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Fano resonances in the conductance of quantum dots with mixed dynamics
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We study the conductance fluctuations of an open quantum dot with underlying mixed dynamics. In addition
to smooth conductance fluctuations, typical of chaotic quantum dots, we observe the occurrence of many sharp
conductance peaks. Those are associated with localized states in the quantum dot and display a variety of Fano
shape resonances. We show that the Fano ¢ parameter in the presence of time-reversal symmetry is, in general,
complex. We discuss the origin of the different Fano parameters and present a numerical study to support our

theory.
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I. INTRODUCTION

Quantum interference is at the heart of the physics of
mesoscopic phenomena and is beautifully manifested by uni-
versal conductance fluctuations (UCFs) and weak
localization." At sufficiently low temperatures, both the UCF
and the weak localization peak have been experimentally ob-
served in open chaotic quantum dots (QDs) containing N
=100 electrons. Theory addresses these results by means of
the Landauer formula that relates the linear conductance in
quantum coherent systems to the transmission probability.
While the universal aspects of experiments, such as conduc-
tance distributions and conductance autocorrelation func-
tions, have been successfully described by the random matrix
theory (for recent reviews, see Refs. 2 and 3), system specific
properties, such as magnetic correlation lengths, were accu-
rately addressed by the chaotic semiclassical scattering
theory.* The latter also explicitly shows how universal fluc-
tuations arise from the interference of all possible transmis-
sion pathways.*

Quantum interference, however, can be built from just
two interfering paths, giving rise to a variety of resonance
shapes, as explained in a seminal paper by Fano.’ Albeit
observed in numerous systems, including neutron scattering,®
atomic photoionization,” Raman scattering,® optical absorp-
tion in quantum wells,” scanning tunneling microscopy,'®
and microwave scattering,” Fano resonances have received
less attention in mesoscopic phenomena.

Experimentally, Fano resonances have been observed first
in QDs at the Kondo regime.!> More recently, by embedding
a Coulomb blockaded quantum dot in an Aharonov—Bohm
ring interferometer, a variety of Fano conductance shapes
were measured.'? Conductance measurements exploring dif-
ferent geometries, such as a quantum wire with a side-
coupled quantum dot,'# a one-lead quantum dot,"> and a ring
with side-coupled dot,'® provide more insight into the Fano
problem in mesoscopic systems. It is noteworthy that in all
of these experiments, the quantum dots were taken either at
the Coulomb blockade regime or at the Kondo regime, where
electronic interactions are very important.
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The occurrence of conductance dips in ballistic
Aharonov-Bohm rings was theoretically investigated almost
20 years ago.'” Further, early theoretical works examined the
possibility of Fano shapes in the transmission through one-
dimensional waveguides'®!? and waveguides with resonantly
coupled cavities.?’ More recently, Fano resonances have also
been found in numerical investigations on the influence of a
smooth confining potential (leading to mixed dynamics) on
open quantum dots.?"??> These findings triggered proposals
for interesting applications, such as controlling Fano line
shapes?® and using them for the readout of single spins.?*

Given this wealth of theoretical work, why is the experi-
mental observation of Fano line-shape resonances so elusive
in open quantum dots? This is the main question we try to
answer in this study. We find that the occurrence of conduc-
tance Fano shapes is favored in QDs when their classical
dynamics is mixed. In this regime, the transmission is char-
acterized by (i) narrow resonances corresponding to local-
ized states, trapped either on tori of stable motion or cantori,
(ii) fluctuations typical to chaotic motion, and (iii) fast (non-
resonance) scattering processes, depending on the QD geom-
etry. The interference between these scattering processes
gives rise to a variety of Fano conductance shapes. We show
that the resonance line shapes can be cast by an expression
similar to the standard Fano formula,’ but with a complex g.
This result is quite general for multichannel scattering and is
applicable whenever a system has a narrow resonance whose
lifetime is much longer than all of the other relevant scatter-
ing time scales.

The paper is organized as follows. In Sec. II, we present
the cosine billiard, the model we employ to investigate the
conductance in quantum dots with mixed dynamics. The nu-
merical method used to solve the scattering problem is pre-
sented in Sec. III. The general Fano theory for multiple con-
tinua and multiple resonances is reviewed in Sec. IV. The
numerical analysis of the conductance and Fano resonances
in the cosine billiard is presented in Sec. V. In our conclu-
sion, we discuss our findings in view of the current experi-
ments.
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II. MODEL SYSTEM

We use an open billiard to model the electron single-
particle properties of lateral open quantum dots. Hard-wall
confinement potentials are expected to accurately model dots
whose typical size L is much larger than the Fermi wave-
length \.% This condition is met by quantum dots contain-
ing at least 10>°-~10° electrons, which is quite typical in
experiments.”¢

We chose the cosine billiard?’ to guide our analysis. This
is a convenient model because (a) the cosine billiard shape
parameters can be tuned so that the classical dynamics goes
from the chaotic to the mixed regime; (b) its classical dy-
namics is well understood; and (c) the quantum numerical
analysis is quite amenable.?$%°

The cosine billiard is defined as follows: let the electrons
move in the (x,y) plane. The open cosine billiard is defined
by two disjoint boundaries on which the electrons scatter
elastically. One boundary is given by y;=0. The other is

27X

yz(x)=W+%/[[1+cos<T)}, (1)

for —L/2<x<L/2 and y,(x)=W for |x|>L/2.

We identify an “inner” region |x| < L/2 with the quantum
dot and an “outer” region |x|>L/2 with leads connected to
reservoirs in thermal equilibrium. In the leads, the electron
energy E can be decomposed as the sum of £, and E;, the
latter corresponding to the free longitudinal motion. We con-
sider scattering processes where electrons come from the left
x— —o with a certain transversal energy E |, enter the quan-
tum dot, and emerge at its left (x<<—L/2) or right contact
(x>L/2) with an energy E',.

The main features of the cosine billiard single-particle
classical dynamics can be understood by simple consider-
ations: the vertical trajectory at x=0 is stable if the radius of
curvature of the cosine boundary at x=0 is larger than the
billiard width at x=0. This amounts to requiring L?/2m*M
> W+ M. In this case, the vertical trajectory is surrounded by
a stability island that can be clearly seen, e.g., in a Poincaré
section at y=0*. The island is composed mainly of trajecto-
ries that display a quasiperiodic motion and remain close to
x=0. In the mixed dynamics regime, as usual, the central
island is surrounded by other smaller islands, regions of cha-
otic dynamics, KAM tori, etc. When the billiard is open and
coupled to leads (or waveguides), the island does not explic-
itly participate in the scattering process because it is not ac-
cessible from outside.

The classical transport properties of the cosine billiard as
a function of the parameters W/L and M/L are well
understood.”’” From the wide range of parameter values
where the system shows mixed dynamics, we chose to work
with W/L=0.18 and M/L=0.10, for which both the classical
and quantum cases have been extensively studied. The inset
in Fig. 1 illustrates the cosine billiard geometry used in this
study.

When quantum scattering is considered, the stability is-
land centered at x=0 manifests itself through localized qua-
sibound states weakly coupled to the continuum. These states
correspond to complex poles of the S matrix that can lie very
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FIG. 1. Conductance in units of Gy=2e?/h versus energy in
meV for the cosine billiard shaped quantum dot with M/L=0.10
and W/L=0.18. The conductance plateaus correspond to N=9 up
to N=11. Inset: Cosine billiard geometry.

close to the real axis, i.e., have a decay width much smaller
than average resonance spacing. Localized states rarely over-
lap with each other and appear as isolated resonances in the
scattering observables, i.e., cross sections, conductance, or
density of states. The remaining resonances correspond to
delocalized states and are expected to have large decay
widths and overlap. We shall quantitatively address these is-
sues in the forthcoming sections.

III. LANDAUER CONDUCTANCE OF
THE COSINE BILLIARD

In this section, we describe how we compute the S matrix
of our model system and present a qualitative discussion of
the transmission fluctuations.

The asymptotic modes of the scattering problem are de-
fined as standard: due to the perpendicular confinement, the
energy E, is quantized, namely, (E,),=%%/2m*(mn/W)>?,
where m* is the electron effective mass and n is an integer
number that labels the propagating modes at the left and
right sides of the quantum dot. The transversal wave func-

tions are )(,,(y):\e"m sin(zrny/W). The number of open
modes per lead is N, the largest integer such that (E | )y<E.

The probability amplitude for an electron to be scattered
from a channel n to a channel m is given by the scattering
matrix element S,,,. For convenience, we write the S matrix

g3
rt

S:( ) (2)
tr

where r (') is the reflection matrix for the channels at the
left (right) and ¢ (¢') is the transmission matrix from left
(right) to right (left) channels.

The Landauer formula! relates the linear conductance to
the transmission probability. We consider the zero tempera-
ture limit to write

2
= thr(ﬁt), (3)

where the factor 2 accounts for the spin degeneracy. We
present our results in terms of the dimensionless conductance
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G/ Gy, where Gy=2¢*/h, which is equivalent to transmission
T=t(tr).

We compute the S-matrix elements by using the Fisher—
Lee formula,3! namely,

w w
Snm(E) == 5nm +ih \”vnvmf dqu dprn(yq)G(;p
0 0

XYY E) X)) s 4)

where ¥,,(v,) is the transversal wave function of an electron
in the mode m at lead p, and v,, is its velocity. G;p(yq,yp;E)
is a shorthand for the open cavity retarded Green’s function
G'(r,,r,;E), where r,=(x,,y,) and x,=*L/2, which de-
pends on whether p denotes the left or right lead. (See, for
instance, Ref. 32 for more details).

We compute G (y,.y,;E) on a discrete lattice by using
the recursive Green’s function method.’>3* The same
method is also used to obtain the local density of states
(LDOS), p(r)=—(1/m)Im G'(r,r;E).

To avoid finite mesh size effects in our numerical analysis
(Sec. V), we considered \/a>8, where a is the lattice pa-
rameter, and A=\(E) is the electron wavelength at energy E.
For the energy range addressed in this study, we take M,
=22 and W,=40 transversal sites and L,=221 longitudinal
ones. To model realistic device dimensions,2® we take a
=20 A. The cosine billiard parameters become M
=0.044 pum, W=0.080 pum, and L=0.442 pum. The electron
effective mass at the bottom of the GaAs conduction band,
m*=0.067m,, leads to nearest neighbor tight-binding hop-
ping parameters V, ,=—#%/2m*a*=-0.142 eV.

Figure 1 shows the dimensionless conductance G/Gy, as a
function of the energy E. As the energy is varied, one ob-
serves jumps in the average conductance. Those jumps ap-
pear at the threshold energies for channel openings in the
leads. More interesting is the observation that at every con-
ductance plateau, corresponding to a fixed number of chan-
nels N, the transmission displays both slow energy fluctua-
tions (on energy scales I'.,,~ 1 meV) and narrow resonances
(of widths I'<<0.1 meV). The latter occur in a variety of
shapes. The theory underpinning such shapes is addressed in
what follows.

Before we proceed, there is an important point to address.
We neglect electron-electron interactions as widely justified
for open quantum dots, where the electron dwell time in the
dot 7 is typically much shorter than the charging time 7.
However, the resonances corresponding to localized states
are narrow and can easily have lifetimes that exceed 7., a
situation analogous to the Coulomb blockade regime. This
makes the situation we analyze quite unique: There are no
constraints for electrons to flow through the QD, but the
transport via the stability islands requires a certain energy to
overcome charging effects. Despite this, with certain care
(taken in this paper), the single-particle description can still
be used, namely, (a) by treating every narrow resonance
separately and restricting the analysis to small energy win-
dows around each of them (far from the adjacent narrow
resonances that can contribute with cotunneling), and by (b)
assuming that the screening is short ranged (as standard in
semiconductor quantum dots?) and, hence, the electron dy-

PHYSICAL REVIEW B 77, 155307 (2008)

namics is barely modified by excess charges.

IV. FANO LINE SHAPES IN THE PRESENCE OF MANY
RESONANCES AND MANY CONTINUA

In this section, we discuss how multichannel resonance
scattering in a system with mixed dynamics gives rise to
Fano resonances in the transmission.

Let us begin by considering the case of a single resonance
with a complex pole gy=FE,—il'(/2 and a single lead with
N=1. Although the single-lead case has little direct relevance
for the conductance, it provides insight into the origin of the
Fano resonance profiles. In the presence of a single channel,
the S matrix is just a complex number with unit modulus,
parametrized as S=e**(E —sz)/ (E-¢&g). Then the cross sec-
tion, o=4m\*(1-Re S),> becomes

2
(Z2++6i ’ ®)

where e€=2(E-E,)/I'y and g=—cot ¢. This is essentially
Fano’s famous result,’ here obtained by using the S matrix
pole parametrization.

The transmission analysis for the multichannel case fol-
lows the same lines. Let us write the open quantum dot re-
tarded Green’s function, appearing in Eq. (4), in the spectral
representation, namely,>?

g X

P, (1)@ (r')
E-E,+il /2’

G'(r,r';E) = >,

o

(6)

where ¢, and ¢, are the right and left eigenfunctions of the
effective Hamiltonian of the open cavity, corresponding to
the complex energy &, =E,~il',,/2. Defining

!/_ W
Y= V0, [ dypxa(Vp) (x5,
0
R w
Y= N0y, J aypXm(Yp) (X5 V), (7)
0
we arrive at
~%
You?,
tum(E) =12, f o (8)

' E—E,+il,2

Let us now focus our attention on the energy interval
around a single narrow resonance with a pole at &,=F,
—iI",/2. The transmission matrix elements read

~%k
Yar¥,,

tam(E) =128 (E) 4 i """
(E) = fanlE) E-E,+il,/2

9)

The background transmission matrix element 7°¢(E) ac-
counts for the contribution of all but the w»th resonance,

namely,

~%

Yup,
PE(E) =iy, e (10)
#;ﬁVE—EM-FlF#/Z
In this parametrization, prompt processes correspond to a
few poles g, with a decay width I',>T",, as nicely dis-
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cussed in Ref. 36. Hence, we write the partial transmission
coefficients as
’ 2
be (219 €

[t () = |t (B~ 5= (11)
with e=2(E-E,)/I",, as in the standard Fano definition. In
contrast, the shape parameter ¢’ is, in general, complex and
given by

~%
g =i- f—;ﬂ (12)
tnm FV
In the vicinity of the resonance peak, E=E,, t}fn can be taken
as energy independent. More specifically, for an energy win-
dow of the order of the resonance width, this approximation
requires I',<<I"... As we already discussed, this inequality is
typical in the transmission spectrum of mixed systems. In
contrast, writing |t,,,(E)|> as Eq. (11) becomes extremely ar-
bitrary in the absence of a clear separation of energy scales,
a situation met in chaotic quantum dots.

The conductance, which is a sum of partial transmission
coefficients, also displays a Fano profile for an isolated reso-
nance. Its shape parameter ¢ is a combination of the ¢’s of all
transmission coefficients.?’

The derivation of a complex ¢’ we present is tailor-made
for the Fisher—Lee S matrix. However, the result we obtain is
quite general to multichannel resonance scattering, since Eq.
(9) can be written just by invoking the symmetries and the
analytic properties of the S matrix, as shown in the Appen-
dix.

We remark that a complex line-shape parameter ¢ has
been proposed to fit Fano resonances experimentally ob-
served in the conductance of a quantum dot embedded in an
Aharonov—Bohm ring.!3 This procedure was first justified, in
a similar way as here, by considering that one arm of the
interferometer provides a featureless background.?” Complex
q’s also appear in a single-channel scattering, e.g., when two
thin resonances overlap.’®

Another recent noteworthy development gives a geomet-
ric interpretation of the shape parameter ¢ (Refs. 39 and 40)
by expressing the scattering problem of a single resonance
and N=1 in terms of conical intersections. However, the ex-
tension of this idea to the multichannel case does not appear
to be straightforward.

V. NUMERICAL ANALYSIS

We are now ready to quantitatively address the main
transmission features of the cosine billiard.

Let us begin with the average conductance. Due to
S-matrix unitarity, R+7=N, where R=tr(r'r) is the reflection
coefficient at the left lead. Hence, from Fig. 1, we infer that
the average transmission (7) is always close to its maximum
value, and (T)>(R) in the studied energy range.

Fast processes dominate the transmission when a signifi-
cant fraction of trajectories connecting left and right leads
have dwell times comparable to the traversal time L/v. This
is evidently the case for the cosine billiard, since there is a
large set of trajectories passing through the billiard inner part
after no or only a few bounces.
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(b)

FIG. 2. Partial transmission 7}, as a function of m and n, which
are the left and right channel numbers, respectively. (a) Classical
T, (independent of energy). (b) Quantum T,,,(E)=|t,,,(E)|* for E
=77.17 meV.

We can make this statement quantitative by calculating

the classical transmission probability 7 and by comparing to
quantum average transmission (7(E)). For this purpose, we
introduce the partial transmission probability 7,,,. Classi-
cally, 7,,, is defined as the probability of a trajectory with
incident energy E | € [(E|),_1,(E),,] from the left lead to
emerge from the right lead with E, € [(E),_;,(E|),].
Hence, =%, ,T,,,. For billiards, T" depends on the number

of channels, but not on the energy. We compute T by a
Monte Carlo simulation randomly starting 10° trajectories at
the left contact. Quantum mechanically, the partial transmis-
sion is a function of energy and is defined as T,,,(E)

=|t,,,(E)|%. The agreement between T and (T(E)) is remark-

ably good. For instance, for the N=9 plateau, we obtain T
=8.26 and (T(E))=8.31. Surprisingly, a reasonable quantita-
tive agreement holds even when we compare classical and
quantum partial transmission coefficients taken at a reso-
nance, namely, |t,,,]%, as shown in Fig. 2.

These ideas help us to understand the energy averaged
transmission (7), but they are not fingerprints of mixed dy-
namics, since nonresonance transmission can also occur in
chaotic systems.*! In its simplest (and best known) formula-
tion, the statistical theory of chaotic scattering does not ac-
count for direct processes and predicts (T)=(R)=~ N/2 when
N> 1. However, there are various ways to include fast non-
resonance processes in the theory,*>*} which can lead to a
(T) very dissimilar to (R).

Let us now address the transmission fluctuations. To guide
our discussion, we use Fig. 3(a), which shows G/G, as a
function of E for the N=9 plateau. The slow transmission
fluctuations that occur on the energy scale of I'.,,~1 meV
are of the order of unity, 6T~ 1, resembling the universal
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FIG. 3. (a) Conductance in units of Gy=2e?/h versus energy in meV for the cosine billiard at the plateau N=9. Contour plot of the local
density of states (in arbitrary units) for selected resonances: (b) R; and (c) R, are localized states at the stability island; (d) R3 is an example
of a localized state at a cantorus; and (e) R, illustrates the generic situation of a delocalized state corresponding to the superposition of many

short-lived resonances.

conductance fluctuations typical of resonance scattering in
chaotic systems.>3 In contrast, we will show that the narrow
resonances, whose widths I' rarely exceed 0.1 meV, corre-
spond to localized states, typical of mixed systems.

The Weyl formula gives a quite accurate estimate for the
average resonance spacing A, namely, A=27%%/m* A, where
A is the area of the cosine billiard. We define 4 by closing
the billiard at x= =% L/2. The justification is that resonance
states of the billiard have close to unit probability to be
found inside this boundary (the inner region). This reasoning
to assess A might sound somewhat cavalier, but is semiclas-
sically justified** and has been tested by comparing with the
average Wigner time delay.”® For the parameters chosen in
this study, the Weyl formula gives A=0.2 meV, much
smaller than the average spacing between consecutive nar-
row peaks.

To get further insight, let us examine the LDOS for some
selected energies. Many of the narrow resonances are easily
identified with localized states at the central stability island.
For instance, the resonance R, in Fig. 3(a) has an energy that
is in good agreement with a Wentzel-Kramers—Brillouin ver-
tical mode passing through x=0.* The corresponding LDOS
is shown as a contour plot in Fig. 3(b). Denser lines indicate
a large LDOS, while the empty regions correspond to a
smaller LDOS. For R;, LDOS is 10 smaller at the contact
region than at x close to the origin. R, shows another local-
ized state at the central island [see Fig. 3(c)]. This one is odd
under parity transformation x — —x, possessing a nodal line
at x=0. Such states spread over a larger region in x than the
simple R; state. Still their LDOS at the contact region is
suppressed by 2 or 3 orders of magnitude with respect to its
maximum value.

We also observe that many of the narrow states are clearly
not localized at the stability island. A typical example is R5,

whose LDOS is shown in Fig. 3(d). Bicker et al.” investi-
gated the nature of such states. By analyzing the Husimi
representation of a sequence of narrow states, they showed
that a large fraction of them are actually trapped by cantori
typical of mixed phase space systems.

Finally, the transmission fluctuations occuring over en-
ergy scales larger than A are built from the overlap of reso-
nances, corresponding to delocalized states. Figure 3(e)
shows the LDOS of R,, which is a typical example of this
situation.

Further evidence supporting this picture is provided by
Fig. 4. It shows the transmission as a function of E as we
progressively close the billiard with potential barriers placed
at the contacts.*® We consider barriers up to 120 A wide and

8+ P —
6 S L
0.1

Q 4_ 77.10 77.15 77.20_

E (meV)
@) -—(E)/—JM ]
21 @ r
© AN

0 L) L) L)

77.1 772 773

E (meV)

FIG. 4. (Color online) Transmission probability for the cosine
billiard over an energy window around the R, resonance. The trans-
mission drops from (a) to (d) as barriers placed at the billiard con-
tacts become higher. Inset: Low transmission curves in a logarith-
mic scale.
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250 meV high. Figure 4 shows G/G, for a small energy
window around the R; resonance. For the open billiard
[curve (a)], R, is a dip in the transmission, which is a typical
line shape of a Fano resonance with a large background con-
tribution. Transmission barriers suppress the background, 7°¢,
both from direct processes and overlapping resonances. This
is seen in Fig. 4 [in curve (b)] already for a very thin barrier
(20 A wide and 85 meV high): the average transmission
drops roughly by a factor 2 and the resonance line shape
changes entirely. By further increasing the barrier strength,
curves (c) and (d), which are the overlapping resonances
corresponding to delocalized states, become isolated. By in-
specting a larger energy interval than the one shown in Fig.
4, we find that the average resonance spacing agrees with the
Weyl estimate.

These elements lead us to interpret the slow energy de-
pendent fluctuations in the conductance as a coherent super-
position of overlapping resonances, with complex poles
whose imaginary part is typically larger than A. In turn, the
narrow resonances, whose widths are much smaller than A,
correspond to localized states due to the mixed dynamics.
The clear separation of energy scales is essential to justify a
constant ¢' and to validate our analysis.

A. Analysis of Fano shapes

By examining partial transmissions ¢,,,(E) at several reso-
nances, we have verified that Eq. (11) accurately describes
the Fano transmission line shapes. Our procedure is the fol-
lowing: to restrict the number of free parameters, we first
select a resonance v (like, for instance, R;) and find the best
fit for £, and I', by using several pairs of channels (m,n). To
describe the transmission at |[E—-E,|>T,, we approximate
|8 |2 by a linear background, whose slope depends on (112,1).
Finally, we fit ¢’ using a y* procedure.

The heuristic alternative to Eq. (11) found in the
literature??> adds a linear background to the standard Fano
line shape [Eq. (5)] and uses a real g. For the resonances we
examine, we find that fitting Fano line shapes in this way is
as effective (in the sense of the reduced y* test) as using a
complex g. We attribute the good agreement between both
fitting procedures to the large number of free parameters.
Figure 5 shows two typical fits.

Can the shapes of both parametrizations differ apprecia-
bly? To answer this question, let us explictly consider g
=¢,+iq;. Equation (11) corresponds to a sum of a standard
Fano resonance, parametrized by ¢, and a Breit—-Wigner one,
whose “weight” is enconded in g;; When ¢, and ¢g; have
comparable magnitudes, the resulting resonance shape can
markedly be different from the family of standard Fano
shapes. Unfortunately, we did not find such a case in our
numerical analysis.

Distinct traces of Fano resonances characterized by a
complex g have been experimentally reported for systems
with broken time-reversal symmetry.!> We stress that in the
multichannel case, despite the resonances we analyze, real
and complex ¢’s give similar quality fits, g is generally a
complex parameter, even when time-reversal symmetry is
present and dephasing is absent (see the Appendix for a
proof).
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FIG. 5. (Color online) Transmission probability matrix elements
for an energy window centered at the resonance R;. Circles corre-
spond to computed conductance, red lines stand for the best fit
using Eq. (11), whereas the black lines correspond to a fit using the
standard Fano plus a linear background (see text): (a) |t77(E)|?; (b)
|t99(E)[*.

B. Manipulation of Fano shapes

External local probes can be used to selectively manipu-
late resonances.?? Suitable choices of the external perturba-
tion allow one to strongly quench selected localized states.
Alternatively, with a small change in the billiard shape, one
can take full advantage of the numerous resonant transmis-
sion interference processes to manipulate the shape of a Fano
resonance. The background transmission matrix element 1%,
given by Eq. (10), accounts for the scattering amplitude of
the (neighboring) overlapping resonances to the vth one. It is
possible to engineer a small perturbation of the order of
(V2,012 ~ A acting on the QD that dramatically changes 755,
without having a significant impact on nonresonant pro-
cesses.

Figure 6(a) illustrates a situation where both a shift of the
localized state Rs and a dramatic change on the resonance
shape Rg occur. In the absence of a perturbation, the LDOS
of Rs and R, are shown in Figs. 6(b) and 6(c), respectively.
While Rs is a localized state around the stable W-shaped
periodic orbit, Rg belongs to the already discussed stability
island around x=0. The perturbation we consider is a poten-
tial step of strength V, indicated by the inset of Fig. 6(a), that
destroys the W-shaped orbit.

Let us discuss how the transmission is affected by increas-
ing V. Already at V=10 meV, we observe that the R5 reso-
nance position in the transmission spectrum is significantly
shifted. In contrast, the average transmission (T) barely
changes and the transmission fluctuations show only slight
modifications. This suggests that while the perturbation only
slightly changes the background resonance interference pat-
terns, the overlap between the stub and the LDOS of the Rs
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FIG. 6. (Color online) (a) Conductance in units of 2¢%/h versus
Fermi energy at the N=10 plateau for different values of the per-
turbation V sketched in the inset. The solid red line corresponds to
the unperturbed transmission, dotted line to V=10 meV, and solid
black line to V=30 meV. (b) and (c) show the local density of states
for the unperturbed resonances Rs and Rg, respectively.

resonance causes a significant shift on the resonance energy.

By further increasing the perturbation to V=30 meV, we
observe more pronounced changes in the transmission fluc-
tuations, but still without a noticeable effect in the average
transmission. Rs is further shifted and Ry is particularly af-
fected: its shape changes from a dip to a Breit—-Wigner-like
resonance. In this case, the background overlapping reso-
nances control the shape of an isolated resonance not directly
affected by the perturbation (negligeble overlap).

VI. CONCLUSIONS

Fano line shapes are ubiquitous in resonance scattering.
Whereas they have been reported in mesoscopic transport in
QDs at the Coulomb and Kondo regimes, they seem harder
to observe in open quantum dots.

We showed that QDs with mixed dynamics show Fano
line shapes, whereas such resonances are hardly observed in
chaotic QDs. Sharp conductance peaks correspond to local-
ized states that typically coexist with a background of long-
lived delocalized states as well as with fast nonresonant pro-
cesses. Both contribute to the Fano line shapes. This is why,
in practice, controlling the shape of transmission resonances
can be quite delicate.

Furthermore, we showed that even in the presence of
time-reversal symmetry and in the absence of dephasing, the

PHYSICAL REVIEW B 77, 155307 (2008)

Fano resonance g parameter is generally complex. Unfortu-
nately, a clear assessment of its complex part is not always
possible.

Standard magnetoconductance experiments on open quan-
tum dots are unlikely to be suitable for the investigation of
Fano resonance physics. In our model, the trajectories con-
tained by the stability island cover only a small area of the
billiard inner part. Hence, to observe their contribution to the
magnetoconductance, sweeps over very large magnetic fields
are required. In addition, it is not yet clear which mag-
netofingerprints would characterize them.

The transmission energy dependence we studied can be
inferred by experiments measuring the conductance as a
function of a back gate voltage. For mixed systems, such a
possibility was explored in Ref. 47 to locate resonance ener-
gies. Temperatures larger than the resonance width I" obvi-
ously wash away the line shapes. For instance, temperatures
of the order of 100 mK, standard in low-dilution refrigera-
tors, will have little impact on resonances with T’
=0.05 meV, but will smear the narrower ones. For realistic
model parameters, many of the narrow resonances we ob-
serve, particularly those localized in cantori, have widths T’
=<0.1 meV.
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APPENDIX: COMPLEX g PARAMETERS

Here, we show that the Fano parameter ¢ is generally
complex for multichannel scattering in time-reversal sym-
metric systems.

In its most general form, the S matrix for an isolated
resonance coupled to N, open channels reads*>*3

S(E) = U(l - 'L)U?

Al
"E—E,+il)2 (A1)

The column vector y is chosen to be real and satisfies Y’y
=I". Background scattering is provided by the unitary matrix
U of dimension N, X N,y through the combination UU”. In
the main text, we considered the case of N,,=2N. The pa-
rametrization above is explicitly unitary’® and symmetric,
i.e., §=S87, with the latter property being a necessary conse-
quence of time-reversal symmetry.

A simple calculation leads to the following expression for
the Fano parameter describing the line shape of |z,,,(E)|*:

2i Uyyy'U,
r vu,

[cf. Eq. (12)]. Here, U, and U,, are the nth and mth rows of
U, thought of as column vectors.

qg=i (A2)
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For N,=2, we can write U in terms of the Cayley—Klein
parametrization of the SU(2) group to explicitly verify that g
is real for any y and U, as obtained in Ref. 48. For N, >2,
q acquires an imaginary part, whose magnitude depends on y
and U.

It is instructive to compute {(g), which can be done by
taking vy to be uniformly distributed over the sphere of radius
\T. By using®

(yy) = NLL (A3)

tot

PHYSICAL REVIEW B 77, 155307 (2008)

we arrive at

(g =iT2=2

(A4)
Nt()t

This proves that ¢ is, indeed (in general), complex for
Ni>2. The Ny =2 case gives (g)=0, consistent with
Im(g)=0, as it should.*’
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