean-field
theories that support this idea of flux attachment have been
developed.?*>> The composite fermion approach has re-
ceived strong support from experiments performed in the
half-filled Landau level. Near v=1/2, ballistic transport is
consistent with particles moving in a reduced magnetic field
in accordance with the composite fermion prediction.?0—2° At
v=1/2, the external magnetic field is completely absorbed
by the electrons and the composite fermions see no magnetic
field—they form a two-dimensional Fermi gas. The mean-
field theory of this state’*3! is in excellent agreement with
surface acoustic wave experiments.?32
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In spite of these impressive results it is our opinion that
there are basic questions concerning the QH system that re-
main to be answered.?* Most importantly, a microscopic un-
derstanding is lacking. It is true that good many-body wave
functions exist, but there is no microscopic understanding or
derivation of them. For example, according to the composite
fermion picture the fractional QH ground state is formed
when composite fermions fill an integer number of effective
Landau levels in the reduced magnetic field. No derivation of
this scenario from the many-body wave function exists.
Mean-field theory, which is successful, does give support to
the idea of electrons binding flux quanta; however, it is not
understood why mean-field theory works as well as it does.
A further question is the relation between the original hier-
archy description and composite fermions; are they alterna-
tive descriptions of the same thing, as argued by Read** and
by Blok and Wen,® or are they fundamentally different, as
argued by Jain!°?>? Our aim is to contribute to a solution to
these problems.

In this article we consider spin-polarized interacting elec-
trons within a single Landau level. It has recently been real-
ized that there is a limit in which this problem can be exactly
solved for any rational filling factor v=p/g = 1—and that the
solution is physically relevant.**~** We here expand on, and
provide details of, our work presented in Refs. 36 and 37. We
consider the interacting electron gas on a torus where it be-
comes equivalent to a one-dimensional lattice model with a
complicated long-range interaction. The solvable limit is the
thin torus L; — 0, where L, is one of the circumferences of
the torus (the other circumference being infinite). In this
limit the interaction in the one-dimensional lattice problem
becomes purely electrostatic and the ground state is a “crys-
tal” of electrons occupying fixed positions on the lattice as
far apart from each other as possible. For v=1/3 every third
site is occupied; interestingly enough, this is the state intro-
duced by Tao and Thouless in 1983 to explain the fractional
QH effect*! and we call these crystal states Tao-Thouless
(TT) states. The fractionally charged quasiparticles are do-
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main walls separating the degenerate ground states that exist
on the torus.

It should be noted that the mapping of the lowest Landau
level, or of any single Landau level for that matter, onto a
one-dimensional lattice problem is exact and that varying L,
may alternatively be thought of as varying a parameter in the
Hamiltonian that controls the range of the interaction while
keeping the two-dimensional space fixed (and possibly infi-
nite). To stress this we refer to the thin limit as the TT limit.
If the ground state in the TT limit remains the ground state as
L;—, we may thus conclude that the experimentally acces-
sible ground state is adiabatically connected to the ground
state in the TT limit.

The simple limit L; —0 may at first seem to be of little
physical interest—it is really an extreme case: the interaction
is both very short range and anisotropic and is furthermore
purely electrostatic. The surprising fact is that the ground
state in this limit has all the qualitative properties of a frac-
tional quantum Hall state, such as a gap, the correct quantum
numbers, and quasiparticles with the correct fractional
charge. We argue that the simple TT ground states obtained
in the TT limit develop continuously, without a phase transi-
tion, into the fractional QH hierarchy states, as L;— o, for
filling factors where such states are observed. Thus, we argue
that the TT state in general describes the fractional QH phase
observed as L;—, in the sense that these states are adia-
batically connected. We show that the TT states are the L,
— 0 limits of the Laughlin and Jain wave functions for filling
fractions where these exist. In the TT limit the original hier-
archy construction is manifest: the TT ground states are con-
densates of quasiparticles.

The hierarchy structure of states in the TT limit has re-
cently emerged within a conformal field theory (CFT) con-
struction of bulk hierarchy wave functions for all fractions
that are obtained by successive condensation of quasielec-
trons (as opposed to quasiholes).?**’ These wave functions
reduce to the correct TT states in the TT limit and are ob-
tained by a natural generalization of the conformal construc-
tion of the composite fermion wave functions.*> This sup-
ports the adiabatic continuity from the TT limit to the bulk
for general hierarchy states.

The TT states are the ground states also for the even-
denominator fractions in the TT limit; however, for these
fractions we claim that there is always a phase transition
when L, increases. This is supported by numerical studies
and by a detailed analysis of v=1/2, which we believe is a
representative case for the even-denominator fractions.

At v=1/2, there is a phase transition from the gapped TT
state to a one-dimensional gapless state at L; ~5. (Lengths

are measured in units of the magnetic length, €=\%c/eB
=1.) Also for this gapless phase there is an exact solution:
For a Hamiltonian that is a good approximation at L; ~ 5, the
low-energy sector consists of noninteracting neutral fermions
(dipoles); the ground state is a one-dimensional Fermi sea
and there are gapless neutral excitations. This provides an
explicit example of interacting electrons in a magnetic field
being equivalent to free particles that do not couple to the
magnetic field. The ground state in the exact solution is a
version of the composite fermion state?” given by Rezayi and
Read.®® There is strong numerical evidence®’ that this gap-
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less one-dimensional state develops continuously, without a
phase transition, into the two-dimensional bulk version of the
Rezayi-Read state that is believed to describe the observed
metallic state at v=1/2.

The Moore-Read Pfaffian state,! believed to describe the
half-filled second Landau level »=5/2, also exists in the TT
limit. A simple construction gives the quarter-charged quasi-
holes and quasielectrons as domain walls between the sixfold
degenerate ground states and the nontrivial degeneracies for
these excitations is obtained.®# Similar results for other
non-Abelian states exist*~*7; see also Ref. 48.

Over the years there have been many interesting attempts
to improve the understanding of the QH system and it is
impossible to here mention them all. In our work what
emerges is a one-dimensional theory of the quantum Hall
system which depends on a dimensionless parameter L,
where the Tao-Thouless states*!' are the exact solutions as
L;— 0 and the fractionally charged quasiparticles are domain
walls between the degenerate ground states. The TT states
are adiabatically connected to bulk QH states as
L;—o—there is no phase transition if a QH state is ob-
served. Searching the literature, one finds hints and sugges-
tions for such a scenario. Anderson noted in 1983 that
Laughlin’s wave function has a broken discrete symmetry
and that the quasiparticles are domain walls between the de-
generate ground states.*” Furthermore, he noted that the TT
state is nonorthogonal to the Laughlin state and suggested
that it can be thought of as a parent state that develops into
the Laughlin wave function, without a phase transition, as
the electron-electron interaction is turned on. In 1984, Su
concluded, based on exact diagonalization of small systems
on the torus, that the QH state at v=p/q is g-fold degenerate
and that the lowest-energy excitations are quasiparticles with
charge *e/q that are domain walls between the degenerate
ground states.’®>! In 1994, Rezayi and Haldane studied the
Laughlin wave function on a cylinder as a function of its
radius and noted that it approaches the Tao-Thouless state on
the thin cylinder. Implicit in their work is the fact that the
Laughlin wave function is the exact and unique ground state
to a short-range pseudopotential interaction on a cylinder for
any circumference.’” In retrospect, this makes a very strong
case for an adiabatic evolution from the TT state to the
Laughlin wave function. A one-dimensional approach to QH
states was also considered by Chui in 1985.53°* More re-
cently, this has been explored in connection with Bose-
Hubbard models by Heiselberg® and it should also be men-
tioned that Dyakonov presents a one-dimensional toy QH
model.”®

At v=1/2, we find that the low-energy sector consists of
weakly interacting dipoles. This relates to earlier descriptions
in terms of dipoles, in particular to the field theory of Murthy
and Shankar’’ and the work by Read,® Pasquier and
Haldane,? Lee.®! and Stern et al.®%; for reviews; see Ref. 63.
It is of course also reminiscent of composite fermions in
general®? in that the particles do not couple to the magnetic
field and are weakly interacting.

We would also like to draw the attention to the construc-
tion of composite fermion wave functions directly in the
lowest Landau level by Ginocchio and Haxton® and the se-
ries of work by Wojs, Yi, and Quinn; see Ref. 65 and refer-

155308-2



QUANTUM HALL SYSTEM IN TAO-THOULESS LIMIT

ences therein. Explicit wave functions have been obtained
within the original hierarchy construction by Greiter.%

The content of the article is as follows. The one-
dimensional lattice model for interacting electrons in a single
Landau level is introduced in Sec. II. In Sec. III we solve this
problem exactly in the TT limit L; —O0; i.e., we diagonalize
the interacting electron Hamiltonian for any rational filling
factor in this limit. The ground states and the fractionally
charged quasiparticles are identified, and it is found that the
former are condensates of the latter, thus proving the original
hierarchy construction in this limit.3> The quasiparticles are
domain walls between the degenerate ground states, and their
charge is determined by the Su-Schrieffer counting argu-
ment. The energy of a quasielectron-quasihole pair is deter-
mined as L;—0, and it is found that the gap to creating an
infinitely separated such pair at v=p/g decreases monoto-
nously with increasing ¢, but is independent of p; this is in
surprisingly good agreement with experiments, which are
performed in the two-dimensional bulk system L;—cc. The
Laughlin and Jain fractions, as well as those observed by Pan
et al.,” are considered explicitly as examples, and finally the
relation to composite fermions and emergent Landau levels
is commented on.

The transition to the two-dimensional bulk system as L;
— o0 is considered in Sec. IV, first for odd-denominator frac-
tions leading to the QH hierarchy states, then for the half-
filled Landau level; comments on other even-denominator
fractions and non-Abelian states are included. The conclu-
sion is that the rich structure and different phases of matter
present in the QH system exist also in the TT limit, where it
can be studied in detail starting from a microscopic Hamil-
tonian.

Technical details are buried in a series of appendixes. The
mathematics that we need for a single Landau level on a
torus®® including the construction of the lattice Hamiltonian
is given in Appendix A. In Appendix B we prove that the
relaxation procedure given in Sec. III actually gives the
ground state. In Appendix C, we show that the quasiparticle
charge at v=p/q is ¢"= = e/q; the result is obtained in the
limit L; — 0 using the Su-Schireffer counting argument. The
energy of a quasielectron-quasihole pair is obtained in Ap-
pendix D. In Appendix E we show that the L;— 0 limit of
Laughlin’s and Jain’s wave functions are the TT ground
states obtained in Sec. III. Appendix F shows that Laughlin’s
wave function at v=1/(2m+1) is the exact ground state and
that there is a gap to excitations for all L; for a short-range
interaction. Appendix G contains details of the exact solution
at v=1/2.

II. MODEL

We consider a single Landau level of spin-polarized elec-
trons on a torus with lengths L; and L, in the x and y direc-
tions, respectively. We use units such that A=c/eB=1 and
choose one-particle states ¢y, k=0,1,...,N,—1, N;
=L,L,/2, that have x momentum 27k/L; and are Gauss-
ians centered at y=—2k/L; see Appendix A. This provides
an exact mapping of the Landau level onto a one-
dimensional lattice model with lattice constant 27/L;; see
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FIG. 1. Mapping of a single Landau level onto a one-
dimensional lattice model. The two-dimensional space is a cylinder
with circumference L; (or a torus if the ends are identified) (top
panel). The single-particle wave functions are centered along circles
and are Gaussians of width one along the cylinder (central panel);
they are numbered by their momenta k27r/L; which also give the
position along the cylinder. This gives a one-dimensional lattice
model with lattice constant 277/ L, where each site is either empty
(0) or occupied by en electron (1). As an example, the Tao-Thouless
state 001 at v=1/3 is shown (bottom panel).

Fig. 1. Each site can be either empty, O, or occupied by an
electron, 1. Thus a basis of many particle states is provided
by {|ngnn,- - -nNS_1>}, where n;=0, 1; alternatively, states can
be characterized by the positions (or, equivalently, the x mo-
menta) {k,k,, ... ’kNe} of the particles.

A general two-body interaction V(r) that depends on the
distance r between two electrons only, such as a Coulomb or
a short-range & function interaction, leads to the one-
dimensional Hamiltonian

N1

P2 YR R/ TR

"0 <k 1+ 5k’NX/2Cn+mcn+kcn+k+mcn' (1)
Here ¢ creates an electron in state #, {ci,c)}= 3, and
Vin=Vi—m- H consists of the two-body terms that preserve
the x momentum—i.e., the position of the center of mass of
the electron pair; see Fig. 2. V,, is the amplitude for two
electrons separated k—m lattice constants to hop symmetri-
cally to a separation of k+m lattice constants. V, is the
electrostatic repulsion (including the exchange interaction)
between two electrons separated k lattice constants.%

For a given real-space interaction V(r), when L, is small
the lattice constant 27/ L, is large and, hence, the dominant
Vi are those with small k,m. Furthermore, the wave func-
tions ¢, are Gaussians in the y direction, with width of the
order of the magnetic length; hence, their overlap vanishes
rapidly as L; — 0 and the electrostatic terms V;, dominate in
this limit. The physics is thus very simple in the TT limit
L;—0—it is determined by electrostatic repulsion only. In

Vkm
1 1 A e 4 1 1
0000000000 o0 ®0e 000000000 oo
i i+k-m i-m i+k

FIG. 2. A general translationally invariant two-electron interac-
tion consists of the terms where two electrons preserve the position
of their center of mass. There are electrostatic terms Vg, where the
electrons do not move, and hopping terms V,,,,m# 0, where the
electrons hop symmetrically.
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the two-dimensional limit, L; —, the range of the one-
dimensional interaction measured in number of lattice con-
stants goes to infinity for any real-space two-dimensional
interaction; this is true also for a local interaction such as
V(r)oc V28 (r).

The symmetry analysis of many-electron states on the
torus was given by Haldane®®; a simple version adapted to
our needs can be found in Appendix A. We give here the
results. There are two translation operators T,, a=1,2, that
commute with the Hamiltonian H; they obey 7,7,
=e?™PlT,T,; see (A8). These operators have eigenvalues
e?™K/Ns K =0,...,N,~1. T, corresponds to x translations
and K, :Eﬁﬁki is the total x momentum (in units of 27/L,).
T, translates the system one lattice constant in the y
direction—i.e., along the one-dimensional lattice—and in-
creases K| by N,. At filling factor v=p/q (where p and ¢ are
relatively prime) 7% commutes with 7: {H, T, T3} is a maxi-
mal set of commuting operators. Tk, k=0,1,...,g—1, gener-
ate g degenerate orthogonal states, which have different K,
when acting on any state—this is the g-fold center-of-mass
degeneracy. Hence, each energy eigenstate is (at least) g-fold
degenerate and we choose to characterize it by the smallest
K. Thus, the energy eigenstates are characterized by a two-
dimensional vector K,=0,...,N,/g—1, where e2mK2a/Ns g
the TJ eigenvalue.

III. EXACT SOLUTION

In this section we solve the problem of interacting spin-
polarized electrons exactly at any rational filling factor v
=p/q=1 in the Tao-Thouless limit; we diagonalize the
Hamiltonian (1) and construct explicitly the ground state as
well as the low-energy charged excitations, which turn out to
have charge *e/g. As noted above, the hopping elements
Vim»m# 0 vanish rapidly as L, decreases, whereas the elec-
trostatic elements V,, decrease much more slowly. Hence in
the limit L; — 0 effectively only the electrostatic interaction
survives and the Hamiltonian (1) becomes

Ng—1

Hy=2 X Vo

1+38 Nilivks 2)
i=0 1=k=Ny2 L+ OkN 2

where ﬁ,-=éjc”,- and periodic boundary conditions have been
imposed, #i;,y =#;. Hy in (2) defines the Tao-Thouless limit.
At filling fraction v=p/q=N,/N,, the energy eigenstates are
simply the states

{lngny -+ ”NS—1>}, n;=0,1, (3)

where N, electrons occupy fixed positions on N lattice sites:
N,-1

> m=N,=Nplq. (4)
=0

A. Ground states, quasiparticles, and the hierarchy

Here we determine the ground state at v=p/g=1 in the
TT limit—i.e., for the Hamiltonian H, in (2). This is the
classical electrostatics problem of finding the position of N,
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FIG. 3. The interaction energy of one movable electron with two
fixed electrons is minimized when the distances to the two fixed
electrons differ by at most one lattice site.

electrons, on a circle with Nj sites, that minimizes the energy.
Hubbard gave an algorithm for constructing this ground
state’; we will present two simple alternative constructions.
The first gives the ground state for given v=p/g and pro-
vides an intuitive understanding of why the energy is mini-
mized; the second starts from w=1/¢g and constructs the
ground states at all other filling factors iteratively from this
state as repeated condensations of quasiparticles—in addi-
tion to the ground states, this gives the fractionally charged
quasiparticles and makes the Haldane-Halperin hierarchy
construction manifest in the TT limit.

The states obtained here are the ground states for any
interaction that obeys the concavity condition

Viero+ Vicr0 > 2Vis (5)
which implies, by iteration,
Vieno + Vic1,0 > Vien-10+ Vios (6)

for all k,n>0, k+n<N,. When L;—0, V), is simply the
electrostatic interaction energy between two rings of circum-
ference L, separated a distance k27/L;; hence, the concavity
condition is fulfilled by a generic electron-electron interac-
tion when L; —0. It implies that the interaction energy of
one electron with two other electrons that have fixed posi-
tions is minimized if the first electron is as close to the mid-
point between the fixed electrons as possible—i.e., if the
distances to the two fixed electrons differ by at most one
lattice constant; see Fig. 3.7!

The crucial observation in obtaining the ground state is to
realize that it is possible to minimize the energies of the kth
nearest neighbors separately for each & for an interaction that
obeys (6).7°

In our first construction, the ground state is obtained by
placing the electrons equidistantly on a circle and then letting
them relax to the closest lattice sites. The ground state is
periodic with a unit cell of length ¢ containing p electrons,
and this cell is obtained as follows. Consider a circle with p
equidistant electrons and a lattice with ¢ (equidistant) lattice
sites as in Fig. 4. Move each electron to its closest lattice
site; an electron that is equally far from two sites is moved to
one of these sites.”” The configuration obtained is the unit
cell of the ground state; for the proof, we refer to Appendix
B. An algebraic expression for the unit cell is obtained by
noting that electron « is at site

i(a) =1[alv], (7)
where a=0,...,p—1 and I[x] denotes the integer closest to
x. For example, for wv»=5/13, (7) gives {lla/v]}

155308-4



QUANTUM HALL SYSTEM IN TAO-THOULESS LIMIT

FIG. 4. Ground state unit cell at v=5/13 by relaxation on circle.
(a) p = 5 equidistant electrons on a circle with g=13 lattice sites.
(b) Each electron moved to its closest site; unit cell is (0,101),0,1.

={0,3,5,8,10,(13,...)} and hence the unit cell is
1001010010100=(0,101),0,1, in agreement with Fig. 4. We
use a chemical notation where the subscript denotes the num-
ber of times the quantity is repeated.”® That the unit cell at
v=p/q has length g implies that the ground state is g-fold
degenerate. This is the center-of-mass degeneracy of any
state at v=p/q discussed in Sec. I1.°8 For the quantum Hall
states this is the topological degeneracy of the ground state
identified by Wen and Niu.”*73

Incidentally, the initial configuration with equidistant
electrons is clearly the ground state in the continuum prob-
lem when there is no lattice—when there is a lattice, the
ground state is as similar to the continuum one as possible.
Because of the periodicity, the picture of course generalizes
immediately to the full system consisting of N unit cells and
periodic boundary conditions: the ground state for N, elec-
trons on N, sites is obtained by starting with equidistant elec-
trons and moving each electron to its closest site.

At v=1/q the procedure gives the unit cell 0,_;1. Thus,
the ground state is obtained by placing one electron on every
gth site; this obviously minimizes the electrostatic repulsion.
For odd g, these are the Laughlin fractions and the state with
unit cell 0,_;1 was in fact proposed by Tao and Thouless in
1983 as an explanation of the fractional quantum Hall
effect.*! Although this state has a small overlap with the
exact ground state (for large L;) and with the Laughlin state,
it does in fact play an important role in the quantum Hall
effect and we will call the crystal ground states at general
v=p/q Tao-Thouless states. We claim that the TT states are
QH-states in the sense that they are adiabatically connected
to the bulk QH states.’”%

Note that the TT states have a gap to excitations—the
lattice sites are fixed in space, and there are no phonons in
these crystals; the TT states should not be confused with
Wigner crystals, which have gapless excitations due to the
broken translational invariance. This is a further reason to
call the states considered here TT states rather than crystal
states.

We will now present an alternative, iterative, construction
of the TT states that brings out the connection to the hierar-
chy of fractional quantum Hall states'®!® and determines the
fractionally charged quasiparticles. Let C™, n=0,1,2,..., be
the unit cell for a TT state at level n; this level is defined by
the iteration process and is identical to the one in the hierar-
chy construction. At the first levels we have

CO=0, =0,
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b=, (8)

(1) —
ch=0, 1, .

where #;=1,2,.... The unit cells for the TT states at level
n=2 are obtained iteratively as

- _ InPn-1+ Pn—2
C(n) — an I)C(n 2)’ - n n i
" Lidn-1+49n2
cm = C(n 1) W’ v, = [yPn—1 = Pn—2 ’ )
Lidn-1—49n-2

where C(" D indicates that C") is repeated ¢ times; C(” 7 s
the complement of C"2 in the unit cell CU-D—
n—2

Cr-2Cc=2=C"-Y and v,=p,/q,. At the second level we
obtain
@ !

CY= {Ot]—l l}tzo’ Wh="7,

[1 + E

(2 1
C ={0z1—11}12—10z1—21, = f_L (10)

-

153
We can now connect to the original hierarchy construction.
As will be further discussed below, C?=0 is the qua31hole
and CO= 0, 1 is the quasielectron, with charges e*
==*elt), in the ground state CV=0 , _; 1. Thus the unit cells
C@ at level two consists of 7, (or tz— 1) copies of the unit
cell at level 1, followed by a quasihole (or quasielectron) in
the level-1 ground state—the new ground state at level 2 is a
condensate of quasiparticles in the level-1 ground state.

At the next level, level 3, we find the unit cells

C(S) = {{Otl—l 1}t20}t30t1—1 L,
C® ={{0, _113,,0},,-1{0, -1 1},,-10,

C(S) = {{Otl—l 1}t2—lozl—21}z30t1—1 1,

C® = {0, -1 1},-10; 21}, -1{0; 113,20, o1, (11)
and the corresponding filling factors
1
V3=
H+ rzi::
1
V3= . (12)

—

o (13)

a’l
bt
n

where 7;=1,2,... and the corresponding unit cells are ob-
tained using (9). In this construction, a;=+1(-1), if C? is
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constructed with C2 (C?) in (9). A state at level 7 is
uniquely characterized by the parameters
{t;, a1, ast3, ..., a,t,}. Equation (13) is the continued frac-
tion form of the filling factors as given by the hierarchy
scheme, except that now also even denominators are ob-
tained. Restricting ourselves to #=1,3,5,... and ¢
=2,4,6,..., for i=2, Eq. (13) is identical to Haldane’s for-
mula for the filling factors,'® which is known to give each
odd-denominator fraction once.

This construction gives each rational filling factor 0= v
=1, and by inspecting the unit cells one finds that they are
such that the distances between kth nearest neighbors differ
by one lattice constant at most; hence, they minimize the
energy and are identical to the ground states obtained by the
relaxation procedure above. To be precise, we have not
proven that the unit cells obtained by the two methods are
always identical, but we have checked this in many examples
and are convinced that this is the case.

The interpretation of (10) as a condensate of quasiparti-
cles generalizes to arbitrary level n in (9):

Ccr? and CU? (14)

are the quasihole and quasielectron (which is which depends
on the state) in the ground state with unit cell C”~! and the
ground state at level n, and C™ is a condensate of these
quasiparticles in accordance with the hierarchy construction.
That the proposed quasiparticles C”~? and C"~2) have the
expected charges e*= *e/q at v=p/q follows from the Su-
Schrieffer counting argument’®; see Appendix C. Further-
more, they are domain walls between the degenerate TT
ground states. This was noted by Anderson*® and stressed by
Su%3! based on exact diagonalization studies on the torus.
The quasiparticles discussed here are the ones with the el-
ementary charge = * ¢/q, and the QH states are the simple
Abelian ones; as pointed out by Wen,”> other quasiparticles
may also in principle condense to form more complicated
ground states.

The iteration formula (9) gives the one quasiparticle ex-
citations in the state with unit cell C" and shows that these
are the lowest-energy excitations at the corresponding filling
factors; for example, inserting Ol in the ground state with
unit cell C?=00101 gives the quasielectron and it is the
lowest-energy state at v=(2t,+1)/(5t,+2).

The energy of a quasielectron-quasihole pair at v=p/q
can be calculated in the limit L; — 0. According to the dis-
cussion above, the quasiparticles in a TT state with unit cell
C™ are C» D and C” V. Thus, a minimally separated
particle-hole pair is obtained by the replacement

C(n)=C(n—1)C(n—li HE(nTlFC(n—l) (15)

in the ground state. Note that the replacement in (15)
amounts to a translation of the unit cell C”~! with periodic
boundary conditions on the cell itself; thus, it creates two
domain walls (with the expected charge). It can be shown
(see Appendix D) that C”~DC=D differ from C™ only in
that one electron has been moved one lattice constant.

A separated particle-hole pair is obtained by translating s
consecutive cells as in (15)—i.e., with periodic boundary
conditions on each cell separately or, equivalently, on all s of
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them together. This is equivalent to inserting a string of s
—1 unit cells C™ between the particle and hole,

an) N WC@IC(”"), (16)

and moves s electrons (one in each unit cell) one lattice
constant in the same direction.

The replacement (15) or (16) implies an ordering of the
particle-hole pair. The opposite ordering is obtained by in-
stead making the reverse replacement

Cfvn) _ C(n—l)Cgli)IC n—1 . (17)

Again, the replacement (16) or (17) amounts to a translation
of CE,”) assuming periodic boundary conditions.
It is shown in Appendix D that the energy of the separated
particle-hole pair in (16) and (17) is
s—1

Eph(s) = g kAkq +5 E

s=k=N,2q I+ 51(,1\/3/2(,

i‘]_ (18)

s

where
Ay = Vige10=2Vigo+ Vigei0- (19)

Ay, is the change in energy for an electron with its two
neighbors k unit cells away when the initial electron is
moved one lattice constant. This energy, which is the second
derivative of V), is positive due to the concavity condition
(5), which thus ensures the stability of the TT ground state to
particle-hole formation. Note that Ey(s) is independent of
the numerator p of the filling factor.

It can be shown that the nearest-neighbor pair excitation
s=1, which has energy

S S (20)

Eph(l) = 1 6 5
1=k=Ny2g 1 T OkN2g

according to (18), is the lowest energy excitation at fixed
filling fraction; see Appendix D.

An important quantity is the energy of an infinitely sepa-
rated particle-hole pair; this is what is measured in activated
transport and is a measure of the stability of a quantum Hall
state. When the separation of the particles goes to infinity,
s—o0, we find

s}

Egyp = Epp(*) = % kA, (21)

Note that the gap depends only on the denominator g—i.e.,
on the fractional charge *=e/q, and not on the numerator p in
v=p/q. This is natural in the sense that the denominator
determines the charge of the quasiparticles, but the result is
nontrivial since the properties of the ground states depend on
both p and g. Furthermore, E,,, is a monotonic function that
approaches zero from above as the denominator ¢
increases.”” In this context it should be mentioned that Hal-
perin within the original hierarchy construction of fractional
QH states predicted a gap that is predominantly determined
by ¢ and decreases monotonously with increasing ¢.'8

Thus we find that the gap to creating a separated quasi-
particle pair decreases monotonously with increasing g. This
motivates Fig. 5 which shows 1/¢ for each v=p/q, ¢ odd.*

155308-6



QUANTUM HALL SYSTEM IN TAO-THOULESS LIMIT

+1/3 +2/3
03
025
02t . +2/5 +3/5
o
N
=
0151 +2/7 1817 +4/7
+4/9 +5/9
011
H1 4511 461 471
413 4513 +  +  x8A3 -
- + o+
. - dsaneamanze L .
oos| - B S S A

0 01 02 03 04 05 06 07 08 09 1
v=p/q

FIG. 5. (Color online) The Tao-Thouless states and their stabil-
ity. Each point (p/q,1/q), g odd, corresponds to a TT state that we
claim is adiabatically connected to a bulk QH state. The gap, and
hence the stability, increases with decreasing 1/¢. At the points
marked by pluses or crosses indications of QH-states are observed
(Ref. 67). The line is at constant gap and shows the range of the
experiment in v. It is an approximate lower boundary in 1/¢ for the
observed states.

Each point corresponds to a TT state that we claim is adia-
batically connected to a bulk QH state. The higher up a point
is, the larger is the gap in the corresponding TT or QH state
and the more stable is the state. The points marked by pluses
are filling fractions where a dip in the longitudinal resistance
R, is reported in the experiment by Pan et al® At the
crosses, we infer a very small dip in the same data. This
experiment, which covers the range 2/7 <= v=2/3 marked in
the figure, is performed on the highest available mobility
samples and exhibits the largest number of QH states. We
note that to a surprisingly good approximation a dip in R,, is
observed at a filling factor v=p/q if, and only if, g=gq,
=~ 17. This is in agreement with the gap E,,, being indepen-
dent of p.

The structure shown in Fig. 5 is a fractal, self-similar,
one: enlarging any region of v reproduces the original
figure.”®”° This fractal structure is connected to the hierarchy
construction of fractional QH states. The TT states and their
quasiparticles obtained when L;—0 makes the hierarchy
construction of fractional QH states manifest as discussed
above. According to (9), for each state, the parent state, con-
densation of quasiparticles gives rise to two sequences of
daughter states with filling fractions approaching that of the
parent state from above and below, respectively, and with
decreasing 1/¢; see Fig. 6. This holds for each v=p/q and
explains the fractal structure in Fig. 5. For a more complete
discussion of the connection to the hierarchy theory, includ-
ing the connection to the global phase diagram,3*8! we refer
to Ref. 39.

Using Fig. 5 we can predict what QH states are next in
line to be discovered when higher mobility samples become
available. For example, in the region 2/7=v=2/3 we first
expect, in addition to 7/17 and 8/13 included above and new

gap
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FIG. 6. The hierarchy state at v=p/q is the parent state for two
sequences of daughter states formed by condensation of quasielec-
trons and quasiholes in the parent state. These sequences approach
p/q, with decreasing gap ~1/¢g, from above and below, respec-
tively. Repeating this construction ad infinitum gives the fractal
structure in Fig. 5.

Jain states at p/(2p = 1), states at 10/17, 11/17, 6/19, 7/19,
and 8/19.

B. Examples

We here give explicit examples of TT ground states and
quasiparticles for prominent filling fractions.

1. Laughlin and Jain fractions

For the Jain sequences v=p/(2mp+1) that for fixed m
approach v=1/2m from below as p increases, the unit cell of
the TT state is 0,,,1(0,,;1),-;; in the hierarchy notation,
this corresponds to {t,ats, ..., apt,}={2m+1,-2,-2, ...,
—2}. Thus the states in the Jain sequences are those in the
hierarchy where all but the first condensate has maximal den-
sity. At v=1/2m, the unit cell is 0,,_;1. Explicitly for the
experimentally most prominent sequence m=1, the unit cells
are

1/3:001,
2/5:00101,
3/7:0010101,
4/9:001010101,

5/11:00101010101,

1/2:01. (22)

By taking the particle-hole conjugate 0« 1 of the states in
(22) one obtains the Jain series v=p/(2p—1), which ap-
proaches 1/2 from above.
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We now turn to the fractionally charged quasiparticles.
Consider, to start with, the TT state at v=1/3. According to
(8), its unit cell is C'V=001 and the quasiparticles are C©)
=0 and CP=01. A quasihole with charge e/3 is created by
inserting C¥’=0 somewhere:

001001001001001001001001001001001001001,
0010010001001001001001001001001001001001,

001001000100100100100010010010001001001001 .
(23)

The first line in (23) is the ground state; the second line has
one extra 0 inserted—comparing to the ground state, it is
clear that this creates a domain wall between two degenerate
ground states. In the third line, three well-separated 0’s are
inserted, creating three domain walls. Comparing to the
ground state in the first line, one sees that far away from the
three 0’s the state is unchanged and to maintain the size of
the system the underlined unit cell 001 has to be removed. In
between the inserted 0’s the state is a rigid translation of the
original ground state and thus indistinguishable from this
state by a measurement that only refers to the translated
state. Thus, the net change is that one electron has been
removed and this charge is divided on the three well-
separated domain walls, which thus have charge e¢/3 each.
This is, of course, nothing but the Su-Schrieffer counting
argument.”® The argument is also closely related to Laugh-
lin’s original argument for the fractional charge, where a
quasihole was created by adiabatic insertion of a flux
quantum’—this corresponds to adding one empty site as
there is one site per flux quantum.

The quasielectron is created by inserting CO=01:
00100100101001001001001. Again this is a domain wall
and the charge is, by the counting argument, —e/3. Note that
particle-hole symmetry is manifest; this is not the case for
the bulk wave functions. It is straightforward to show that
the excitations just given are the L; — 0 limits of the two-
dimensional bulk quasiparticles constructed by Laughlin; see
Appendix E.

It follows from Sec. III that inserting or removing 01
creates quasiparticles in all the TT ground states in the Jain
sequence v=p/(2p*=1), which approaches 1/2 as p in-
creases. For example, a quasielectron at ¥=2/5 is obtained
as

00101001010010100101001010010100101,

0010100101010010100101001010010100101.  (24)

For Jain sequences with general m, starting from the Laugh-
lin state v=1/(2m+1), quasiholes (quasielectrons) are cre-
ated by removing (inserting) 0,,_;1. In all cases, the Su-
Schrieffer counting argument gives the expected charge
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TABLE I. Ground states and quasiparticles in the TT limit for
the odd-denominator fractions observed by Pan et al. (Ref. 67) that
do not belong to the Jain sequence.

v Ground state Quasiparticle
4/11 {0,1}501 0,1
7/11 {1,0}510 1,0
4/13 {0,1},0 0,1
5/13 {0,101},0,1 0,101
8/13 {1,010},1,0 1,010
517 {{0,1},0},0,1 {0,1},0
6/17 {0,1}501 0,1
717 {0,101}501 0,101

*e/(2mp+1) for these quasiparticles and they are the
L;—0 limits of the Laughlin and Jain quasiparticles in the
two-dimensional bulk system; see Appendix E.

2. Non-Jain fractions

Until recently, all experimentally well-established frac-
tional quantum Hall states were for Laughlin-Jain filling
fractions. However, in 2003 Pan et al. reported a new set of
states in ultrahigh mobility samples.®’ Preliminary indica-
tions of such a state at 4/11 were reported by Goldman and
Shayegan.®? Fractional quantum Hall states were seen at the
following odd-denominator filling factors v=4/11, 7/11,
4/13, 5/13, (8/13), 5/17, 6/17, and (7/17) (the ones in paren-
theses are inferred by us from the data in Ref. 67, but were
not claimed in this reference).®? Using the methods above,
we readily find the TT ground states and the quasiparticles
with charge "= = ¢/q at these filling fractions. In Table I the
unit cells are given in the hierarchy form—i.e., as in (9). The
antiquasiparticle, which is not given in the table, is obtained
by taking the complement of the quasiparticle in the given
ground state unit cell, according to (14). The unit cell for
given v=p/q is most easily obtained using the relaxation
method (7); it is then easily transformed to the hierarchy
form by identifying its parent using Figs. 5 and 6. The parent
is one of the two nearest neighbors whose denominator is
smaller than g.

C. Emergent Landau levels and composite fermions

We have seen that in the TT limit the TT ground states
give a microscopic realization of the original hierarchy con-
struction of fractional quantum Hall states. Today the alter-
native construction of quantum Hall states in terms of com-
posite fermions has become the dominant framework and
one may ask how the TT construction is related to this. We
believe, as argued by Read® and by Blok and Wen,® but
contrary to the opinion of Jain,?*-?? that the original hierar-
chy construction and composite fermions are just two differ-
ent ways to view the same phenomena. In our approach, this
is supported by the fact that both the hierarchy construction
and the emergent Landau level structure is manifest in the
TT limit and that the TT ground states and the quasiparticles
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a)  001001001001001001001001001001001 V=173
b) 001010010010010010100100100101001

-e/3 -e/3 -e/3
¢ 001001001010010010010100100100101 V=41
d) 00101001010010100101001010010100101 V=25

FIG. 7. Quasiparticles and emergent Landau levels in the TT
limit. (a) The TT ground state 001 at »=1/3. In (b) three quasielec-
trons with charge —e/3 are created by inserting O1 in three places.
When one 01 is inserted for every third unit cell 001, the TT ground
state at 4/11 is obtained (c). In (d) the 2/5 ground state is obtained
by inserting one quasielectron for every unit cell 001. The ground
states in (c) and (d) can be interpreted as filling emergent Landau
levels.

are the L; — 0 limits of Jain’s composite fermion wave func-
tions.

According to the composite fermion idea, fractional QH
states are created when composite fermions fill an integer
number of Landau levels in a reduced magnetic field. This
implies the existence of an emergent structure of effective
Landau levels within the lowest Landau level; such a struc-
ture is indeed seen in numerical studies.’%* We here de-
scribe how this comes about in the TT limit. To be specific
we imagine that we start at filling factor v=1/3 with the state
{0,1}y; i.e., the ground state has N unit cells. When the mag-
netic field B is decreased, quasielectrons with charge —e/3
are created by inserting O1. One such quasielectron can be
inserted in N different equivalent places; these N degenerate
states form an effective Landau level for these quasiparticles.
When B is further decreased more quasielectrons are added
to this effective Landau level; the quasielectrons repel each
other and are hence pushed as far apart as possible. Eventu-
ally, one 01 has been added per unit cell 001, the effective
Landau level is filled, and one has reached the state
{0,101} p—i.e., the 2/5 state with unit cell 00101; see Fig. 7.

Of course, when decreasing the magnetic field and adding
quasielectrons 01 to the 1/3 TT state many other, infinitely
many in fact, TT ground states are obtained before the 2/5
state is reached; see Fig. 5. Among them are the states with
unit cells {0,1}; 01 (see Fig. 6); these are just as 2/5 obtained
by a condensation of quasielectrons in the 1/3 state, albeit
with a lower density of quasielectrons. However, these states
have a filling factor with larger denominator and hence a
smaller gap and are thus less stable to disorder and may not
form in a given sample.

Continuing decreasing the magnetic field creates
quasielectrons in the 2/5 state by adding Ol which have
charge —e/5 (adding 01 just before reaching 2/5 removes
quasiholes of charge e/5). After having added 01 an addi-
tional N times one reaches the 3/7 ground state with unit cell
0010101. Continuing the process gives all the TT ground
states in the Jain sequence approaching v=1/2.%5 Note that
whereas the operation of inserting 01 is one and the same
throughout this process, its interpretation in terms of quasi-
particles varies: Near p/(2p+1), adding Ol creates
quasielectrons with charge —e/(2p+1), and when approach-
ing (p+1)/(2p+3), adding 01 removes quasiholes of charge
e/(2p+3).
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In the discussion above we started from the 1/3 state.
However, due to the self-similar fractal structure established
for the TT ground states, it is clear that the procedure is
general—it applies mutatis mutandis to any fraction v=p/q.

IV. TRANSITION TO BULK

We have seen in the previous section that the TT limit
L;—0 is remarkably simple, but still rich and nontrivial.
However, this is a limit that is most likely impossible to
realize experimentally. Its raison d’étre lies in what it says
about the experimentally realizable two-dimensional bulk
limit L; — c—this is the topic of this section.

We propose that the TT ground state is the L; — 0 limit of
a two-dimensional bulk QH state for any v=p/q, ¢ odd. If
this QH state is the ground state (in the bulk), then it is
adiabatically connected to the TT state—there is in general
no phase transition from the TT state as L; goes from 0 to
8 This statement may need clarification. When L,
changes, the size of the physical system changes; normally,
when one talks about adiabatic continuity one has in mind
that a parameter in the Hamiltonian changes. However, all
that is happening when L; changes is that the matrix ele-
ments V), change. Thus for any L;, we can think of the
problem as the infinite two-dimensional QH system with an
interaction that depends on L. This interaction is unusual:
for finite L,, it is anisotropic, it becomes purely electrostatic
in the TT limit, and it cannot, presumably, be written as a
real-space interaction V(r,L;). However, in the limit L;
— 0 it approaches the chosen isotropic electron-electron in-
teraction, whereas it is exactly solvable in the TT limit. Thus,
we have the standard situation when adiabatic continuity can
be discussed. In passing, we note that this point of view
shows that the TT states give an exact solution to the two-
dimensional QH-problem, albeit with a peculiar interaction.

We will present arguments for our proposal about adia-
batic continuity below; the strength of these arguments varies
with v. For the Laughlin states adiabatic continuity holds for
a short-range pseudopotential interaction, for the Jain states
it can be strongly argued, and for more general hierarchy
states a case for it is emerging. In our opinion, the overall
evidence for the correctness of the claim is convincing.

Apart from fractional QH states, there may, of course, be
other ground states in the bulk. An example of this are
Wigner crystals that are expected at low filling factors, in
particular at v=1/¢, for g small enough. In these cases, there
is a phase transition from the TT state as L; increases.

The even-denominator filling factors are special. For them
we propose that there is always a phase transition from the
gapped TT state as L, increases. The suggestion is based on
(i) a detailed analysis of the »=1/2 case and (ii) exact di-
agonalization of small systems. For v=1/2, we find a phase
transition to a gapless Luttinger liquid that can be identified
with a version of the Rezayi-Read state?>; when L, increases
further, the state develops smoothly into the Rezayi-Read
state that is believed to describe the system in the limit L,
— o0, Exact diagonalization of all v=p/q with g=11 shows
that for each filling factor with even denominator there is an
abrupt change in the ground state, where its quantum num-
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bers change, as L; increases, whereas there is no such change
for any odd-denominator filling factor.’

Below we first discuss the odd-denominator hierarchy
states, concentrating on the Laughlin and Jain fractions; re-
sults for more general hierarchy fractions are summarized.
We then turn to even-denominator fractions; we discuss the
half-filled Landau level in detail and comment on general
such fractions and on the difference between v=1/2 and v
=p/(2p+1). The TT limit is useful also to analyze non-
Abelian states; we end by discussing the Moore-Read Pfaff-
ian state at 5/2 as an example of this.

A. Hierarchy states

We begin by comparing the qualitative properties of the
TT states and the bulk hierarchy states. First of all, both have
a gap to excitations. Note that the crystalline TT states have
no phonons: once the boundary conditions—i.e., the flux
through the torus—are fixed, the lattice sites are fixed in
space. Thus the TT states are not the Wigner crystals ex-
pected in the quantum Hall system at low filling factor; these
would have gapless phonons. Second, the TT state and the
bulk hierarchy state at v=p/g both have quasiparticle exci-
tations with charge "= * ¢/q. A further similarity is that the
ground-state degeneracy on the torus in both cases is ¢, but
this is rather trivial as it is true for any state at v=p/q.

On the torus, the symmetries are the magnetic translations
and the TT and Laughlin-Jain states have the same quantum
numbers e>™Ko/Ns with respect to these. This follows since
the former are the L; — 0 limit of the latter; see Appendix E.

The TT state is inhomogeneous, whereas the bulk hierar-
chy state should be homogeneous—a property that is nor-
mally considered fundamental for the quantum Hall fluids.
However, it should be noted that imposing periodic boundary
conditions on the problem of electrons moving in a perpen-
dicular magnetic field—i.e., considering the problem on a
cylinder or a torus—implies that the continuous translational
invariance present on the infinite plane is broken, in one
direction, to a discrete invariance, translation by one lattice
constant 27/L;, along the cylinder; see Appendix A. As a
consequence, for any state on a finite cylinder or torus there
will be ripples in the density that disappear completely only
as the size of the torus goes to infinity.%’

Furthermore, it should be noted that if one takes the alter-
native “adiabatic” point of view where the TT limit is just a
change in the interaction V), in the infinite two-dimensional
system (where the lattice constant vanishes), then the TT
state is homogeneous.

1. Laughlin and Jain fractions

For the Laughlin and Jain filling fractions v=p/(2mp
+1), explicit wave functions are known for the ground states
as well as for the quasiparticle excitations—these allow us to
further investigate the connection to the TT states.

Rezayi and Haldane noted in 1994 that the L; — 0 limit of
Laughlin’s wave function (at »=1/3) is the TT state with
unit cell 001.52 This analysis can be generalized to general
Jain states and also to quasiparticle excitations thereof. Tak-
ing the L; — 0 limit of these wave functions, one finds the TT
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states and the quasiparticles of Sec. III.7 One direct conse-
quence of this is that the TT state has the same quantum
numbers K, as the Laughlin and Jain states. The details of
this analysis are given in Appendix E.

On the plane, the Laughlin state at v=1/(2m+1) is the
unique ground state to a certain short-range interaction and
there is a gap to all excitations.?’-8 Since this result on the
plane is a consequence of the behavior of the wave function
when two electrons approach each other, it is natural that it
holds in other geometries as well. This is indeed the case:
For the short-range interaction on the torus the Laughlin state
is the unique ground state (up to the center-of-mass degen-
eracy) and there is a gap to all excitations for any circumfer-
ence L;. An explicit statement or proof of this has not, to the
best of our knowledge, appeared, but it is implicit in Ref.
52.%0 For a proof see Appendix F.

The transition from an inhomogeneous charge density
wave state to a homogeneous-looking state as L; grows was
studied in Ref. 52 for the Laughlin »=1/3 state, and a rapid
crossover was found at L; ~6. This crossover was recently
studied numerically in detail by Seidel et al.°! They confirm
that there is no phase transition, but an exponentially fast
crossover to a virtually homogeneous state. That the Laugh-
lin state spontaneously breaks the discrete translational sym-
metry on the thin cylinder has been rigorously proven by
Jansen et al.”?

To conclude, we consider it firmly established that the TT
ground states are adiabatically connected to the bulk QH
states for the Laughlin fractions and that a strong case has
been made for this being true also for the Jain fractions.

2. Non-Jain hierarchy fractions

For the fractional QH states observed by Pan er al.®’ that
are not of the Laughlin-Jain type discussed above, no agreed
upon wave functions exist. However, recently wave func-
tions were constructed for all filling fractions in the hierarchy
scheme that are obtained as repeated condensates of
quasielectrons (as opposed to quasiholes).’** These wave
functions are obtained by a natural generalization of the con-
formal field theory construction of Jain’s composite fermion
wave functions.*> The L, —0 limit of the proposed wave
functions are the TT ground states, and the wave function at
4/11 has a large overlap with the exact ground state for small
systems. We take this as a strong indication that the non-Jain
hierarchy states in the bulk are also adiabatically connected
to the TT ground states. Details of this conformal-field-
theory construction of hierarchy wave functions will be pre-
sented elsewhere.** Wave functions at these fractions can
also be constructed within the hierarchy scheme as conden-
sates of quasiparticles®® and as fractional QH states of com-
posite fermions.”>™ For further discussion of these states;
see Refs. 65 and 96-98.

B. Even-denominator fractions

So far we have discussed odd-denominator filling factors
and argued that the TT states that are the ground states in the
TT limit are adiabatically connected to the two-dimensional
bulk QH hierarchy states. In this section we discuss the even-
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denominator filling factors. We begin by considering the
half-filled Landau level; this case has been analyzed in de-
tail, and we believe it is representative for other gapless even
denominators. (The gapped state at 5/2 is discussed in Sec.
v C.)

1. Half-filled Landau level

In the half-filled lowest Landau level v=1/2, a metallic—
i.e., gapless—state is observed.® The composite fermion ex-
planation for this behavior is that each electron binds two
flux quanta, thereby removing all the external magnetic flux.
The state is then supposedly described by noninteracting, or
weakly interacting, composite fermions in zero magnetic
field—i.e., by a free two-dimensional Fermi gas. This is also
the picture that emerges from the mean-field theory where
the statistical magnetic field completely cancels the external
magnetic field.>° These descriptions successfully explain the
experimental data and constitute the main evidence for the
correctness of the composite fermion idea. The microscopic
wave function of composite fermion type describing the v
=1/2 state was provided by Rezayi and Read*—on the
torus, it reads®’

\I}RR = detij[eiki.Rj]\Iil/b (25)

where R; are the guiding center coordinates and W'y, is the
bosonic Laughlin state at v=1/2; see Appendix A. The wave
function Wy is not unique, but depends on a set of param-
eters, “momenta” {k;}. In the two-dimensional bulk limit
these are assumed to form a circular Fermi sea.

The TT state at v=1/2 has unit cell 01; i.e., it iS a state
with one electron on every other site. This clearly minimizes
the electrostatic repulsion, and hence is the ground state in
the TT limit L; — 0. As any TT state, it has a gap to excita-
tions and it has quasiparticles with charge *e/2. Clearly, this
is very different from the gapless state that is observed in the
two-dimensional bulk limit and is believed to be described
by (25).

A gapless state does in fact exist also for small but finite
L;, and there is strong numerical evidence that this state
develops without a phase transition into the gapless two-
dimensional state described by (25). The first piece of evi-
dence for this was obtained in a numerical study of the QH
system on a thin cylinder'® using the density matrix renor-
malization group method.'”! At »=1/2, a sharp transition
from the TT state with a finite amplitude of the density os-
cillations to a virtually homogeneous state was observed at
L,~5 [for a short-range interaction V(r)=V?&(r)] and there
were indications of gapless excitations. This behavior was
dramatically different from other fractions such as v=1/3
where no transition was observed as L; was varied—the am-
plitude of the density wave decreased continuously as L,
increased. The transition at v=1/2 takes place in a region
where only the first few shortest-range terms V,,, are impor-
tant. This made it possible to find an exact solution—ground-
state and low-energy excitations—for a Hamiltonian that is a
very good approximation to the short-range interaction for
Ll -~ 5.36

We now describe the exact solution, for details see Ap-
pendix G. Consider starting with a Hamiltonian (1) that con-
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sists only of the shortest-range hopping term
V,;:1001+0110. Define a restricted Hilbert space H' by
requiring that each pair of nearby sites 2p,2p+1 contain
exactly one electron—i.e., include the states 7=10 and |
=01, but not 00 or 11.1°2 Note that the interaction V,, pre-
serves the restricted Hilbert space H’. In spin notation,
10010110 becomes T |« | T and hence the model with
the shortest-range hopping term V,, is, within H’, equivalent
to a nearest-neighbor spin-1/2 xy chain:
N/2-1

Hy=Vy 20 (55,8, + 5,80, (26)
p=0

where s;=c§pczp+1, T)=s;|1), and V3;>0. Note that s* cre-
ates a neutral particle, a dipole. The Hamiltonian (26) is di-

agonalized by mapping the spins to fermions, Jk, via a
Jordan-Wigner transformation—the Hamiltonian then be-
comes that of free one-dimensional fermions with nearest-
neighbor hopping.

Thus, within H’, the shortest-range hopping term V,;
gives a one-dimensional free Fermi gas of neutral particles.
But to make this a reasonable approximation to (1) for small
but finite L; we must consider also the short-range electro-
static terms. Including the two shortest-range such terms V,
and V,, with relative strength V;,=2V,,=2« one finds that
all states in H' have the lowest possible electrostatic energy.
There are states not in H' (or H7) with the same electrostatic
energy, but a strong case can be made that the hopping term
V,, creates a gap to these (' contains the most hoppable
states®®); this is also supported by the numerics discussed
below. Thus, the low-energy sector for the short-range
Hamiltonian

N1 Ny/2-1
Hy=a 2 i) 2 + 7y + Vo 20 (5508, +5,,50),
p=0 p=0

(27)

where ﬁp=c;cp, is contained in H' and is that of a free one-
dimensional Fermi gas of neutral particles. The ground state

is a filled Fermi sea

icsy= [I djjoro101...), (28)
k|> /2

and excitations out of this sea give gapless neutral excita-
tions. This provides an exact and explicit mapping of the
low-energy sector of a system of interacting electrons in a
magnetic field onto a system of noninteracting neutral
particles—i.e., onto free particles that do not interact with
the magnetic field.

We note that dipoles have many of the properties expected
of composite fermions, most notably that they do not couple
to the magnetic field. Earlier approaches to a microscopic
theory in terms of dipoles were made by Read,”®>° Shankar
and Murthy,”’ Pasquier and Haldane,’® Lee,’' and Stern et
al.®?

An important feature of the exact solution is that the num-
ber of dipoles is not conserved. These particles are neutral,
and their number is not tied to the number of electrons in the
system as is the case for the composite fermions. For ex-
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ample, there are excitations where a single dipole is added
to, or removed from, the Fermi sea. Moreover, the number of
dipoles making up the Fermi sea in (28) is determined
dynamically—i.e., by filling the negative energy dipole
states; this leads to there being one dipole for every second
electron. As this is a consequence of energetics, the number
of dipoles presumably changes as L; increases. Assuming
that the ground state develops into a two-dimensional Fermi
gas of dipoles as L;—, this suggests that the number of
dipoles, and hence the Fermi momentum, is determined dy-
namically rather than being simply given by the number of
electrons. In this context we note that the Fermi momentum
measured in surface acoustic wave experiments®” disagrees
with the mean-field theory result which follows from that the
number of composite fermions in the Fermi sea is equal to
the number of electrons.’”

The solvable case is a good approximation for a small
finite L,. For the real-space short-range interaction V(r)
=V28(r), V,0=2Vy=2a corresponds to L;=27/y21n2
=5.3. The short-range hopping term is then V,;=3a/8,
whereas the leading ignored terms are small: V3,=9a/128
and V3 =a/32. This is close to the solvable point.

Longer-range hopping terms in (1) will in general not
preserve the subspace H'. However, since there is a gap to
states not in H’, the effect of small such terms can be in-
cluded perturbatively in an effective spin-1/2 Hamiltonian
that acts within H'. To zeroth order the effective Hamil-
tonian is

H = > [Vt (SpnSy + 8punSy) = Dousysii, ], (29)
p.n

where 7= (/5,1 —7i5,)/2 and Ay, is given in (19).'% In par-
ticular, this effective Hamiltonian H, contains an Ising term
slz)s; ., that changes the noninteracting Fermi gas to an inter-
acting Luttinger liquid with interaction parameter K # 1. If
such terms come with large coefficients, they may cause a
phase transition that opens up a gap; the results below
strongly indicate that this does not happen in this system. In
higher-order perturbation theory, one gets increasingly more
complicated spin-1/2 models containing renormalized qua-
dratic as well as higher-order terms. However, our numerical
calculations suggest that these higher-order terms may be
very small for a range of L;—we find that the projection of
the exact ground state of the Coulomb interaction on H' is
virtually unity in the “solvable” region 5.3<<L;<8 as dis-
cussed below.

We have numerically identified the state obtained in exact
diagonalization in the solvable region with the exact solution
(28). We continuously varied V,,, from the values that give
the exact solution to values that correspond to a L; in this
region and verified that the ground state develops continu-
ously without any level crossing. Whereas H,, gives a quali-
tative understanding, we suggest that H,, gives a quantita-
tively very accurate description of the low-energy sector
within this region. Thus we conclude that the exact solution
is stable in a finite neighborhood of the solvable point where
it develops into an interacting gapless one-dimensional
model, a Luttinger liquid.
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FIG. 8. Examples of Fermi seas of momenta {k;,} for N,=5. For
each sea the conserved momenta (K, K,) are displayed. (a) and (b)
are related by a translation that corresponds to K invariance and
have the same quantum numbers; they describe the same state. (c) is
one of three new states obtained from (a) by reflections in the x and
y axes. These four states have different quantum numbers and are
degenerate ground states for 5.3<<L; <L, (cf. Fig. 9); translating
the corresponding Fermi seas one step in the x direction gives the
remaining four ground states. (d) is obtained from (c) by a rotation
by m/2; it is one of the ground states when 5.3 <L, <L,.

However, the perturbative argument for this is of course
restricted to Hamiltonians close to the solvable one—when
L, increases, hopping terms of increasing range and with
large coefficients will appear—Ieading to a Hamiltonian that
is very different from (27) and that definitely does not pre-
serve the restricted Hilbert space H'. To investigate this re-
gion we compared the ground states obtained in exact diago-
nalization with the Rezayi-Read states (25).%

The plane waves in (25) are periodic on the torus; with
our normalization, this means that k,, are integers. A straight-
forward calculation shows that these momenta determine
conserved quantum numbers K, of the state

N,-1

Ko= 2 kigmod[(1+ 8,,)N,], (30)
=0

where k;, is the momentum of particle i. We represent a state
(25) by displaying its set of momenta as in Fig. 8. The
Rezayi-Read state is invariant under a rigid translation of the
momenta, k;,— k;,+(1+8;,)n, where n, are integers'**
(this so-called K symmetry was first noted by Haldane).
Since the conserved quantum numbers are defined modulo
(1+68,,)N, (see Appendix A), they are invariant under this
translation. The rigid translation k;,— k;,+ J;, changes the
quantum numbers, but corresponds to a translation of the
center of mass only.

Figure 9 shows results for the ground state at v=1/2 for
various L, for N,=4-9 electrons which interact with an un-
screened Coulomb interaction. For all N, there is a sharp
transition from the TT state to a new ground state at L;
~5.3. [In cases where the ground state is degenerate (cf. Fig.
8), only one representative is considered in Fig. 9.] As L,
increases further, there are additional transitions. The next
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FIG. 9. Ground states and corresponding quantum numbers
(K,K>) at v=1/2 as a function of L, for 4 to 9 electrons (from top
to bottom) [K; is given mod(N,)]. The results are obtained in exact
diagonalization using an unscreened Coulomb interaction. Marked
points on the L; axis denote transitions to new ground states. For
L, <5.3 the (virtually exact) ground state is the TT state, whose unit
cell is 01 when L;—0. In each region L;>5.3, the state is identi-
fied with a Rezayi-Read state with the displayed Fermi sea of mo-
menta. The overlap with the Rezayi-Read state is around or above
0.99 for all N, (in all regions). The phase diagram is symmetric

about L;=L,=\4mN,, which are the largest marked points on the L,
axis in the figure.

transition occurs also at approximately the same L; for all
N,; this is particularly clear when an even or odd effect is
ignored and one considers only, say, the odd N,. There are
additional transitions for larger L;—but the number and po-
sitions of these depends on the number of particles. Each of
the states at L; > 5.3 has a very large overlap with a Rezayi-
Read wave function for some choice of Fermi sea of param-
eters {k;}. Overlaps are around or above 0.99, and they are
essentially constant in each region. The Fermi seas develop
in a systematic way from an elongated shape at small L; to a
circular one as L; increases. It is as circular as it can be when
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Ly=L,=\47N, for the small number of particles considered
in Fig. 9.

From the numerical results for a small number of elec-
trons we extract the following interpretation for an infinite
number of electrons (i.e., for L,—) and varying L;. At
L, ~15.3 there is a phase transition from the gapped TT state,
with unit cell 01 as L; —0, to a gapless state well described
by the exact solution or equivalently by the Rezayi-Read
state with a special choice of momenta {k;} forming an elon-
gated Fermi sea. Perturbative corrections will turn this state
into a Luttinger liquid with K# 1 in the region 5.3 <<L;<<8.
When L, increases further the Fermi sea deforms continu-
ously approaching a circular sea as L;— . The transitions
for L;>5.3 in Fig. 9 are not phase transitions, but rather
level crossings to similar states—such crossings are expected
to occur in a gapless system. These transitions correspond to
small changes of the momenta in the Rezayi-Read wave
function; typically, only one momentum is changed at each
transition. Consider a finite L;>5.3 and L,—. This is a
one-dimensional system, and since it is obtained from the
Rezayi-Read state that we have identified with the gapless
exact solution by a continuous change of momenta {k;}, we
strongly believe that it is gapless. On general grounds, it
should then be a Luttinger liquid—or possibly several Lut-
tinger liquids. Further support for it being gapless is obtained
from the fact that, as L;—oe, it approaches the two-
dimensional case which is generally believed to be gapless.
Of course, this is expected to be a gapless two-dimensional
system—a free two-dimensional Fermi gas. It is an interest-
ing and unresolved question how the smooth transition from
the Luttinger liquid at L;>5.3 to the two-dimensional gap-
less system occurs. In any case, our interpretation of the
exact diagonalization results is that this transition is
smooth—there is no phase transition as L, varies above 5.3.

2. Other even-denominator fractions

For even-denominator fractions other than v=1/2 we
have much less to say; however, we suggest that the half-
filled Landau level is typical and that a similar scenario holds
for other even-denominator fractions.'%> There is some nu-
merical evidence for this. We have performed exact diago-
nalization, for various L;, for all filling factors v=p/g=1
with g=11. All even-denominator fractions are similar to
v=1/2 in that there are transitions from the TT state to new
states with different quantum numbers as L; grows. For the
odd-denominator fractions, on the other hand, no such tran-
sition is ever seen—the ground states develop smoothly from
the TT states.

3. Even versus odd denominators

How can we understand, within the approach presented
here, that even and odd denominators are so different? To
this question we have no complete answer, but we will offer
some insights obtained from the case when the shortest-
range hopping term V,; is included—i.e., when L, is small
but finite.

Let us consider »=1/2 and the Jain sequence v=p/(2p
+1) that approaches this fraction as p grows—why is 1/2
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gapless whereas the others have a gap? In the former case
there is a phase transition from the gapped TT state to a
gapless state whereas in the latter case the gapped TT state
develops continuously into the bulk quantum Hall system as
L, —. To some extent this difference can be understood by
comparing the TT states. As we have noted, they are the
states that minimize the electrostatic repulsion V,, and thus
are the ground states as L; — 0. When L, increases, hopping
terms V,,,, m# 0, become important. Consider the first hop-
ping term V,; that enters as L; increases. The TT state at v
=1/2 with unit cell 01 is annihilated by V,; i.e., it is a
nonhoppable state. There is a transition to a ground state that
is more hoppable, thus lowering the kinetic energy. The
ground state in the exact solution (28) contains the maxi-
mally hoppable basis state with unit cell 1001. For v=1/2, it
is the competition between the electrostatic terms that favor
the TT state and the hopping terms that favor other states,
such as 1001, that leads to the phase transition at L;=5.3. For
v=1/3, the TT state has unit cell 001; by construction, this
minimizes the electrostatic repulsion. But it is also the most
hoppable state with respect to the hopping term V5,;. Thus, in
this case there is no competition between electrostatic repul-
sion and hopping—they collaborate rather than compete—
and hence there is no phase transition. Of course, this does
not explain why longer-range hopping terms that are impor-
tant for larger L; do not cause a transition. This argument
extends to any filling fraction »=p/(2p+1) in the Jain se-
quence that approaches 1/2. In spite of the fact that the TT
state for large p looks very similar to the TT state at v
=1/2, which is nonhoppable, the TT state at v=p/(2p+1) is
very hoppable. In fact, inserting a single extra hole in the v
=1/2 TT state gives a very hoppable state.

Thus we see that for v=1/2 there is a doubling of the
“unit cell,” 01 — 1001, which does not happen at 1/3. This
generalizes to other filling fractions, and we suggest that the
most hoppable state at odd denominators is simply the TT
state with unit cell C, whereas at even denominators it is the
state with doubled unit cell C'C, where C7 is the transpose
of C. This is in agreement with the doubling of the period in
the “parent state” for even denominators noted by Su.>! It is
an open question how these considerations relate to the ex-
planation by Tao and Wu.!%

We end this section by pointing out an intriguing possible
relation to the Haldane conjecture for the presence of gaps in
spin chains.!”” The gapless half-filled Landau level is, in the
exact solution above, mapped onto a spin-1/2 system. The
low-energy sector is obtained by grouping the sites in pairs
with one electron in each pair. Attempting a similar mapping
of the low-energy sector at 1/3, when the leading hopping
term V,, is included, suggests grouping the sites in sets of
three with one electron in each group. This gives three states
per group and a mapping to a spin-1 chain. This leads us to
speculate that the existence (absence) of a gap at odd (even)
denominators in the QH system is related to the Haldane
conjecture for spin chains, which says that integer spin
chains have a gap whereas half-integer chains are gapless.

The arguments given here are at present restricted to the
QH system with a small, but finite, L; since only the
shortest-range hopping term V5, is included. However, in this
context it is interesting to note that the ground state obtained
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at v=1/3 with a Hamiltonian that only includes V,,, without
any electrostatic terms, has a 98% overlap with the Laughlin
state for six electrons at L;=7.9 Of course, when the num-
ber of particles, and L;, increases this overlap will drop as
longer-range hopping terms become important.

C. Non-Abelian states: Moore-Read state at 5/2

So far, we have seen that the gapped hierarchy states as
well as the gapless v=1/2 state exist for small L;. This limit
is relevant also for non-Abelian states, where a simple un-
derstanding of the nontrivial degeneracies and fractional
charges appears.3444 As an example of this, we discuss the
Pfaffian state proposed by Moore and Read.!® This gapped
state is a competitor to the gapless Rezayi-Read state (25) for
a half-filled Landau level. It was suggested'?® as a candidate
for the observed gapped v=5/2 state.!'%!!! There is now
numerical evidence that this suggestion is indeed
correct 99112113

The Moore-Read state is peculiar: It has a sixfold degen-
eracy on the torus rather than only the twofold implied by the
filling factor; it has excitations with charge *e/4 rather than
*e/2 as one would expect for a gapped state at half-filling,
and most surprisingly a state with 2n quasiholes has degen-
eracy 2! for fixed quasiparticle positions. Moreover, these
quasiparticles have non-Abelian fractional statistics. These
properties were obtained by an intricate relationship to con-
formal field theory. It has been proposed that the topological
and non-Abelian properties of these states can be used for
constructing a topologically protected decoherence-free
quantum computer.''* The Moore-Read state is the exact
ground state of a certain local three-body interaction.”®!%
This is true on a torus for any L; and can be used to show
that the ground states in the TT limit are the TT states with
unit cells 01 and 0110—i.e., the unique states where the dis-
tance between all pairs of next-nearest-neighbor electrons is
maximal.'’> Applying T, we see that 01 is twofold degener-
ate whereas 0110 is fourfold degenerate—this gives the six-
fold degeneracy of the ground state. By joining strings of 01
and 0110 ground states it follows, using the Su-Schrieffer
counting argument, that the domain walls are quasiparticles
with charge *=e/4. In this way one can construct a general
state with k quasiholes and 2n—k quasielectrons and show
that it has degeneracy 2! for fixed positions of the excita-
tions. Thus, again the qualitative properties of the state are
obtained on the thin torus. Moreover, the manifest particle-
hole symmetry of the Fock-space formulation allows the
construction of a general state of quasielectrons and quasi-
holes.

The Moore-Read Pfaffian state is not particle-hole sym-
metric; conjugating the six degenerate states gives six or-
thogonal states, the anti-Pfaffian states, which are believed to
describe a different phase of matter.'%!'” The TT limits 01
and 0110 of the Pfaffian states are, on the other hand,
particle-hole symmetric and hence the anti-Pfaffian states
have the same TT limit. For small L,, the difference shows
up in subleading terms.!3

The analysis of the non-Abelian states in the TT limit has
recently been generalized to more general parafermionic
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states.!!” Again, a simple understanding of the quasiparticles
as domain walls between degenerate ground states gives the
nontrivial degeneracies.*+40:47
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APPENDIX A: ONE LANDAU LEVEL ON A TORUS

We here give details for a single Landau level on a torus,
which we assume has lengths L, and L, in the x and y direc-
tions, respectively. The complete analysis was given by
Haldane; this includes an arbitrariness in a choice of two-
dimensional lattice®®'20 (see also Refs. 121 and 122). As we
are interested in the mapping to a one-dimensional system,
we restrict ourselves to the corresponding lattice; this allows
for an explicit and simple construction.

In Landau gauge, A=ByX, the Hamiltonian for a free

[

electron becomes, in units where ﬁ:g: 1,

1 ( e
" 2m P c
The invariance under continuous spatial translations in the y
direction has now been broken to discrete translations, y
—y+n2m/L;, where n is an integer: The gauge transforma-
tion y— ey, A—A+c/eVA must be periodic e+
=A™ and hence translations y— y+a, where a is a con-
stant, can be compensated for in A,, and hence in (Al), by
the gauge transformation e™*“* only if a is a multiple of the
lattice constant 27/L;.
The magnetic translation operators fa, a=1,2, which
translate an electron a distance L,/N in the « direction are

A>2=— Lo~ iy)?*+d]. (Al
2m

pGTALY (LalNy)(dytin)

fz =e (AZ)

where N,=L,L,/(27) is the number of flux quanta through
the surface; the operators obey
fle = ezﬂ'i/NSlfzfl . (A3)

The Landau-level-preserving ‘“guiding-center” coordinates
used in the Read-Rezayi state (25) are defined as

R, =Qm/L,)(x; - i&yi), Ry = (27T/L2)i(9xi. (A4)

The states
Y= e 2Ty k=0,1,...,N,—1,  (AS)
o= LD el nLo)2 (A6)

n

form a basis of one-particle states in the lowest Landau

level.'? ¢ is a periodic Gaussian located along the line y

=-27k/L; and is a 7, eigenstate, 7, =e>™Nsify.. Letting c}
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create an electron in state ¢, {ck,c;}= Oim» Maps the Landau
level onto a one-dimensional lattice model with lattice con-
stant 27/L;; see Fig. 1. A basis of many-particle states is
given by |ng,ny,... ,an_1>, where 7n,=0,1 depending on
whether site k is empty or occupied by an electron; alterna-
tively, the state is described by the positions {k, ,k,, ... ’kNe}
of the particles.

On the cylinder, the single-particle states in Landau level
p are

2
Yu0) = (Vm27p 1 1)1 2L

2 .
XHp(y + k_’]T)ekaz/Lle—yZ/Z’ (A7)

L,

where z=x+iy and H, is the pth Hermite polynomial. Here,
the lowest-Landau-level wave functions =, are ob-
tained by setting n=0 in (A5) and (A6).

Consider the electron gas at filling fraction v=p/q, where
p and g are relatively prime integers and the number of elec-
trons, N,=Ngp/q, is an integer. The operators Ta=H§V “fiy
(where f,, translates electron i) commute with H and, since
TYs=1, the eigenvalues are e>™Ke/Ns K =0, ... ,N,~1. How-
ever, T; and T, do not commute:

T\T,=e*™"T,T; (A8)

thus, 7', and 7% commute and {H,7;, T4} is a maximal set of
commuting operators. 7, changes K; by N, and leaves the
energy unchanged. Hence, each energy eigenstate is g-fold
degenerate and we can choose to characterize it by the small-
est K. Thus, the energy eigenstates are characterized by a
two-dimensional vector K,=0,...,N,;/g—1; the eigenvalues
of T, and T§ are ¢*™K1/Ns and ¢2™4K2/Ns respectively. The
vector K, corresponds to, but is different from, Haldane’s
vector k, in Ref. 68, which characterizes the relative motion
of the electrons only.

The TT state that is the ground state at v=p/g=N,/N, in
the TT limit is a single Slater determinant {k,,k,,... ’kNe}
with eigenvalues

T,V = exp(2mi Y, kiN )V rp,

T3 = (= 1)PNeP (A9)

These TT states are continuous limits of QH hierarchy states;
hence, the latter have the same quantum numbers.
The second quantized electron-electron interaction is

N1
H= 2 Vk]kzkzkfltlcltzckgcky (A10)
k1Ko ks ky=0 ; ;
where the matrix elements are
1 2. D g *
Vijoksk, = > drid ry (e (ry)
XV([ry = 1))y (1) ey ()3 (A11)

here, both the one-particle states i, and the interaction V(r)
are periodic and the integration is over the torus with sides
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L, and L,.">* For the Coulomb interaction V(r)=X e’/ €|r
, the matrix elements become

5/
k1+k2,k3+k4 2

Vi kokak, = ,
ki—ky,q L /27
1koksky 175
2L,\L, (q1.q2)#(0,0) 1
2w’ o,
% e—q /2—l(k1_k3)qu2/Nx’ (A12)
€q

where &' is the periodic Kronecker delta function (with pe-
riod N,) and g;=2m,/L;, n;=0,*1,.... The divergent q=0
term is excluded in (A12); it would be canceled by adding a
positive (neutralizing) background charge. By taking advan-
tage of the translation invariance and momentum conserva-
tion one can rewrite the Hamiltonian as in (A10):

IS S S (R

s
146 CramCntkCnrk+mCns (A13)
n=0 |m|<k=ny2 L+ OkNy2

where

Vkm =

- Vn+m,n+k,n,n+m+k + Vn+k,n+m,n,n+m+k

(A14)

n+m,n+k,n+m+k,n

n+k,n+m,n+m+k,n*

It follows that the matrix elements are real and Vi, =V, _,,
which assures that H is Hermitian. Moreover, from the peri-
odicity Vin=Viann min'n, and the symmetry V,,=V_;, of
(A12) follows that Vi, =Vy t,,; this is used to express the
excitation energies in terms of V,,, in Sec. I A.

A general many-body eigenstate of a translationally in-
variant Hamiltonian can be separated into a center-of-mass
piece, a relative part, and a Gaussian factor. Prime examples
are the Laughlin wave functions at filling fraction v=1/1,
(Ref. 120):

/ N—11)/2. .
\Ifl/[l = zllr_l;\—lf)/é ) tl(tlz Zi/L1|lt1L2/Ll )
i

1
xHﬂﬂh—mmmumn%w(EEhﬁ.

i<j
(A15)

Here 9)(z|7)=%, eimin+a) +2mina)(c+b) (sum over all inte-
gers) are the Jacob1 theta functions and &, =913 is the stan-
dard odd theta function. m=0,1,...,¢;—1 gives the #; degen-
erate states that differ by a translation of the center of mass
only. QH hierarchy wave functions are given for the torus
geometry in Ref. 125. The non-Abelian Moore-Read state is
another example of a state that is known on the torus.'?

APPENDIX B: GROUND STATES AS L;—0

We here prove that the relaxation procedure in Sec. III
gives the ground state. The energy E of a state |ngn; - - '”N§—1>
with N, electrons can be written in terms of the interaction
between the N,(N,—1) different ordered pairs of electrons.
Let a=1,...,N, number the electrons along the circle in
positive direction (cf. Fig. 4). Consider an ordered pair of
electrons (a,@+k) and let E, ,.; be the interaction energy
between these electrons taken along the path, in the positive
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direction, from a to a+k.'?” Each ordered pair is obtained
exactly ones by letting k=1,...,N,—1; hence, the energy

becomes
N1 N, N1
E=2 2 Eqan= 2 EY, (B1)
k=1 a=1 k=1

where E® is the interaction energy for all pairs that are kth
nearest neighbors.!?8

The crucial observation is that it is possible to minimize
the energies EX separately for an interaction that obeys the
concavity condition (6).”° This condition implies that the in-
teraction energy of one electron with two other electrons that
have fixed positions is minimized if the first electron is as
close to the midpoint between the fixed electrons as
possible—i.e., if the distances to the two fixed electrons dif-
fer by at most one lattice constant; see Fig. 3.

We will show that the state given by the relaxation pro-
cedure in Sec. III minimizes all the energies E® and hence it
minimizes E and is the ground state.

The energy E® is minimized as follows. Let a ) denote
the distance between electrons « and a+k. Then 2]:1]:1 Ef)
=kN, (in units of the lattice constant); hence, the average
distance between two electrons that are kth nearest neighbors
is (a(k))ave:kNS/ N,=k/v. This is a trivial consequence of the
periodic boundary conditions on the circle and holds for any
state |ngn, - - ) with N, electrons. Using the concavity
condition (6) as m Fig. 3, it follows that E® is minimized if
the distances a ) between the electrons in all the pairs of kth
nearest nelghbors are as equal as possible—i.e., if a (f for
each fixed k and a=1, ... ,N, differ by one lattice constant at
most. First, we note that if k=p then the average distance is
an integer, (ag’))[we:p/v:q. E®) is thus minimized if and
only if the distance from any electron to its the pth neighbor
is g; thus, the state is periodic with a unit cell of length ¢
containing p electrons. Consider now the pairs of kth nearest
neighbors. Before moving the electrons to the closest sites,
the separations between the electrons in the pairs are all
equal, alk )|0 kl/v, a=1,...,N,. Each electron is then moved
at most 1/2 lattice constant and hence |a,, ®_ g/ v|<1; note
that this is strictly less than one since two electrons never
move 1/2 lattice constant each. It then follows that |a

<k)| <2 for any a, S8 But this difference is by construction
an integer, hence |a* (k)| = 1. This proves that the unit cell
constructed by the relaxatlon procedure minimizes EW, for
any k, and hence gives the ground state.

We believe the ground-state solution is unique, up to the
center-of-mass degeneracy, and have verified this in special
cases but have not proven it for general v.

APPENDIX C: QUASIPARTICLE CHARGE

We here show that the quasiparticles proposed in Sec. III
have the expected charges e*=*e/q at v=p/q. Letting v;
=p;/q;, we find from (9)

qi=19i.1 + g3, (cn

where ;=1 (=1) is for the upper (lower) equation in (9).
Consider the quasiparticles at v,—i.e., in the ground state

Pi=lipi + aipis,
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with unit cell C". The charge of the insertion C"~V is de-
termined using the Su-Schrieffer counting argument. Insert
C»in ¢, well-separated places and remove ¢,_; unit cells
C™. This preserves the number of sites N,, but changes the
number of electrons by 6N,=q,p,_1—4,-1P,- Thus the charge
of the insertion C""~V is e*=—¢éN,/g,. From (C1), we find

qiPic1 — 4ic1Pi = — a{qim1Pica = GioPic1) - (C2)
Iterating this we find

n n

GuPnt = Gn1Pn =11 (= @) (q1po = qop)) = (= D[] «,
=2 =2

(C3)

where the last step follows from the explicit forms for v, and
v; in Sec. III. This gives oN,= £ 1, and hence the insertion
C"D at v,=p,/q, has charge e*=+e/g, The conjugate
c=D obviously has the opposite charge e*= +e/q, since
C-DC-D=C® i the unit cell of the ground state and
hence is neutral (with respect to the ground state).

APPENDIX D: EXCITATION ENERGY AS L;—0

We here provide background material for the calculation
of the energy of a particle-hole pair in Sec. III. We consider
explicitly the ordering in (16), but the arguments generalize
immediately to (17). First, we show that the replacement
(15), which creates a nearest-neighbor particle-hole pair,
simply amounts to moving one electron one lattice constant
in the ground state unit cell C. Using (9) and the definition
of C"1 it is straightforward to show that C"~)C®=D and
Ccr=De-1) only differ in the ordering of C"~? and Cc2;
thus, the original problem is mapped onto the equivalent
problem at the previous level in the hierarchy. Iterating this
all the way to level 1, we can use the explicit form of the unit
cells C and C7 to verify that one electron has moved on
lattice constant only.

To prove the induction step, we first consider the case
where the last condensation leading to C is of the first type
in (9). Using Ci"-ﬂzcﬁf_—l”(:("—z), we find

C(n—l)amj — C(n—l)cgn_—ll)c(n—Z) — an_—ll)c(n—Z)WC(n—Z)
(D1)
and
Cr=Nt-1) = C;"__II)C("_Z)C(”_I) — Ciﬂ_—f)c(ﬂ—ﬁc(ﬂ—ﬁm’
(D2)

which clearly only differ in the ordering of C"~2 and C™2.
For the second type in (9) we identify C(”‘U:CE”__QUC(”_23
and find

COrIETT = =G = Gl -2 ICT
(D3)

and
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COTC-1) = Q=D = DT -2 gD
(D4)

which also differ only in the ordering of C*2 and C"2.
This concludes the proof.

Note that the creation of a nearest-neighbor pair as in (15)
amounts to a translation of a single unit cell assuming peri-
odic boundary conditions on this cell. The finite-distance
case (16) amounts to repeating this for s consecutive unit
cells—i.e., translating them with periodic boundary condi-
tions on each cell separately (this is actually equivalent to
translating all s cells together with periodic boundary condi-
tions on the set). Since one electron is moved one lattice
constant for each unit cell, s electrons forming a lattice with
lattice constant ¢ are moved rigidly one lattice constant in
(16).

We now derive the expression (18) for the energy of a
particle-hole pair. To do so we divide the electrons into three
disjoint sets A, B, and C, where set A consists of the s elec-
trons that moved under (16) (these electrons are all in the
region between the particle and hole). We now note that the
action of (16) can alternatively be achieved by translating
first all unit cells so that the particle-hole region agrees with
the one obtained using (15) and then translating all unit cells
outside the particle-hole pair region back to their initial po-
sitions. The first step does not change any interactions while
the second step moves one electron per unit cell outside of
the particle-hole pair region—these electrons form set B.
Again, the electrons in set B form a regular lattice with lat-
tice constant g. Set C consists of the remaining electrons.
From the first construction follows that all the relative dis-
tances between the particles in the set BU C are unchanged
and from the second that the same holds true for the particles
in A U C; in addition, all relative distances within each of the
three sets are unchanged.

The energy of a state is the sum over the interaction en-
ergies of all pairs of electrons, and the energy of an excita-
tion relative to the ground state is the sum of the change of
all such terms. It follows from the above that a pair energy
can change only if one particle is in A and the other is in B.
In the ground state the electrons in A U B form a lattice with
lattice constant g; the particle-hole excitation is obtained by
translating a string of s adjacent of these electrons one lattice
constant. This shows which pair energies change; adding the
contributions gives (18).

We now show that the nearest-neighbor particle-hole-pair
in (15) is the lowest-energy excitation at a given filling frac-
tion v=p/q. The ground state is the state that minimizes the
interaction energy between all pairs of kth nearest neighbors
EW in (B1) for all k=1,...,N,—1. For an excited state at
least one E® must be nonminimal. We divide the excited
states into two categories: the states where EW) g
=1,2,...,(N,—1)/p, are minimal and those where they are
not. The former are the periodic states with exactly p elec-
trons on any ¢ consecutive sites. The nearest-neighbor
particle-hole excitation is obtained by moving one electron
one lattice constant and is hence a nonperiodic state. We
have seen above that only the distances to the npth neighbors
change; hence, only E”) change for this excitation. Further-
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more, the change in E*) is the smallest possible, as implied
by the concavity condition (5) (see also Fig. 3), thus the
nearest-neighbor particle-hole pair is the smallest energy
nonperiodic excitation. The periodic excitations have a much
higher energy since they violate the ground-state conditions
within each unit cell; thus, their energy diverge with the size
of the system.

APPENDIX E: LAUGHLIN AND JAIN STATES AS L,—0

Here we show that the L; — 0 limits of the Laughlin and
Jain states, and of their quasiparticle excitations, are the TT
states and quasiparticles given in Sec. III. For the ground
state at v=1/3, this was shown in Ref. 52.

For simplicity, we give the argument on the cylinder
rather than on the torus. Expressing the wave functions in
terms of z and y, the projection onto the lowest Landau level
is achieved by moving y to the left and letting y —id,, where
the derivative should not act on the factor e‘yz/z; this is a
straightforward generalization of the method given by Girvin
and Jach.'” Throughout this appendix the overall factor
exp(-=;y7/2) is omitted in all wave functions as it is not
affected by the projection.

The Jain state at v=p/(2mp+1) on the cylinder takes the
form?!

q’p/(Zmp+l) = Det[ ﬁj(fl) 7[]7 (El)
where
Yi= H (Bi - Bj)m7 Bi= e*maill, (E2)
J#Ei

7(r;) is a Landau-level wave function ¢,,(r;), Eq. (A7),

2
=5 k2 g )
1

and 7,(f)) is the operator obtained from this wave function
by letting y;— id, . The 7,(r;) are chosen as the one-particle
states in the p lowest Landau levels. (Note that d, acts within
one term in the determinant; this corresponds to Jain’s sec-
ond method of projecting onto the lowest Landau level.?")

Consider first the Laughlin states v=1/(2m+1); then, 7
are the lowest-Landau-level wave functions

7(r) = o o e 20T B, (E4)

(Only a single Slater determinant of one-electron states sur-
vives when L;—0; hence, we can ignore multiplicative
L,-independent constants in the wave functions.) In this case
there is no dependence on y and no need to project onto the
lowest Landau level; Eq. (El), of course, gives the Laughlin
wave function on the cylinder:'3°

Uy omeny = L1 (8= B> (E3)

i<j

We want to translate this wave function to an occupation
number basis—i.e., to write it as a sum of Slater determi-
nants of one-electron states. This is achieved by noting that
B¢ corresponds to the unique lowest-Landau-level one-
electron state iy, Eq. (A7). Thus, replacing
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ﬁk - eZ(kTr/Ll)z Yo (E6)

in (E1), or in this case in (E5), the Slater determinants can be
read off; these states all have the same K;=2k;. Because of
the factor in (E6), the state with the largest k7 dominates
when L; — 0. This is clearly the state obtained by first choos-
ing one k as large as possible, then the next as large as
possible, and so on (all k; are different because of the Pauli
principle). It is easy to see that the Tao-Thouless state with
unit cell 0,,,1 is contained in (E5) and that it is the state
which maximizes E,-kiz for the given K;=2Zk;. Hence, it is the
limit of Wy,,,,1) as L, —0. The quasiparticles are discussed
below.

‘We now turn to the Jain states, where p > 1. The determi-
nant in (El) then contains the wave functions ., n
=0,1,...,p—1, of the p lowest Landau levels. Projecting
(1)) y; onto the lowest Landau level y — id, gives

3 2
l/lnk(fi) Yi o e_Z(kW/Ll)ZH”<i(?zi + k?)ﬁf%
1

= 20T BH (10, ) ;. (E7)
Defining
2 !
aitEm_E( B ) , (ER)
Lyizi \Bi—B;
we have, using ﬂzi,B,:Zwi,B,-/Ll,
9= @ Vi
azl-ait =t(a; - ai,t+1)- (E9)

Since the Hermite polynomial H,, is an nth-grade polynomial
in d,, it follows that

H,(id.)y; = mi, Y, (E10)
where m;, is a polynomial in «;,.

Forming the determinant in (E1), using (E10), and noting
that Hi%':Hi#j(/gi—ﬁj)m=Hi<j(/35—/3j)2mE‘1’1/2m is the v
=1/2m bosonic Laughlin state, one finds that (E1) can be
written as

\I,p/(Zmp+1) * Det[M{nk}i]qu/Zm’ (El 1)
where
M i = Bimiy. (E12)
Here, {nk} denotes the first index of the matrix M: n
=0,1,...,p—1 numbers the Landau levels, and &k
=0,1,...,N—1 numbers the states in each level. The second
index numbers the electrons, i=1,2,...,pN.

We have expressed W ,;(5,,,+1) in terms of 8 and can now
translate it to the occupation number basis using (E6). Just as
above, the leading-order term will be the one that maximizes
Zikf. One finds that this is obtained by taking the state with
maximal E,-kiz in W, —this is the TT state with unit cell
05,,-11. An element ,Bf in M acts as an operator on the occu-
pation number states in ¥V, translating particle i to the
right k steps—i.e., increasing its momentum by k. The ele-

155308-18



QUANTUM HALL SYSTEM IN TAO-THOULESS LIMIT

ments ,Bf-‘m,«n, n=1,2,..., also move the ith particle k steps to
the right just as Bf alone does. This is because m;, is a
polynomial in «;, and it can be seen that such terms do not
change the highest power of B; when acting on WV, [cf.
(E8)]. Considering the action of a term in the determinant it
follows that it will move groups of p electrons k steps to the
right, where k=0,1,...,N—1. We see that Eikiz is maximized
if the p leftmost electrons—i.e., the ones with smallest
k—are not moved; then, moving to the right, the next p
electrons are moved one step to the right, and so on until
finally the rightmost set of p electrons, the ones with the
largest k;, are moved N—1 steps to the right. This gives the
TT state with unit cell 0,,,1(0,,,_;1),_;.

To clarify the limit, we consider ¥=2/5 explicitly. In this
case, p=2, m=1, and thus there are 2N particles—N in each
of the two effective Landau levels. From (E11) and (E12) it
follows that we can write the wave function as

:32/13 : myy 1
BN Mo

BY 'myy BY 'my,
311\’_2’711,1 ,32]_2’"2,1

Wys= my mj Moy | Vi
-1 -1 -1
,311\, my o ,32] mj o 512\,1\/ mMaN, o
mp o my o MaN 0
(E13)

To maximize X ,-ki2 we pick one k—i.e., one of the powers of
Bi—as large as possible in the expansion of (E13). This is
achieved if and only if the power of 3; is maximized both in
the determinant and in W ,,. The highest power in the deter-
minant is N—1 and in ¥, it is 2(2N—1); thus, the maximal
k; is SN—-3. Next, we need to find the second highest power.
Again, the power from the determinant is N—1 (note that a
given term in the determinant can include factors such as
BZIV‘I,BSH) while it is 2(2N-2) from the Jastrow factors W ,;
thus, the total power is SN—5. Next, one finds that the deter-
minant can only contribute a power N—2 and that the highest
power coming from W, is 2(2N-3). Continuing this, one
finds that the maximal k; in the determinant decreases by one
for every second particle while it always decreases by two in
W, ,,. This gives the unit cell 00101. From this example, the
general procedure given above should be clear.

It is now straightforward to generalize the analysis above
to quasiparticle states. In Jain’s approach, these are con-
structed by replacing one of the one-electron states in (El)
by a state in a higher empty Landau level. Assuming the
levels involved are the highest occupied and the lowest
empty ones, ¥, ; y— i, 4, this amounts to replacing ﬁfmi!p_l
by Bim; , (for all i and fixed k,g) in the matrix M in (E12).
This has the effect of moving 0,,,_;1 from one place to an-
other in the TT ground state—i.e., of creating a particle-hole
pair of excitations with charge =e/(2m+1) (cf. Sec. III B).
The position of the excitation depends on k and ¢, and in
particular one of them can be put at the end of the cylinder.
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APPENDIX F: LAUGHLIN STATE ON A CYLINDER

The Laughlin state is the exact and unique ground state
for a certain short-range interaction, and there is a gap to all
excitations.}’%° The proofs were formulated using spherical
or disk geometry. The essential ingredient is, however, only
the short-distance behavior of the wave functions when two
electrons approach each other—thus, it may be regarded as
obvious that the result holds also on the cylinder (or torus)
for arbitrary circumference L; this result is in fact implicit in
Ref. 52. There has, however, been some controversy on this
point, which is important in establishing that the state devel-
ops continuously without a phase transition from the TT state
for small L, to the two-dimensional bulk Laughlin state as
L, — . We here explicitly show that the Laughlin state is the
exact and, up to rigid translations, unique ground state on a
cylinder for a short-range interaction and that there is a gap
to all excitations for any L. Our argument follows closely
that of Trugman and Kivelson.®®

A fermionic many-particle state in the lowest Landau
level is a sum of Slater determinants

Y({r} = {E} agy det[y (r))] = f{BDexp(= 2 y712),
k; i.j j

(F1)

where ¢, are lowest Landau level single-particle states on the
cylinder (A7) and B;=¢?>™%/L1, The range Ak of the momenta
k; restricts the system in space and thus depends on the num-
ber of particles and the filling factor v=p/q. The filling fac-
tor is the number of electrons divided by the number of sites,
v=N,/(Ak+1). Because of the g-fold translational degen-

eracy, Ak=Ak— (g—1), where Ak is the range of momenta in
f. fis an antisymmetric polynomial in B;; hence, it contains
the Jastrow factor J=I1I,;(8;~B;). The problem of minimiz-
ing the energy of a specific electron-electron interaction in
the lowest Landau level is thus reduced to finding the poly-
nomial f that gives the lowest energy given the above con-
straints. (This is in complete analogy with the problem in the
plane where the polynomial is instead in terms of z;.)
Consider now the repulsive interaction

V(r) = 2 V(1) = X ¢, b*V¥8,(r), (F2)
s=0

5s=0

where b is the range of the interaction, c, are positive con-

stants, and &,(x,y)=2,8(x+nL,,y) is the periodic delta

function. The leading term (V) is identically zero for any

fermionic state. By assuming b — 0 only the leading nonva-

nishing term in (F2) contributes to the energy E=(V(r)).
The expectation value of Vi is

(Vy=4cp®> 11

i<j k#ij

d’ry &*Z d’z 5)(2) 35 (¥*V),

(F3)

where we have integrated by parts'?! and changed to relative

coordinates for the pair that is affected by the interaction, z
=2;—2;,2=(2;+2;)/2, d=0/ dz. Performing the derivatives in
the integrand gives
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&YE'S(\P*\I’) — exp(— 2 yi/z)e(z - 2)2/166(2 - 2)2/4[avf79sj7
k#ij

s

+ X

rt=0,r+t#2s

a, ' fo'f], (F4)

for some «,,. For s=1, only the first term contributes to (V),
since f(0)=0, and this term is non-negative (V;)=0. (V)
=0 if and only if df].o=0; if this is the case, then only the
first term in (F4) for s=2 contributes to (V,) and (V,) =0, the
equality sign holding if and only if df]o= df?|,=0. This con-
tinues to any order in s, and we have that (V,)=0 for ¢
=1,2,...,s, and (V,,)=0, if and only if Jfl,=0 for ¢
=1,2,...,s. This means that f vanishes at least as fast as s
when z— 0, and since this holds for any z;—z;=z and f is an
antisymmetric polynomial in 3;, it follows that f contains at

least s+ 1 powers of the Jastrow factor: f:J”'f, wherefis a
new polynomial in ;.

Consider the truncated interaction V(s)(r)=2f=0Vr(r). We
have found that a state has vanishing energy if and only if

f:]““f. These are the ground states: All other states have
positive energy since, as b—0, only the first nonzero (V,)
contributes and this is non-negative according to the discus-
sion above.

For f=1, f is the Laughlin state at filling factor v=1/(s
+1), which thus is a ground state; it is unique since any

nonconstant polynomial f decreases the filling factor. This
proves the proposition.

On the torus, an analogous argument implies that the
zero-energy states must contain a factor II;-;9([z;
—z;]/Ly|iLy/ Ly )**!, which together with the boundary condi-
tions specify the Laughlin state on the torus (A15) uniquely
up to the (s+1)-fold center-of-mass degeneracy.

APPENDIX G: EXACT SOLUTION AT »=1/2

Here we give details of the exact diagonalization of the
short-range Hamiltonian (27).3¢

The crucial part in (27) is the hopping term V,,. However,
we begin by considering the electrostatic part H,| V=0
which has eigenstates with fixed charges, |ngn; - - -nNS_1>. The
energy of such a state is

N,
E0=a<?+n111+”ooo), (G1)
where, n;;(ng) is the number of 3-strings'3>—i.e., strings
consisting of three nearby electrons (holes) in nyn 1N
Thus there is a degenerate ground state manifold 7, consist-
ing of all states where at most two electrons or two holes are
next to each other. The energy E, follows by writing the
right-hand side of (G1) in terms of /i; and comparing to (27).

To proceed we define a subspace H' of the full Hilbert
space by requiring each pair of sites (2p,2p+1) to have
charge 1 [acting with T, gives an equivalent grouping of the
sites (2p—1,2p) and a corresponding subspace Hy]. As we
will demonstrate below, H,, preserves the subspace H’ and
can be exactly diagonalized in this subspace, giving nonin-
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teracting neutral fermions. Note that H' C H,; thus, any state
in H' has the lowest possible electrostatic energy. As argued
in the main text and in Ref. 36, H’ also contains the low-
energy sector of the hopping term V,, and thus of the Hamil-
tonian H,,, Eq. (27).

There are two possible states for a pair of sites in H':

)=o), [1)=110); (G2)
introducing the spin operators
s;=c;pc2p+1, s;=c;p+lczp, (G3)
where p=0,1,...,N,—1, we have
stD=10. s =10 (G4)

On states in H’, s*,s~ describe hard-core bosons—they com-
mute on different sites, but obey anticommutation relations
on the same site,

[si_,s;] = [si_,s;] = [s;',s}’] =0, i#j,

{s7.sit=1, {si.sik={s7.57}=0, (GS)
and H,, is the nearest-neighbor spin-1/2 xy-chain,
N1
(G6)

Fom -
H,=aN,+V, 2, [$p415, +5,015,]5
p=0

where si = s(;: and V,; > 0. We diagonalize H,, following the
standard procedure; see e.g., Refs. 121 and 133. Expressing
the (hard-core) bosons in terms of fermions d using the
Jordan-Wigner transformation

p-1
s,=K,d,, K,=exp(im>, did), (G7)
j=0
the Hamiltonian becomes that of free fermions,
N,-2
_ i il
Hsr—aNe'F V2] 2 dp+ldp+d0KNe—ldNe—1 +H.c. N
p=0
(G8)

when restricted to H’. The explicit K factor can be ignored
for N,—o (Ref. 134); however, H,, can be diagonalized
exactly also for finite N, including this K factor by noting
that, in this term, KNF_1=(—)N i*1, where N; is the number of
up spins in the state. Thus

N,-1
H”= aNe+ V21 E [d;+1dp+d;dp+l]’ (G9)
p=0

where dy = (=)M*1d,.. Since N; is conserved by H,,, we can
diagonalize H,, by the Fourier transformation

1 o~
E k
= /__ e’ dk’
VN,

| N,-1
dy = v E e_ukdj,
VN, j=0

(G10)

where for N, odd
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N, N, N,
k—=0,x1,*x2,...,*x|—-1),— for N, even,
2 2 2
N, N, 1
k—=0,x1=%x2,..., x| —-— for N, odd,
2 2 2
(G11)
whereas for N; even, k is shifted by —7/N,:
N, N, 1
k— —k———. (G12)
2 2T 2

Note that this implies that different sets of momenta k are
used in states obtained when acting with an even or odd

number of operators d" on the Fock vacuum:
M
[14;o10101...).
J

j=1

(G13)

It can be shown that (G13) are eigenstates of T} and 75 with
eigenvalues

K, =-N;+N.,
N
N, < N,(N,—1)
Ky=——D ki+ ————=. Gl4
2 277_% j 2 ( )
The Hamiltonian becomes
(G15)

H,, = aN,+2Vy >, cos k djd,.
k

The ground state is obtained by filling the lowest-energy
states respecting the condition that an odd (even) number of
states must be filled when k takes the values in (G11) (is
shifted by —m/N,). For N, even, a unique ground state is
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obtained by filling all the negative energy states:

lgs)= [I djjo10101...).
|k|> /2

(G16)

For N, odd, the ground state is obtained by filling all the
negative states except for the highest, or alternatively, all the
negative states and the lowest positive state. This leads to a
fourfold-degenerate ground state (in 7{’). This degeneracy
corresponds to reflections of the Fermi sea in horizontal and
vertical lines that give new Fermi seas for odd N,, but not for
even N,; see Figs. 8 and 9.

This solves the problem in H' and, by action of 75, in Hj.
When N,— %, the ground state has energy

2V,
EIN,=a-—2
a

(G17)

per electron. The excitations are neutral particle and/or hole
excitations out of this Fermi sea. They have, according to
(G3), a natural interpretation in terms of dipoles, and in the
limit N,— % the excitations become gapless. All of the elec-
tric charge sits in the Fock vacuum, [010101...), while the

quasiparticles c?k that build up the ground state are neutral.
A straightforward calculation shows that (¢} c,)=8,,,/2,
when N,— 0,135 and hence

(PO =S BN = 5 S U0, D)

m,n

(G13)

Thus this state is homogenous in occupation space (this is
not the case for the TT states) and hence approximately ho-
mogeneous in real space for any L;, becoming completely
homogeneous when L; — (as is the case also for the TT
states).
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